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Supplementary Note 1. MATHEMATICAL
SUPPLEMENTS ON LIE ALGEBRA

In this work, many results rely heavily on the tech-
niques of Lie algebras. For the accessibility to a wide
audience in physics, we provide some supplements on Lie
algebras.

A. u(n) Lie algebra

Since both Hamiltonians Ĥλ and density matrices ρ
are Hermitian, it is natural to deal with the problem in
the space u(n) = u(1) ⊕ su(n), which is spanned by the

identity {Î} and {L̂m}m of n2 − 1 traceless Hermitian

generators, respectively. Every member Hamiltonian Ĥλ

is an element in u(n), and can be expressed as a linear
combination of the generators

Ĥλ = λ0Î +

n2−1∑
m=1

λmL̂m = λ0Î + λ · L̂, (1)

where λ0 ∈ R and λ = {λm}m ∈ Rn
2−1. Namely,

λ = {λ0,λ} ∈ Rn
2

parametrizes the member Hamilto-

nian Ĥλ. Additionally, since u(1) commutes with su(n)

(i.e., [u(1), su(n)] = [λ0Î ,λ · L̂] = 0 ∀λ0 ∈ R,λ ∈ Rn
2−1),

this renders λ0 playing no role in each single realization
of the unitary evolution:

exp[−iĤλt]ρ exp[iĤλt] = exp[−iλ · L̂t]ρ exp[iλ · L̂t]. (2)

Therefore, we first consider su(n), and the space u(1) can
be easily included latter.

In Lie algebras, su(n) itself is a vector space, and
equipped with a bilinear Lie bracket

[ , ] : su(n)× su(n)→ su(n), (3)

satisfying the following properties

1. [Ĥλ, Ĥλ] = 0, ∀Ĥλ ∈ su(n).

2. [Ĥ1, [Ĥ2, Ĥ3]] + [Ĥ2, [Ĥ3, Ĥ1]] + [Ĥ3, [Ĥ1, Ĥ2]] = 0,

∀Ĥλ ∈ su(n).

The Lie bracket largely determines the structure of a Lie
algebra. This can be understood by applying it to the
generators. For su(n), the generators satisfy

[L̂k, L̂l] = i2cklmL̂m (4)

and the cklm’s are called the structure constants, which
satisfy

cklm = −clkm = −cmlk, (5)

for su(n).

B. Representation

To acquire further insight of an abstract Lie algebra,
one seminal approach is to link it to another easier one;
meanwhile, its algebraic structure can be preserved. This
can be achieved by introducing the concepts of homomor-
phism and representation.

Definition 1 (Lie algebra homomorphism). Let L and
L′ be two Lie algebras over the same field F . A linear
map f : L → L′ is a homomorphism if it preserves the
Lie brackets:

f([Ĥ1, Ĥ2]) = [f(Ĥ1), f(Ĥ2)],∀Ĥλ ∈ L. (6)

A homomorphism is an isomorphism, if it is injective and
surjective in the sense of linear maps.

Definition 2 (Representation of a Lie algebra). Let L
be a Lie algebra over a field F . A representation of L is
a Lie algebra homomorphism f

f : L→ gl(V), (7)

where gl(V) is the general linear algebra of endomor-
phisms on the vector space V.

Therefore a representation f assigns each Ĥλ ∈ L an

endomorphism f(Ĥλ) : V → V, depending linearly on

Ĥλ and preserving Lie brackets.

C. Adjoint representation

A particularly important representation in the Lie al-
gebra theory is the adjoint representation

ad : L→ gl(L), (8)

with

ad : Ĥλ 7→ H̃λ = [Ĥλ, ]. (9)

In other words, the adjoint representation conceives each

Ĥλ ∈ L as an endomorphism adĤλ = H̃λ acting on
L, and its action is implemented by the Lie bracket

H̃λ(Ĥλ′) = [Ĥλ, Ĥλ′ ].
Since a Lie algebra L itself is a vector space, this allows

one to express each element H̃λ ∈ gl(L) in terms of a
matrix with respect to the generator of L. For su(n),

the adjoint representation L̃m of each generator L̂m is
constructed in terms of structure constants cklm.

For example, one generically takes the generators of
su(2) to be the Pauli matrices, which satisfy the commu-
tation relation

[σ̂k, σ̂l] = i2εklmσ̂m (10)
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cyclically. Therefore, the adjoint representation of the
Pauli matrices are given by

σ̃x =

 0 0 0
0 0 −i2
0 i2 0

 , (11)

σ̃y =

 0 0 i2
0 0 0
−i2 0 0

 , (12)

σ̃z =

 0 −i2 0
i2 0 0
0 0 0

 . (13)

And any element Ĥλ = λxσ̂x + λyσ̂y + λzσ̂z ∈ su(2) has
a represention

H̃λ = λ · σ̃ =

 0 −i2λz i2λy
i2λz 0 −i2λx
−i2λy i2λx 0

 . (14)

Since u(1) commutes with su(2), one can easily extend
the representation to the space u(2) = u(1)⊕ su(2), such

that for any Ĥλ = λ0Î + λ · σ̂ ∈ u(2), its adjoint repre-
sentation is explicitly written as

H̃λ =


0 0 0 0

0 0 −i2λz i2λy
0 i2λz 0 −i2λx
0 −i2λy i2λx 0

 . (15)

Notice that H̃λ is independent of λ0. This reflects the
fact that each single unitary evolution in Supplementary
Equation (2) has no λ0 dependence.

Similarly, for the general cases, every Ĥλ = λ0Î+λ·L̂ ∈
u(n) has a representation

H̃λ = λ0Ĩ + λ · L̃ =


0 0 · · · 0

0
... λ · L̃
0

 , (16)

which is also independent of λ0.

Supplementary Note 2. PROOF OF EQ. (3) IN
THE MAIN TEXT

Here we present the translation from Eq. (1) into
Eq. (3) in the main text. We begin with a useful tool.

Lemma 3. Let L̂ and M̂ be any elements in the general
linear group GL(n) of n× n matrices. Then we have the
following relation

exp[L̂]M̂ exp[−L̂] =

∞∑
µ=0

1

µ!
[L̂, M̂ ](µ), (17)

where

[L̂, M̂ ](0) = M̂,

[L̂, M̂ ](1) = [L̂, M̂ ],

[L̂, M̂ ](µ) = [L̂, [L̂, M̂ ](µ−1)]. (18)

This lemma can be proven by straightforwardly ex-

panding exp[±L̂] with its Taylor series. And an elemen-
tary algebra leads to the desired result.

With this lemma, a single realization of the unitary
evolution in Eq. (1) in the main text can be rewritten as

exp[−iĤλt]ρ exp[iĤλt] =

∞∑
µ=0

(−it)µ

µ!
[Ĥλ, ρ](µ). (19)

One can observe that the right hand side of Supplemen-
tary Equation (19) resembles the Taylor series of an ex-
ponential. To further recast it into a closed exponential
form, we must make use of the adjoint representation of
the u(n) Lie algebra we have discussed.

A density matrix ρ is also Hermitian and of unital

trace; it can be expressed in terms of ρ = n−1Î + ρ · L̂,

with ρ ∈ Rn
2−1. One can conceive ρ = {n−1,ρ} as an n2-

dimensional column vector, then the action of the com-

mutator [Ĥλ, ρ] can be expressed in terms of conventional
matrix multiplication:

[Ĥλ, ρ] = H̃λ · ρ =


0 0 · · · 0

0
... λ · L̃
0

 ·

n−1

ρ

 , (20)

and therefore

[Ĥλ, ρ](µ) = (H̃λ)µ · ρ. (21)

Consequently, the exponential form of Supplementary
Equation (19) follows immediately

exp[−iĤλt]ρ exp[iĤλt] =

∞∑
µ=0

(−it)µ

µ!
(H̃λ)µ · ρ

= exp[−iH̃λt] · ρ. (22)

Then, given a time-independent HE {(pλ, Ĥλ)}, it de-
termines an unital and trace-preserving dynamical linear

map E(L̃)
t via the Fourier transform on group:

E(L̃)
t =

∫
Rn2

pλe
−iH̃λtdλ =

∫
Rn2

pλe
−iλL̃tdλ, (23)

provided H̃λ = λ0Ĩ+λ·L̃. Notice that λ = {λ0,λ} ∈ Rn
2

and Ĩ = 0.
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Supplementary Note 3. CONVEXITY OF
VARIATIONAL DISTANCE MEASURE

We first note that the set of all legitimate probabil-
ity distributions is convex since any statistical mixture
of probability distributions is again a probability distri-
bution.

Suppose that we are given two pure dephasing dy-
namics E1

t and E2
t with ℘1

λ and ℘2
λ being their (quasi-

)distributions, respectively. According to our measure of
nonclassicality, we have

aN{E1
t }+ (1− a)N{E2

t }

= a inf
pλ

∫
G

1

2
|℘1
λ − pλ|dλ+ (1− a) inf

pλ

∫
G

1

2
|℘2
λ − pλ|dλ.

(24)

Suppose that the two infimums are achieved by p1
λ and

p2
λ, respectively, we then have

aN{E1
t }+ (1− a)N{E2

t }

= a

∫
G

1

2
|℘1
λ − p1

λ|dλ+ (1− a)

∫
G

1

2
|℘2
λ − p2

λ|dλ

≥
∫
G

1

2
|a℘1

λ + (1− a)℘2
λ − [ap1

λ + (1− a)p2
λ]|dλ

≥ inf
pλ

∫
G

1

2
|a℘1

λ + (1− a)℘2
λ − pλ|dλ

= N{aE1
t + (1− a)E2

t }. (25)

Therefore, our measure of nonclassicality is convex.

Supplementary Note 4. FINDING THE CHER OF
QUBIT PURE DEPHASING

Within a properly chosen basis of its associated Hilbert
space, any qubit pure dephasing dynamics can be ex-
pressed as

ρ0 =

[
ρ↑↑ ρ↑↓
ρ↓↑ ρ↓↓

]
7→ Et{ρ0} =

[
ρ↑↑ ρ↑↓φ(t)

ρ↓↑φ
∗(t) ρ↓↓

]
.

(26)
The diagonal elements are constant in time and the off-
diagonal elements are governed by the dephasing factor
φ(t) = exp[−iθ(t) − Φ(t)], where θ(t) (Φ(t)) is a real
odd (even) function on time t, respectively, such that
φ(0) = 1, |φ(t)| ≤ 1 for all t ∈ R, and φ(−t) = φ∗(t).
The first two conditions are for the complete positivity
of the dynamics and the last one guarantees that the
(quasi-)distribution ℘ is a real function.

If we expand ρ in terms of ρ = 2−1Î + ρ · σ̂, where
σ̂ = {σ̂x, σ̂y, σ̂z} denotes three Pauli matrices, a qubit
initial state can be expressed as a four-dimensional col-

umn vector

ρ0 =


1/2

(ρ↑↓ + ρ↓↑)/2

i(ρ↑↓ − ρ↓↑)/2
(ρ↑↑ − ρ↓↓)/2

 . (27)

Now we know the action of Et on a state, its linear

map form E(σ̃)
t can be constructed by applying it to the

generators:

1. Et{Î} = Î.

2. Et{σ̂x} = e−Φ(t) cos θ(t)σ̂x + e−Φ(t) sin θ(t)σ̂y.

3. Et{σ̂y} = −e−Φ(t) sin θ(t)σ̂x + e−Φ(t) cos θ(t)σ̂y.

4. Et{σ̂z} = σ̂z.

We then have the dynamical linear map:

E(σ̃)
t =


1 0 0 0

0 e−Φ(t) cos θ(t) −e−Φ(t) sin θ(t) 0

0 e−Φ(t) sin θ(t) e−Φ(t) cos θ(t) 0

0 0 0 1

 . (28)

On the other hand, the adjoint representation of σ̂z
(including the generator Î of u(1)) reads

σ̃z =


0 0 0 0

0 0 −i2 0

0 i2 0 0

0 0 0 0

 . (29)

The right-hand side of Eq. (5) in the main text reads∫
R
℘(ω)e−i(ωσ̃z/2)tdω =

1 0 0 0

0
∫
℘(ω) cosωtdω −

∫
℘(ω) sinωtdω 0

0
∫
℘(ω) sinωtdω

∫
℘(ω) cosωtdω 0

0 0 0 1

 . (30)

Note that the two matrices (28) and (30) can be simul-
taneously diagonalized by multiplying

X =


1 0 0 0

0 1 −i 0

0 1 i 0

0 0 0 1

 , X−1 =


1 0 0 0

0 1
2

1
2 0

0 i
2
−i
2 0

0 0 0 1

 (31)

from the left and the right, respectively. Namely,

X · E(σ̃)
t ·X−1 =


1 0 0 0

0 φ(t) 0 0

0 0 φ∗(t) 0

0 0 0 1

 (32)
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and ∫
R
℘(ω)X · e−i(ωσ̃z/2)t ·X−1dω =

1 0 0 0

0
∫

R ℘(ω)e−iωtdω 0 0

0 0
∫

R ℘(ω)eiωtdω 0

0 0 0 1

 . (33)

Therefore, the same conclusion

exp[−iθ(t)− Φ(t)] =

∫
R
℘(ω)e−iωtdω (34)

is immediately manifest and the conventional inverse
Fourier transform leads to the final result.

Supplementary Note 5. DIGONALIZATION AND
ITS IMPLICATION

In view of Supplementary Equations (28) and (30),
we can easily obtain the result Supplementary Equa-
tion (34) without diagonalizing them. Diagonalization
seems not necessary. However, the diagonalization pro-
vides a deeper insight into the intrinsic algebraic struc-
ture. It is essential for a systematic procedure when tack-
ling higher dimensional problems.

To understand the implications of the diagonalization,
we recall that, in the adjoint representation sl(u(2)), the
Lie algebra u(2) plays the role of a vector space with

the bases {Î , σ̂x, σ̂y, σ̂z}. The transformation described

by X and X−1 transforms the bases into {Î , σ̂+, σ̂−, σ̂z},
where σ̂± = (σ̂x ± iσ̂y)/2, which are the bases of gl(2) =
u(1)⊕ sl(2).

On the other hand, as seen in Supplementary Equa-
tion (2), λ0 is irrelevant in describing the dynamics. We
therefore consider only the traceless member Hamilto-

nian taken from H of su(2), namely, Ĥω = ωσ̂z/2. The
factor 2 is included for later convenience. Its adjoint
representation with respect to gl(2) basis is obtained by

applying H̃ω on them; namely, H̃ω(σ̂±) = [ωσ̂z/2, σ̂±] =

±1 ·ωσ̂± and H̃ω(σ̂z) = [ωσ̂z/2, σ̂z] = 0. Its matrix form
is written as

H̃ω =


0 0 0 0

0 ω 0 0

0 0 −ω 0

0 0 0 0

 . (35)

The operators {Î , σ̂+, σ̂−, σ̂z} are the “eigenvectors” of

H̃ω associated with the eigenvalues {0, 1,−1, 0}, respec-
tively. The eigenvalues ±1 are therefore referred to as
the roots (denoted by α1,2) associated to the root spaces
span{σ̂±}, spanned by the operators σ̂±. For higher di-
mensional systems, the CSA H possesses more genera-
tors; namely, the member Hamiltonian contains more pa-
rameters than a single ω. The roots are no longer real

scalars but vectors in an Euclidean space. This can be
seen in the following example.

Supplementary Note 6. ROOT SYSTEM

The root space decomposition is a very important tool
in the theory of Lie algebras, especially in describing
the structure of an abstract Lie algebra, and has many
prominent applications in elementary particle physics
and gauge field theory. However, to thoroughly under-
stand this technique, we would encounter a divergent
bundle of mathematics. This would make it unaccessible
to the wide audience in physics. From a practical view-
point, we instead discuss the following qutrit example,
which demonstrates the core concept of the root space
decomposition. This is enough for the scope of this work.

A. Qutrit pure dephasing

Consider a qutrit pure dephasing described by

Et{ρ0} =

 ρ11 ρ12φ1(t) ρ13φ4(t)

ρ21φ2(t) ρ22 ρ23φ6(t)

ρ31φ5(t) ρ32φ7(t) ρ33

 . (36)

The ordering of the numbering of φm(t) is for the latter
convenience. This will become clear in the following dis-
cussions. To guarantee the Hermicity of ρ(t), φ1(t) =
φ∗2(t) and so on. Moreover, they satisfy φm(0) = 1,
|φm(t)| ≤ 1 for all t ∈ R, and φm(−t) = φ∗m(t).

Inheriting from the Gell-Mann matrices, which form
the conventional generators for su(3), we define the gen-
erators for sl(3) as follows:

K̂1 = K̂†2 =

 0 1 0

0 0 0

0 0 0

 , K̂3 = L̂3 =

 1 0 0

0 −1 0

0 0 0

 ,
K̂4 = K̂†5 =

 0 0 1

0 0 0

0 0 0

 , K̂6 = K̂†7 =

 0 0 0

0 0 1

0 0 0

 ,
K̂8 = L̂8 =

1√
3

 1 0 0

0 1 0

0 0 −2

 . (37)

Additionally, K̂0 = Î is the generator for u(1). Then,
the dynamical linear map in this basis is a diagonalized
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matrix

E(L̃)
t =



1

φ1(t)

φ2(t)

1

φ4(t)

φ5(t)

φ6(t)

φ7(t)

1


,

(38)
which is obtained by applying the dynamics on each gen-

erator: Et{K̂m} = φm(t)K̂m.
In general, a 3 × 3 Hermitian operator is a linear

combination of the above 9 generators. However,
as seen in Supplementary Equation (2), λ0 is ir-
relevant in describing the dynamics. We therefore
neglect λ0 and consider only the traceless member
Hamiltonians. Furthermore, since we only consider
the elements in H, the simulating HE is of the form

{(℘(λ3, λ8), Ĥλ)}λ3,λ8
with Ĥλ = (λ3L̂3 + λ8L̂8)/2 ∈ H

and λ = (λ3, λ8) ∈ R2. By estimating all the commu-

tators [Ĥλ, K̂m] = (αm · λ)K̂m, we obtain its adjoint

representation in the gl(3) basis H̃λ = (λ3L̃3+λ8L̃8)/2 =

diag
[

0 λ3 −λ3 0 (λ3 +
√

3λ8)/2 −(λ3 +
√

3λ8)/2

(−λ3 +
√

3λ8)/2 −(−λ3 +
√

3λ8)/2 0
]
, being a

diagonal matrix as well.

Finally, from Eq. (4) in the main text, E(L̃)
t =∫

G pλe
−iH̃λtdλ, we conclude that the (quasi-)distribution

℘(λ3, λ8) is governed by the following simultaneous
Fourier transforms:

φ1(t) =
∫

R2 ℘(λ3, λ8)e−iλ3tdλ3dλ8

φ4(t) =
∫

R2 ℘(λ3, λ8)e−i(λ3+
√

3λ8)t/2dλ3dλ8

φ6(t) =
∫

R2 ℘(λ3, λ8)e−i(−λ3+
√

3λ8)t/2dλ3dλ8

. (39)

B. Root system of su(3)

Instead of being engaged in solving the Supplementary
Equations (39), we look further insight into its struc-

ture in terms of the root system. According to H̃(λ3, λ8)
above, we can list all the roots of su(3):

α1 = −α2 = (1, 0),

α4 = −α5 =

(
1

2
,

√
3

2

)
,

α6 = −α7 =

(
−1

2
,

√
3

2

)
. (40)

They are two dimensional vectors of equal length on the
λ3-λ8 plane. We plot them in Fig. 2 in the main text.

We can observe that the roots satisfy the following
properties:

R1 The roots come in pair, e.g., α1 and α2 are two roots
pointing in opposite direction. The three roots α1,
α4, and α6 are referred to be positive.

R2 Among the three positive roots, α1 and α6 are simple
and α4 is not, since α4 = α1 + α6.

R3 All the roots are of equal length and the angle be-
tween any two non-pairing roots is either π/3, π/2,
or 2π/3.

Based on the observations, we can consider ℘(λ3, λ8)
as a distribution over the λ3-λ8 plane. Now we rewrite

℘(λ3, λ8)dλ3dλ8 = ℘′(x1, x6)dx1dx6 (41)

via the change of variables xm = αm · λ, m = 1, 6.
Note that the Jacobian Det[α1 α6]−1 = 2/

√
3, due to

the change of variables has been absorbed into ℘′(x1, x6).
The first and third lines in Supplementary Equations (39)
lead to {

φ1(t) =
∫

R ℘1(x1)e−ix1tdx1

φ6(t) =
∫

R ℘6(x6)e−ix6tdx6

. (42)

They are the marginals of ℘ along the directions α1 and
α6, respectively. ℘1(x1) and ℘6(x6) can be obtained by
performing the inverse Fourier transform. Moreover, due
to the property R2, the second line in Supplementary
Equations (39) describes the correlation between the new
random variables x1 and x6. If we consider a special case,
e.g., φ4(t) = φ1(t)φ6(t), the second equation implies that
they are independent:

℘′(x1, x6) = ℘1(x1)℘6(x6). (43)

This finishes solving ℘. For the case of correlated random
variables, we consider an example of four-dimensions in
the following section.

Supplementary Note 7. QUBIT PAIR PURE
DEPHASING

We proceed with a non-trivial example in the presence
of correlations between random variables. With this ex-
ample, we can illustrate the intrinsic complexity of the
retrieval of (quasi-)distributions.

We consider the extended spin-boson model consist-
ing of a non-interacting qubit pair coupled to a common
boson bath. The total Hamiltonian reads

ĤT =
∑
j=1,2

ωj
2
σ̂z,j +

∑
k

ωkb̂
†
kb̂k

+
∑
j,k

σ̂z,j ⊗ (gj,kb̂
†
k + g∗j,kb̂k). (44)
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The whole system evolves unitarily according to the uni-
tary operator (in the interaction picture):

Û I(t) = exp

[
i
∑
k

ẐkẐ
†
k

(
ωkt− sinωkt

ω2
k

)]

× exp

[∑
k

Ẑkαk(t)b̂†k − Ẑ
†
kα
∗
k(t)b̂k

]
, (45)

where Ẑk =
∑
j=1,2 gj,kσ̂z,j and αk(t) = −i

∫ t
0
eiωkτdτ =(

1− eiωkt
)
/ωk.

For simplicity, we assume that g1,k = g2,k. Tracing
out the boson bath, the qubit pair pure dephasing is de-
scribed by

Et{ρ0} =


ρ11 ρ12φ1(t) ρ13φ4(t) ρ14φ9(t)

ρ21φ2(t) ρ22 ρ23φ6(t) ρ24φ11(t)

ρ31φ5(t) ρ32φ7(t) ρ33 ρ34φ13(t)

ρ41φ10(t) ρ42φ12(t) ρ43φ14(t) ρ44

 ,
(46)

with dephasing factors

φ1(t) = φ4(t) = exp[iθ(t)− Φ(t)],

φ6(t) = 1,

φ9(t) = exp[−4Φ(t)],

φ11(t) = φ13(t) = exp[−iθ(t)− Φ(t)], (47)

where

θ(t) = 4

∫ ∞
0

J (ω)

ω2
(ωt− sinωt)dω,

Φ(t) = 4

∫ ∞
0

J (ω)

ω2
coth

(
~ω

2kBT

)
(1− cosωt)dω.

(48)

And J (ω) is the environmental spectral density function.

Following our procedure, to simulate the qubit pair
pure dephasing, we consider the diagonalized member
Hamiltonian taken from the CSA H of su(4):

Ĥλ = (λ3L̂3 + λ8L̂8 + λ15L̂15)/2. (49)

By estimating all the commutators [Ĥλ, K̂m] = (αm ·
λ)K̂m, for m = 1, 2, . . . , 14, with K̂m being the genera-

tors of gl(4), we can list all the root vectors of su(4):

α1 = −α2 = (1, 0, 0),

α4 = −α5 =

(
1

2
,

√
3

2
, 0

)
,

α6 = −α7 =

(
−1

2
,

√
3

2
, 0

)
,

α9 = −α10 =

(
1

2
,

1

2
√

3
,

√
2

3

)
,

α11 = −α12 =

(
−1

2
,

1

2
√

3
,

√
2

3

)
,

α13 = −α14 =

(
0,− 1√

3
,

√
2

3

)
. (50)

Note that the roots α1, . . . ,α7, lying on the λ3-λ8 plane,
are the same as those of su(3). The root system of su(4) is
even more complicated. For visual clarity, we only show
six positive roots in Fig. 3b in the main text. Moreover,
among the six positive roots, α1, α6, and α13 are simple
because other positive roots can be obtained by combin-
ing them, e.g., α9 = α1 +α6 +α13 and α11 = α6 +α13.

From the equation E(L̃)
t =

∫
R3 p(λ)e−iH̃λtd3λ, the

(quasi-)distribution ℘(λ), over R3 space, is governed by
six simultaneous Fourier transforms:

φm(t) =

∫
R3

℘(λ)e−i(αm·λ)td3λ, m = 1, 4, 6, 9, 11, 13.

(51)
Generically, the three random variables are correlated.
To solve the correlated ℘, we therefore perform the
change of variables xm = αm · λ, m = 1, 6, 13, because
they are simple and can be used to expand the other
roots, and we rewrite

℘(λ3, λ8, λ15)dλ3dλ8dλ15 = ℘′(x1, x6, x13)dx1dx6dx13.
(52)

Note that the Jacobian Det[α1 α6 α13]−1 =
√

2 due to
the change of variables has been absorbed into ℘′. Then,
the three axes of ℘′ are defined by the three simple roots.

Additionally, since φ6(t) = 1, we can observe the fol-
lowing correspondence between the root vectors and the
dephasing factors:

α1 + α6 = α4 ↔ φ1(t)φ6(t) = φ4(t),

α6 + α13 = α11 ↔ φ6(t)φ13(t) = φ11(t). (53)

This implies that ℘′ = ℘6(x6)℘1,13(x1, x13) is separated
into two parties and they can be determined according
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to the set of equations:

φ1(t) =

∫
R
℘1(x1)e−ix1tdx1,

φ13(t) =

∫
R
℘13(x13)e−ix13tdx13,

φ9(t) =

∫
R2

℘1,13(x1, x13)e−ix1te−ix13tdx1dx13,

1 =

∫
R
℘6(x6)e−ix6tdx6. (54)

The first and second line specify the marginals of
℘1,13(x1, x13) along the directions α1 and α13, respec-
tively; meanwhile, the third line describes the correla-
tion between them. The last line immediately leads to
the result ℘6(x6) = δ(x6).

Consider the Ohmic spectral density J (ω) =
ω exp(−ω/ωc) in the zero-temperature limit, the dephas-
ing factors can be calculated explicitly:

φ1(t) = eiθ(t)−Φ(t) =
exp[i(4ωct− 4 arctan(ωct))]

(1 + ω2
c t

2)2
,

φ13(t) = e−iθ(t)−Φ(t) =
exp[−i(4ωct− 4 arctan(ωct))]

(1 + ω2
c t

2)2
,

φ9(t) = e−4Φ(t) =
1

(1 + ω2
c t

2)8
. (55)

The two marginals are easily obtained by the conven-
tional Fourier transform

℘1(x1) =
1

2π

∫ ∞
−∞

φ1(t)eix1tdt

=

{
1

6ω4
c
(x1 + 4ωc)3e−

x1+4ωc
ωc , x1 ≥ −4ωc

0 , x1 < −4ωc

(56)

and

℘13(x13) =
1

2π

∫ ∞
−∞

φ13(t)eix13tdt

=

{
0 , x13 > 4ωc

−1
6ω4

c
(x13 − 4ωc)3e

x1−4ωc
ωc , x13 ≤ 4ωc

.

(57)

However, since φ1(t)φ13(t) 6= φ9(t), this implies that
the two random variables x1 and x13 are correlated and
℘1(x1)℘13(x13) 6= ℘1,13(x1, x13). A difficulty in solving
℘1,13 lies in the fact that, in the third line of Supplemen-
tary Equations (54), there are two random variables, but
they are accompanied with the same time variable t.

Interestingly, this can easily be solved by a simple
ansatz. Let

θ(t1 − t13) = 4ωc(t1 − t13)− 4 arctan[ωc(t1 − t13)],

τ(t1, t13) = 2
8t1t13

(t1+t13)2 ,

Ψ(t1, t13) = 2τ(t1, t13)ln

[
1 + ω2

c

(t1 + t13)2

τ(t1, t13)

]
. (58)

One can observe that τ(t, 0) = τ(0, t) = 1 and τ(t, t) = 4,
then

exp[iθ(t1 − t13)−Ψ(t1, t13)] =∫ ∫ ∞
−∞

℘1,13(x1, x13)e−ix1t1e−ix13t13dx1dx13 (59)

simultaneously recovers the first three lines in Supple-
mentary Equations (54); namely, {t1 = t, t13 = 0} recov-
ers the first line, {t1 = 0, t13 = t} recovers the second line,
and {t1 = t, t13 = t} recovers the third line. Meanwhile,
it is a conventional two-dimensional Fourier transform
with distinct time variables t1 and t13. Therefore, ℘1,13

can be solved by

℘1,13(x1, x13) =
1

4π2
×∫ ∫ ∞

−∞
eiθ(t1−t13)−Ψ(t1,t13)eix1t1eix13t13dt1dt13. (60)

This concludes the solution of Supplementary Equa-
tions (54). The numerical result is shown in Fig. 3c in
the main text.

Supplementary Note 8. PROOF OF EXISTENCE
AND UNIQUENESS

After introducing our procedure, we now show the
proof of the existence and uniqueness of the CHER for
pure dephasing. Since we deal with (quasi-)distribution
functions ℘(λ), which are real [℘(λ) ∈ R], normalized
[
∫
℘(λ)dλ = 1], but not necessarily positive, we start

with the L1(G) space consisting of real functions defined
on a locally compact and ablian group G (generated by
CSA H) such that their absolute values are Lebesgue in-
tegrable. Note that the L1(G) forms a vector space and
is a super set of all (quasi-)distributions. Conversely, an
arbitrary element f ∈ L1(G) may not necessarily be nor-
malized.

Besides the addition in L1(G), we further define a bi-
nary operation, the “multiplication” ∗ : L1(G)×L1(G)→
L1(G), in terms of the convolution:

h(λ) = (f ∗ g)(λ)

=

∫
G
f(λ− ξ)g(ξ)dξ ∈ L1(G), ∀ f, g ∈ L1(G).

(61)

Equipped with this multiplication, L1(G) forms a Banach
algebra. We assign the delta function δ(λ) the role of
multiplicative identity in the sense that

(f ∗ δ)(λ) = (δ ∗ f)(λ) = f(λ), ∀ f ∈ L1(G). (62)

On the other hand, consider the adjoint representation
gl(u(n)) in the basis of gl(n), we define a subset D ⊂
gl(u(n)) consisting of diagonalized maps such that their
entries satisfy the conditions:



9

1. Every E(L̃)
t ∈ D is diagonalized.

2. The entry of E(L̃)
t corresponding to Î is a real con-

stant A ∈ R.

3. The entries of E(L̃)
t corresponding to opposite

root spaces are complex conjugate to each other,
φ−~α(t) = φ∗~α(t), and satisfy φ~α(0) = 1 and
φ~α(−t) = φ∗~α(t).

4. The entries of E(L̃)
t corresponding to the H of sl(n)

are 1.

Note that D forms an abelian group and the set of all
CPTP pure dephasing dynamical maps is its subset.

After identifying the algebraic structures, the Fourier

transform E(L̃)
t =

∫
G ℘(λ)e−iλL̃tdλ can be conceived as a

map: ℘(λ) 7→ E(L̃)
t . Then, given L̃m ∈ H, the Fourier

transform is an isomorphism from L1(G) to D. This is
stated in the following critical Lemma:

Lemma 4. The Fourier transform with generators L̃m
taken from the CSA H of gl(u(n)) is an isomorphism from
L1(G) to D.

Proof. Suppose that f and g are two elements of L1(G),

and E(L̃)
f and E(L̃)

g are their Fourier transform, with gen-

erators L̃m ∈ H, respectively. Let h = f ∗ g, then

E(L̃)
h =

∫
G
h(λ)e−iλL̃tdλ

=

∫
G

(f ∗ g)(λ)e−iλL̃tdλ

=

∫
G

∫
G
f(λ− ξ)e−iλL̃tg(ξ)dξdλ

=

∫
G
f(λ− ξ)e−i(λ−ξ)L̃tdλ

∫
G
g(ξ)e−iξL̃tdξ.

(63)

The last line is valid with the following two properties.

First, for the generators L̃m ∈ H, they commute with
each other. Otherwise, we must appeal to the BCH for-
mula. Second, since G is an abelian group and λ runs over
all group elements, the rearrangement lemma guarantees
that λ′ = λ− ξ is also the case. Then, we have

E(L̃)
h = E(L̃)

f E
(L̃)
g . (64)

Therefore, the Fourier transform is a multiplicative ho-
momorphism from L1(G) to D.

In addition, it is obvious that

id(L̃) =

∫
G
δ(λ)e−iλL̃tdλ, ∀ t ∈ R. (65)

This means that the multiplicative identity δ(λ) in L1(G)

is mapped to the identity map id(L̃) in D, with all di-
agonal entries being 1. Additionally, δ(λ) is the only

element in the kernel of the Fourier transform with
L̃m ∈ H. Namely, δ(λ) is the only solution satisfying Sup-
plementary Equation (65). This can easily be seen from
our procedure Eq. (8) in the main text. Consequently,
this proves our results that the Fourier transform with

L̃m ∈ H is an isomorphism. �

This lemma ensures the one-one correspondence be-
tween L1(G) and D. Moreover, a CPTP pure dephasing
is an element in D with A = 1; this is equivalent to a nor-
malized ℘(λ). This proves the existence and uniqueness
of the simulating HE with diagonalized member Hamil-
tonians for CPTP pure dephasing.

Supplementary Note 9. SIMULATING THE
NOISE IN THE S-T0 PURE DEPHASING

EXPERIMENT

Experiments inevitably suffer from the disturbances
caused by the fluctuations of the surrounding environ-
ment or the imperfection of the measurements. There-
fore, the experimentally measured raw data may poten-
tially deviate from the theoretical prediction of an ideal-
ized model.

The prototype of our theoretical model is the S-T0

qubit in a gate-defined double-quantum-dot device, fabri-
cated in a GaAs/AlGaAs heterostructure. The reported
spin relaxation time (T1) in such material can approach
several milliseconds, while the time-averaged dephasing
time (T∗2) is on the time scale of tens of nanoseconds.
Therefore the qubit dynamics can be well approximated
as pure dephasing.

In the quantum state tomography experiment, the S-
T0 qubit state is constructed by projective measure-
ments onto the three axes of the Bloch sphere defined
as |X〉 = (|S〉+ |T0〉)/

√
2 = | ↑↓〉, |Y〉 = (|S〉− i|T0〉)/

√
2,

and |Z〉 = |S〉 = (| ↑↓〉 − | ↓↑〉)/
√

2, and measuring the
corresponding return probabilities P|j〉(τs), j = X,Y,Z,
at different free induction decay times τs, as indicated
by the blue curves in Supplementary Figure 1a. Once
all the P|j〉(τs) are given, we can construct the density

matrix ρ(τs) = [Î+
∑
j=X,Y,Z rj(τs)σ̂j ]/2 with the trajec-

tories r(τs) = {rX(τs), rY(τs), rZ(τs)} in the Bloch sphere
determined by

rj(τs) = 2P|j〉(τs)− 1, j = X,Y,Z. (66)

Then we can apply the analysis explained in the main
text and the Methods section.

We complement our theoretical simulation of the S-T0

qubit pure dephasing by including noise effects in terms
of statistical fluctuations. The detailed simulation of the
noise effects, as well as our complete analysis, are out-
lined step by step in the following, and schematically in
Supplementary Figure 1.

Step 1 Based on the theoretically simulation (blue
curves), the brown points in Supplementary Fig-
ure 1a are randomly offset vertically, following a
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Gaussian noise distribution with standard devia-
tion 0.05. Then the brown curves fitting the noisy
data points simulate the noisy experimental mea-
surement.

Step 2 Depict the trajectories in the Bloch sphere accord-
ing to Supplementary Equation (66) and identify
the angle Ω between the axis of rotation (blue
vector), i.e., the normal vector of the blue dephas-
ing disk, and |S〉-axis, as shown in Supplementary
Figure 1b.

Step 3 Perform a unitary rotation R̂Ωρ(τs)R̂
†
Ω, with

R̂Ω = exp[iΩσ̂Y/2], as shown in Supplemen-
tary Figure 1c. This recovers the standard form
Eq. (2) in the main text.

Step 4 For the idealized (blue) trajectory, our procedure
is directly applicable and leads to the numerical
result ℘(ω) in Supplementary Figure 1d. For the
noisy (brown) trajectory, we first project it onto
the dephasing disk. Then we can again apply our
procedure.

Step 5 Estimate the nonclassicality N according to
Eq. (4) in the main text, and repeatedly perform
the noise simulation. This way, we can obtain a
series of fluctuating nonclassicality N values. By
taking the mean value and the standard deviation
of the N series, we obtain the average nonclassi-
cality N (brown points) and the brown error bars
shown in Fig. 4d in the main text.
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Supplementary Figure 1. Schematic illustration of our numerical analysis of the noisy S-T0 qubit pure dephasing.
a The blue curves stem from the theoretical model. The brown points are randomly offset vertically from the blue curves,
following a Gaussian noise distribution with standard deviation 0.05. Then the brown curves fitting the noisy data points
simulate the noisy experimental measurement. b After all the P|j〉(τs) being given, we can depict the trajectories in a Bloch
sphere and the dynamics are therefore explicitly visualized. The theoretical (blue) trajectory defines a clear dephasing disk. Its
normal vector and the angle Ω between the |S〉-axis can be identified. However, the noisy (brown) trajectory does not perfectly
attach to the dephasing disk. The two panels are shown from different viewing angles. c According to the normal vector

identified in (b), a unitary rotation R̂Ω recovers the standard form in Eq. (2) in the main text. The two panels are shown from
different viewing angles. d Applying our procedure explained in the main text, we can numerically recover the desired ℘(ω).
Finally, repeatedly performing the noise simulation leads to a series of fluctuating N values. Then taking the mean value and
the standard deviation, we obtain the average nonclassicality N (brown points) and the brown error bars shown in Fig. 4d in
the main text.
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