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Anomalous time delays and quantum weak
measurements in optical micro-resonators
M. Asano1,*, K.Y. Bliokh2,3,*, Y.P. Bliokh4,*, A.G. Kofman2,5, R. Ikuta1, T. Yamamoto1, Y.S. Kivshar3, L. Yang6,

N. Imoto1, Ş.K. Özdemir6 & F. Nori2,7

Quantum weak measurements, wavepacket shifts and optical vortices are universal wave

phenomena, which originate from fine interference of multiple plane waves. These effects

have attracted considerable attention in both classical and quantum wave systems. Here

we report on a phenomenon that brings together all the above topics in a simple

one-dimensional scalar wave system. We consider inelastic scattering of Gaussian

wave packets with parameters close to a zero of the complex scattering coefficient.

We demonstrate that the scattered wave packets experience anomalously large time and

frequency shifts in such near-zero scattering. These shifts reveal close analogies with the

Goos–Hänchen beam shifts and quantum weak measurements of the momentum in a vortex

wavefunction. We verify our general theory by an optical experiment using the near-zero

transmission (near-critical coupling) of Gaussian pulses propagating through a nano-fibre

with a side-coupled toroidal micro-resonator. Measurements demonstrate the amplification

of the time delays from the typical inverse-resonator-linewidth scale to the pulse-duration

scale.
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I
nterference of linear waves produces many non-trivial and
counter-intuitive phenomena in wave physics. Examples,
which attracted considerable attention in the past two decades,

include the following: optical vortices with phase singularities1–3,
curvilinear free-space propagation of Airy beams4–6, anomalous
tunnelling times and superluminal propagation of wave packets7–10,
lateral shifts of reflected or refracted beams, violating geometrical-
optics rules11–17, anomalous local group velocities and photon
trajectories18–20, and super-oscillations21–24.

All these phenomena can appear in classical optical or
microwave systems and for quantum matter waves. Moreover,
anomalous shifts of quantum wave packets resulted in a new
paradigm in the theory of quantum measurements, namely
quantum weak measurements25–30. Such measurements of usual
quantum observables (for example, momentum or spin) can
yield rather counter-intuitive results with anomalously large
‘weak values’: spin 100 for spin-1/2 particles and so on. In fact,
these super-shifts and super-values are direct consequences of
fine interference of plane waves (Fourier components) in the
wave packets corresponding to the confined quantum states.

In this work, we describe and observe a phenomenon that
brings together several of the above topics in a quite simple
system. Namely, we consider the resonant inelastic scattering of a
one-dimensional (1D) wave packet near a zero of the complex
scattering coefficient. In our proof-of-principle experiment, we
deal with the transmission of an optical Gaussian pulse through a
nano-fibre with a side-coupled high-Q microtoroid resonator
near the zero of the transmission coefficient (the so-called ‘critical
coupling’)31,32. We show that in such near-zero scattering, the
wave packet experiences an anomalously large time delay (either
positive or negative) and also a large frequency shift. Assuming
that the spectral width of the wave packet is much smaller than
the linewidth of the resonance, the typical time delay is estimated
as the inverse linewidth, that is, the time the pulse is trapped in
the resonator9. For the near-zero scattering, the time delay can be
enhanced to the pulse duration scale, which is demonstrated in
our experiment. Similarly, the frequency shift can reach the scale
of the spectral width of the pulse.

Such anomalous behaviour of the near-zero scattered pulse
links the well-known phenomena of time delays and super-
luminal (or subluminal) propagation7–10 with recent studies
of optical beam shifts11–17, phase singularities1–3,18 and the
quantum weak-measurement paradigm25–30. Namely, the time
and frequency shifts correspond to real and imaginary parts of
the complex time delay, in the same manner as the spatial and
angular beam shifts are described by the complex beam
shift14,16,17. Furthermore, the complex time delay can be
regarded as an anomalous weak value associated with the phase
singularity of the scattering coefficient. Importantly, the
previously known formulas for time delays diverge in the
singular zero-scattering point. Using the extended theory of
quantum weak measurements14,29, we derive simple expressions
that accurately describe the anomalous (but finite) time and
frequency shifts for near-zero scattering.

It should be noticed that some of the links between the above
topics have been considered before, in particular the relations
between beam shifts and quantum weak measurements12,14–16,
time delays and weak measurements33–36, Goos–Hänchen beam
shifts and time delays37,38, as well as the considerable role of
phase singularities in anomalous weak values18,39. However,
the results of our work unify all these phenomena in a fairly
complete way in a simple one-channel scattering problem. Most
importantly, in contrast to previous studies, the phase singularity
and complex weak value appear in our problem in a 1D system
without internal degrees of freedom (polarization or spin).
For example, a related study by Solli et al.39 has emphasized

the connection between anomalous time delays (but not
frequency shifts), phase singularities of the transmission
coefficient and quantum weak measurements. However, that
study essentially involved a two-dimensional (2D) microwave
system with polarization degrees of freedom. Moreover, their
time-delay expressions were still divergent in the zero-
transmission point. In our case, a rich and non-trivial physical
picture with vortices and weak values naturally arises in a genuine
1D scalar system because of its non-Hermitian character
involving complex frequencies and phases.

We verified our theoretical predictions and measured
anomalous time delays in experiments performed using a
cutting-edge optical setup. Namely, we used 17-nanosecond
Gaussian pulses propagating in a nano-fibre coupled to a high-Q
whispering-gallery-mode toroidal micro-resonator (Q0 ’ 2:9 � 106).
Recently, it was demonstrated that such micro-resonators are
capable of revealing a number of fundamental non-Hermitian
phenomena of wave physics40–43. In our case, the critical
coupling with the resonator resulted in both positive and
negative time delays (that is, subluminal and superluminal
propagation) up to 15 ns.

Results
Resonator and time delays of scattered wave packets. We start
with the description of basic features of resonant inelastic one-
channel scattering of a Gaussian wave packet. To be explicit, we
consider a 1D problem with an optical pulse propagating in a
waveguide (nano-fibre in our experiment) and interacting with a
side-coupled high-Q ring resonator (Fig. 1). Near resonance, the
transmission of a single harmonic wave with angular frequency o
through the system can be described by the following
transmission coefficient31:

T o;Gð Þ ¼ o�o0ð Þ� i G�G0ð Þ
o�o0ð Þþ i GþG0ð Þ : ð1Þ

Here, o0 is the resonant frequency of the resonator, G0ooo0 is
the internal dissipation rate of the resonator and Gooo0 is the
coupling rate between the incident wave and the resonator. It is
noteworthy that in a different geometry, when a standard
resonator cavity directly couples to the incoming and outgoing
waveguides, the reflection coefficient has the form of
equation (1)31,32. Therefore, all the conclusions of this work are
equally applicable to the wave reflection in such geometry.

We regard the wave frequency o and the coupling parameter
G as variables in equation (1), because these parameters
are varied in our experiment. The Q-factors of the uncoupled
and wave-coupled resonator are given by Q0¼o0/2G0441 and
Q¼o0/2(G0þG)441, respectively; the latter one determines the
linewidth of the resonant transmission. Note that equation (1)
describes the wave transmission in the vicinity of the resonance
line, that is, when |o�o0|r(G0þG)ooo0, and it is not valid
for |o�o0|44(G0þG).

Equation (1) has a universal form, which can be regarded as the
generalized Breit–Wigner formula for the S-matrix of a one-
channel resonant scattering in quantum mechanics9,44. However,
instead of poles of the scattering matrix, which are usually
considered in scattering theory, we are interested here in zeros
of the transmission coefficient (1). Namely, when the wave
frequency matches the resonator frequency, o¼o0, and the
coupling coefficient coincides with the internal dissipation in the
resonator, G¼G0, the so-called critical coupling takes place31,32.
Under these conditions, the transmission vanishes, T(o0, G0)¼ 0,
and all the wave energy is absorbed by the resonator. Near the
critical-coupling parameters, the transmission coefficient behaves
similar to a generic complex function near its zero, that is, forms a
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vortex with a phase singularity1–3,39. Indeed, introducing
complex detuning from the critical-coupling parameters
�n ¼ ðo�o0Þ� iðG�G0Þ � n� ig, equation (1) behaves as
T �nð Þ ’ � i �n=2G0 for �nj j � G0.

We now consider a Gaussian wave packet or pulse consisting of
multiple waves with different frequencies. The field of the
incident Gaussian wave packet can be written in the frequency
and time representations as:

~E oð Þ / exp � o�ocð Þ2

2~D2

� �
; E tð Þ / exp � ioct� t� tcð Þ2

2D2

� �
:

ð2Þ
Here, oc is the central frequency of the packet, ~D is the spectral
width of the pulse and D ¼ 1=~D is the temporal length of the
pulse. In equation (2), we consider temporal variations of the
wavepacket field in the point of observation (say, x¼ 0), assuming
that the field amplitude is maximal at t¼ tc.

We also assume that the central frequency of the wave packet is
close to the resonant frequency of the resonator, so that
equation (1) is applicable for o¼oc, and that the spectral width
of the wave packet is much smaller than the linewidth of the
resonance (1). These conditions can be written as

oc�o0j j � G0þGð Þ; ~D � G0þGð Þ: ð3Þ
The second condition (3) is the ‘weak-coupling’ or ‘adiabatic’
condition, which implies that the Gaussian shape of the wave
packet is only weakly perturbed by the interaction with the
resonator (apart from the overall scaling). Assuming that GBG0,
we will use the small weak-coupling (adiabatic) parameter
e ¼ ~D=G0 � 1.

In the zero-order approximation in e, the field of the
transmitted pulse is given by ~E0 oð Þ ’ T ocð Þ~E oð Þ. As the
transmitted pulse is observed at some point x¼ L, its temporal
form is E0 tð Þ ’ T ocð ÞE t0ð Þ, where t0-t� L/c, with c being the
(group) velocity of the wave in the waveguide. Thus, the field
of the transmitted pulse is expected to be maximal at the time
t0c ¼ tcþ L=c in the point of observation (see Fig. 1).

Taking into account the finite spectral width of the pulse and
different complex transmission coefficients for waves with
different frequencies, one can see that the transmitted pulse
is perturbed by interesting interference phenomena. In the
first-order approximation in e, we can use the Taylor expansion

of the transmission coefficient near the central frequency:
T oð Þ ’ T ocð Þþ @T ocð Þ=@ocð Þ o�ocð Þ. Then, the Fourier
spectrum of the transmitted pulse becomes:

~E0 oð Þ ’ T ocð Þ 1þ @ ln T ocð Þ
@oc

o�ocð Þ
� �

~E oð Þ: ð4Þ

The second term in square brackets in equation (4) originates
from the dispersion of the transmission coefficient. It contains the
frequency o and therefore affects the shape of the transmitted
pulse in the time representation (where frequency becomes the
operator ô ¼ i@=@t).

Using precise analogy of the transformation (4) with the
analogous spatial transformation in the optical beam-shift and
quantum weak-measurements problems16,17,29 (which is
described below), one can show that the transmitted pulse
acquires the complex time delay D:

E0 tð Þ ’ T ocð ÞE t0 �Dð Þ; D ¼ � i
@ ln T ocð Þ
@oc

: ð5Þ

In terms of real-valued quantities, the transmitted field can be
presented in Gaussian form in both frequency and time domains:

E0 tð Þ ’ T ocð ÞE t0 �Dtð Þe� i Do t� tcð Þ; Dt ¼ ReD; ð6Þ

~E0 oð Þ ’ T ocð Þ~E o�Doð Þei Dt o�ocð Þ; Do ¼ � ~D2ImD: ð7Þ
Here, Dt is the well-known Wigner time delay7–10,45, that is,
a shift of the Gaussian envelope in time (and longitudinal
coordinate), whereas Do is a small frequency shift associated with
the imaginary part of the complex shift (5) (see Fig. 1). Although
complex time shifts (5) were widely discussed in the literature
(see refs 7–9 and references therein), it was not properly
recognized that the imaginary part of this time is responsible
for the frequency rather than time shift.

Thus, because of the interaction with the resonator and
associated interference effects, the transmitted pulse is slightly
shifted in both time and frequency domains with respect to the
propagation without resonator. In quantum-mechanical terms,
the expectation values of the arrival time and frequency (energy)
of the transmitted pulse are th i ¼ t0cþDt and hoi¼ocþDo,
respectively. Although the frequency shift looks similar to a
second-order effect in e, Do / ~D2, it originates from the first-
order complex time delay (5). Taking into account the true
second-order terms in the Taylor expansion of the transmission

Incident pulse

Ring resonator

Transmitted pulse

Coupling

Time shift

(tc, �c)

Without resonator

Waveguide

�0–i Γ0 

Γ

(t ′ + Dt ,�c + D� )c

Figure 1 | Time and frequency shifts of an optical pulse interacting with a waveguide-coupled resonator. An incident Gaussian wave packet with central

frequency oc and intensity-maximum time tc in the starting point propagates through a waveguide with a side-coupled ring resonator. The resonator is

characterized by a resonant frequency o0, dissipation rate G0, whereas the coupling rate between the resonator and the waveguide is denoted by G. In the

absence of the resonator, the intensity of the transmitted pulse is expected to be maximum at the time t0c in the point of observation. Interacting with the

resonator, the transmitted pulse experiences shifts in both its arrival time (with time delay Dt, shown negative here) and its central frequency (frequency

shift Do). These shifts are strongly enhanced near the critical-coupling (zero-scattering) regime, when most of the pulse energy is absorbed by the

resonator and the transmitted-pulse amplitude is small.
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coefficient does not contribute to the frequency shift in this
approximation. It is also notewothy that the frequency shift does
not affect the pulse propagation in non-dispersive waveguides,
that is, when the group velocity c is independent of o. In the
dispersive case, c¼ c (o), the frequency shift will modify the
propagation time t0c and cause an additional time delay
Dt

dispers¼ � (L/c2)(qc/qo)Do growing with the propagation
distance L.

Remarkably, equations (4)–(7) are precise temporal analogues
of the equations for the Goos–Hänchen beam shifts, which
occur in the wave-beam reflection or refraction at an optical
interface15–17. In this manner the real part of the complex time
shift (5) (that is, the Wigner time-delay formula) is an analogue of
the Artmann formula46, whereas the time and frequency shifts (6)
and (7) are the counterparts of the spatial (coordinate) and
angular (wave vector) Goos–Hänchen shifts15–17. The close
analogy between the Goos–Hänchen and time-delay effects was
previously recognized in refs 37,38. Notably, the imaginary
part of the complex time delay was measured as the angular
Goos–Hänchen shift in ref. 38, but still it was not recognized
as the frequency shift. Lateral beam shifts at optical interfaces
have recently attracted enormous attention in connection
with spin–orbit interactions of light and quantum weak
measurements11–17. Such shifts are studied in 2D or three-
dimensioanl (3D) geometries, and they are strongly dependent on
the internal polarization (spin) degrees of freedom. In contrast,
the problem we deal with here involves purely scalar 1D waves,
with their complex phases being the only internal degree of
freedom.

The Wigner time delay Dt can be either positive or
negative, resulting in the effective ‘subluminal’ or ‘superluminal’
propagation of the pulse7–10, that is, ‘slow’ or ‘fast’ light39.
Similarly, the frequency shift Do can be either positive or
negative. In the former case, the normalized energy ‘per photon’
in the transmitted pulse will be higher than that in the incident
pulse. This does not violate energy conservation, because the
transmitted pulse contains less number of photons (intensity)
than the incident one.

Importantly, the shifts (5)–(7) diverge in the critical-coupling
regime: D-N at T(oc)¼ 0. This means that the typical time-
delay values can be significantly enhanced for the parameters
close to the zero of the scattering coefficient, and that the above
simple equations are not applicable for the near-zero scattering.
Below we show that the formalism of quantum weak

measurements perfectly describes this phenomenon and provides
laconic expressions for the enhanced time and frequency shifts in
the near-zero scattering regime.

Quantum weak measurements in near-zero scattering.
The paradigm of ‘quantum weak measurements’ was
introduced by Aharonov et al.25. Since then, numerous studies
suggested various examples and interpretations of this
concept12,14,16–20,26–30,33–36,39. Although the usual ‘strong’
quantum measurements result in expectation values of the
corresponding operators, weak measurements bring about
so-called ‘weak values’ of the measured quantities. Remarkably,
weak values can be complex and even their real parts can be
anomalously large, that is, lie outside of the spectrum of the
operator. This is closely related to the phenomenon of
‘superoscillations’21–24, when the phase of a complex function
varies with anomalous gradients, which are much higher than any
spatial Fourier components in its spectrum.

Anomalous weak values and superoscillations are often related
to vortices, that is, phase singularities or zeros of complex
functions1–3. One of the simplest examples, proposed by Berry18,
is the measurement of the local momentum of a wave field near a
vortex. Consider 2D space r¼ (x, y) and the wave function c(r)
with vortex at the origin, c(0)¼ 0 (Fig. 2a). In the vicinity of this
zero, the wave function behaves as c rð Þ / xþ i sgnð‘Þ y½ � ‘j j,
where ‘ is the vortex strength, which is a non-zero integer
number. Weak measurements of the momentum p̂ ¼ � i @=@r
conjugated to r (we use units ‘¼ 1), for the state cj i with the
postselection in the coordinate eigenstate rj i, result in the
following weak value of the momentum18–20:

pw ¼
rh jp̂ cj i
rh jci ¼ � i

@ lnc
@r

: ð8Þ

This ‘weak momentum’ is complex and it diverges in the vortex
point: for example, Repw !1 at r-0, c(r)-0 (Fig. 2a). This is
because the phase gradient of the wave function is anomalously
high near the vortex (superoscillations). The real part of the
weak value (8) represents the normalized momentum density
Repw ¼ p rð Þ of the wave field and it is directly observable in
experiments with local probes interacting with the wave field at a
given point r20,47. Therefore, a probe (for example, a nanoparticle
or an atom immersed in an optical field c(r)) experience
anomalous momentum transfer (‘super-kicks’) proportional to

Super-momentum Repw

Vortex wavefunction �(x,y) Transmission coefficient T (�,Γ)

x

y

�0

Γ0

Critical
coupling

0

0

Enhanced time shifts

Vortex

Dt ∝ ReAw

2�

0

P
ha

se

Γ

–Γ0

�

a b

Figure 2 | Analogy between anomalous weak momentum in a vortex wavefunction and time delays of a wave packet in near-zero scattering. (a) Weak

measurements of the momentum in a vortex wave field, c(r), described by equation (8), result in the anomalously large weak values (super-momentum)

pw near the vortex core18. Here, the localized vortex wavefunction c¼ (xþ iy) exp (� x2� y2) is shown. (b) Anomalously large time delays D, given

by equations (5)–(7), which appear in the vicinity of the zero of the transmission coefficient T(o, G) (critical coupling), have the weak-value form (10)

similar to equation (8). In both panels, colours indicate the phases of the complex functions, whereas brightness corresponds to their absolute values.
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Repw in the vicinity of the vortex. The anomalously high value of
such kicks is compensated by a very low probability of their
occurrence, because the amplitude of the wave function vanishes
in the vortex.

Equation (5) for the complex time delay D closely resembles
the weak-momentum equation (8). In our case, the complex
transmission coefficient T(o,G) plays the role of the ‘wave
function’, where the critical-coupling point (o,G)¼ (o0,G0)
corresponds to a vortex of strength ‘ ¼ � 1 (Fig. 2b). As a
result, the pulse (which plays the role of the probe here)
experiences a ‘super-kick’ in its time variable t conjugated to o.
The only difference with the above vortex example is that in our
case we deal with a 1D system and the 2D vortex in the
transmission coefficient appears because we deal with a non-
Hermitian system and complex frequencies �o ¼ o� iG, corre-
sponding to this single dimension.

The above analogy between quantum weak measurements
and enhanced complex pulse delay (5) can be formalized
using the approach suggested by Solli et al.39 Namely, one can
write equation (4) for the pulse transmission in the form of the
weak-measurement evolution equation:

E0 tð Þ / T ocð Þ 1þ iAwF̂
� �

E tð Þ: ð9Þ

Here, the pulse plays the role of the probe (‘metre’) with variable
F̂ ¼ ô�oc, which measures the weak value of some operator Â.
Without knowing the actual form of the operator Â, its weak
value is given by

Aw ¼ � i
@ ln T ocð Þ
@oc

� D: ð10Þ

According to the general weak-measurement formalism29,30, the
imaginary and real parts of the weak value (10) produce shifts (7)

and (6) in the variable F̂ (that is, frequency) and the variable
conjugated to F̂ (that is, time). Thus, the complex time delay (5)
perfectly matches the weak-measurement paradigm as the
weak value (10). Such one-to-one correspondence between the
wavepacket shifts and quantum weak values was previously
emphasized for Goos–Hänchen and Imbert–Fedorov (spin-Hall
effect) beam shifts in the optical reflection and refraction
problems16,17.

We can now use this correspondence to regularize the
singularity of the time delay in the critical-coupling regime.
The time and frequency shifts (6) and (7) appear only in the
linear-response regime, which assumes that the envelope of the
transmitted wave packet still has a Gaussian profile29. However,
the shape of the wave packet is strongly deformed in the vicinity
of the zero of the transmission coefficient, which acts as a spectral
filter, and the transmitted pulse is not Gaussian anymore26–30.
The weak-measurements formalism allows us to obtain general
expressions for the wavepacket shifts, which remain finite even
when the weak value diverges (see refs 14,29):

Dt ¼
ReAw

1þ ~D2 Awj j2
.

2
; Do ¼ �

~D2ImAw

1þ ~D2 Awj j2
.

2
: ð11Þ

These are the main equations, which describe the anomalous time
and frequency shifts of a wave packet in the near-zero scattering
regime. It is noteworthy that Dt¼Do¼ 0 for the exact critical-
coupling parameters when T ocð Þ ¼ 0, |Aw|¼N.

Substituting the transmission coefficient (1) into (10), we
obtain the explicit form of the weak value (complex time delay):

Aw ¼
2G

oc�o0ð Þ2þ G2�G2
0

� �
þ 2iG0 oc�o0ð Þ

: ð12Þ
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Figure 3 | Theoretically calculated time and frequency shifts of an optical pulse transmitted through a waveguide-coupled resonator. Time (a,b) and

frequency (c,d) shifts of the transmitted pulse, Dt and Do, described by the weak measurement equations (11) and (12), versus frequency and coupling

detunings, nc¼oc�o0 and g¼G�G0. The shifts are strongly enhanced near the critical-coupling (zero-transmission) point (nc, g)¼ (0,0). The adiabatic

parameter is taken here as e¼0.01. The normalization constants are chosen in such a way that the dimensionless shift values indicate their enhancements

over the typical shifts (without critical coupling). The extreme values of the dimensionless shifts (’ � 1=
ffiffiffi
2
p

e), given by equations (13) and (15), are seen

in the red curves in b,c.
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From here and equations (11), we derive that extreme time delays
are achieved at (i) the resonant frequency of the pulse and (ii) for
the coupling slightly shifted from the critical value:

Dt max ¼ �
1ffiffiffi
2
p

~D
for nc ¼ oc�o0 ¼ 0;

g ¼ G�G0 ’ �
~Dffiffiffi
2
p :

ð13Þ

As the typical Wigner time delay away from the critical-coupling
region can be estimated as |Dt|B1/G0, the maximal weak-
measurement amplification of the time delay is given by the
factor:

L ¼ G0

~D
¼ 1

e
	 1: ð14Þ

In other words, for the near-zero scattering, the time delays can
be amplified from the inverse resonator linewidth scale to the
pulse-length scale.

In a similar manner, the frequency shift reaches its extreme
values at the critical value of the coupling and slight detuning of
the central frequency of the pulse:

Domax ’ �
~Dffiffiffi
2
p for nc ’ �

~Dffiffiffi
2
p ; g ¼ 0: ð15Þ

Thus, the frequency shift can achieve values of the order of the
spectral pulse width.

Figure 3 shows plots of the time and frequency shifts (11)
and (12) versus frequency and coupling detunings from their
critical-coupling values. These curves have a Lorentzian and
resonant shapes typical for quantum weak-measurement
problems14,29,30,48. It is worth noting that the dependences
Dt ncð Þ and Do(g) are similar to each other in shape, as well as the
Dt(g) and Do ncð Þ dependences.

Experimental results. To test the above theoretical predictions,
we performed an experiment involving the transmission
of an optical pulse through a nano-fibre with a side-coupled
whispering-gallery-mode toroidal micro-resonator.

Figure 4 shows schematics of the experimental setup. The silica
micro-toroid resonator on a silicon chip was fabricated by
photolithography followed by isotropic etching of silicon with

xenon difluoride and CO2 laser re-flow. For the measurements of
time delay of optical pulses, a tunable external cavity diode laser
(ECDL) was modulated with an electro-optic modulator (EOM)
by a burst sine-shaped electric signal sent from an arbitrary
function generator. A tapered nano-fibre prepared from a
standard single-mode optical fibre by heat-and-pull technique
was used to couple light to the micro-resonator after adjusting an
appropriate polarization and power of light by a fibre-based
polarization controller and an attenuator, respectively. The
transmitted optical pulses were detected using a photodetector
(PD) connected to a digital sampling oscilloscope.

To determine time shifts of the transmitted pulses, a reference
pulse was initially measured in the setup without the resonator.
The temporal data were simultaneously collected (ten times
per single measurement with fixed parameters) by the digital
sampling oscilloscope synchronized to the EOM using a digital
delay generator at 100 kHz. The intrinsic quality factor of the
resonator, Q0¼o0/2G0, was measured from the half-maximum
width of the transmission spectrum by sweeping the frequency of
the ECDL. This yielded Q0 ’ 2:9 � 106 for the resonance, which
was used for the following measurements.

We controlled the two main parameters in the experiment: the
laser detuning from the resonance frequency of the resonator,
vc¼oc�o0 and the coupling strength G between the resonator
and the nano-fibre.

First, the detuning nc was adjusted by a feedback system, which
consists of: a fibre-based Mach–Zender interferometer (FMZI)
immersed in water, to remove the mechanical fluctuation from
the environment, a balanced amplified PD (BAPD) and a PC and
a voltage controller. To obtain an error signal, we pick up a part
of the continuous wave light emitted by the ECDL before
modulating with the EOM by 1:99 beam splitter and send it to the
FMZI. The information of detuning was obtained from the dual
outputs of the FMZI, which were measured by a BAPD49. The
difference signal (that is, electric error signal) generated in the
BAPD was used to calculate the feedback voltage. This voltage
was then generated in the voltage controller and sent to the
piezoelectric transducer of the ECDL that controls the position of
the grating and hence the laser frequency of the ECDL.

Second, the coupling strength G was controlled by varying the
gap between the fibre and the resonator using an open-loop 3D
nano-positioning system. The actual varying parameter was the

Microtoroid

PC

BAPD

Water-immersed
FMZI

AFG

DDG

DSO

VC
ECDL 1:99 BS FPC1 FPC2EOM Att. PD

Figure 4 | Schematics of the experimental setup. The light pulses are prepared by modulating the light from a tunable ECDL using an EOM driven by an

arbitrary function generator (AFG). The prepared pulses are coupled in and out of the silica microtoroid resonator using a tapered optical fibre. The

transmitted light is detected by a PD connected to a digital sampling oscilloscope (DSO). The DSO and the EOM are synchronized with the digital delay

generator (DDG). The coupling is adjusted by controlling the distance between the tapered fibre and microtoroid. The required frequency detuning for the

experiments is achieved with the help of a FMZI. For this purpose, a portion (B1%) of the ECDL output is tapped out with a 1:99 beamsplitter (BS) and sent

to the input port of the FMZI. The output of the FMZI is detected by a BAPD, which produces an error signal when the frequency of the ECDL deviates

from the pre-determined value. The FMZI is immersed in a water environment to reduce vibrations and to block any ambient air changes. The generated

error signal is processed and a suitable control signal is generated using a voltage controller (VC). The control signal is applied to the piezoelectric

transducer of the ECDL to control the frequency of the light emitted by the ECDL. The polarization of the light before and after the EOM is adjusted using

fibre-polarization controllers (FPC1 and FPC2). An attenuator (Att.) is used to attenuate the light before it is coupled to the resonator to prevent thermal

and nonlinear effects.
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voltage V of the nano-positioner. It varied the distance d between
the fibre and the resonator: dpV. The coupling between the fibre
and the resonator is realized via evanescent fields, which decay
exponentially with d. Therefore, the coupling strength is related
to the positioner voltage as G ¼ a exp � bVð Þ, where a and b are
unknown constants to be determined from the experiment.

We performed two series of experiments. In the first one, the
detuning of the pulses, nc, was varied in a relatively broad range,
whereas the positioner voltage V (and the coupling G) was fixed.
Then, the intensity of the transmitted pulse, |E0(t)|2, was
measured and processed for every value of the detuning nc.
Calculating the time shift of the centroid (that is, ‘centre of
gravity’ of the intensity distribution) of the transmitted pulse with
respect to the reference arrival time without the resonator,
we determined the experimental values of the time shift Dt

versus the frequency detuning nc (cf. Fig. 3a). This series of
measurements was repeated for different values of the voltage V
(coupling G).

In the second series of experiments, we varied the positioner
voltage V at a fixed detuning nc. The experimentally measured
time delays Dt versus the voltage V showed two well-pronounced
extrema (see Supplementary Fig. 1), similar to those in the
theoretical curves Dt(G), equations (11), (12) and Fig. 3b. Now,
associating the voltages Vmin and Vmax, corresponding to the
extrema of the Dt(V) curves, with the values Gmin and Gmax,
corresponding to the extrema in the theoretical dependences
Dt(G), we retrieved the two unknown parameters a and b relating
the voltage to the coupling constant. Finally, using the equation
G ¼ a exp �bVð Þ, we plotted the experimentally measured time
delay Dt versus the coupling strength G or its dimensionless
detuning g/G0¼ (G�G0)/G0 (see Supplementary Fig. 1 and
Supplementary Note 1). This series of measurements was
repeated for different detunings nc. Importantly, determining
the constants a and b from different series of measurements
with different detunings nc resulted in approximately the same
values (with variations B10%). Therefore, we calculated the
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Figure 5 | Experimentally measured anomalous time shifts of light pulses transmitted through a waveguide-coupled resonator. Time delays Dt of the

transmitted pulses as functions of (a–c) the frequency detuning nc at different coupling parameters g and (d–f) the coupling detuning g at different

frequency detunings nc. Each symbol corresponds to a single time-delay measurement. The magenta dashed curves represent the theoretical weak

measurement equations (11) and (12). The cyan solid curves represent the theoretical results obtained using the refined equations, which include the

second derivative of the transmission coefficient (see Supplementary Note 2). Despite the large dispersion of the experimental data, the resonant

behaviour in the vicinity of the critical coupling (nc, g)¼ (0, 0) is clearly seen and the behaviour of the time delays is in good agreement with the theoretical

predictions.
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averaged values �a and �b from all these series of measurements
and used these values for the global mapping G(V) in all the
experimental data.

The results of experimental measurements of time delays
Dt nc; gð Þ and the corresponding theoretical curves are shown in
Fig. 5. For every pair of parameters, we measured time shifts of
B15–20 pulses and all these measurements are shown in Fig. 5
as symbols. Although the dispersion of the experimental data
is large, one can clearly see the resonant behaviour and
the enhancement of the time delay in the vicinity of the
critical-coupling regime nc; gð Þ ¼ 0; 0ð Þ, exactly as predicted
theoretically by equations (11), (12) and Fig. 3.

Importantly, the adiabatic parameter was not too small in
our experiment due to technical restrictions. Namely, the
resonant frequency was o0 ’ 1:2 � 1015rad s� 1 and the
Q0-factor of the resonator corresponded to the dissipation rate
G0 ’ 2:07 � 108s� 1. At the same time, the longest pulse we could
generate in our system had the duration D ’ 16:76 � 10� 9s. This
yields the adiabatic parameter e ¼ DG0ð Þ� 1’ 0:29. Thus, our
parameters correspond to the boundary of the applicability of
adiabatic weak-measurement theory and one should not expect
perfect qualitative agreement between the measurements and
theoretical equations. Nonetheless, we clearly observe all details of
the predicted time-delay behaviour. In particular, the maximal
enhancement of the time delay near the critical-coupling regime
was LB3.5, in agreement with equation (14). As predicted in
equation (13), the maximal time delay was of the order of the
pulse duration, that is, Dt maxj j 
 12 � 10� 9s (Fig. 5).

As the adiabatic parameter was not too small in our
experiment, we preformed additional calculations of time shifts,
which take into account the second-derivative terms in the Taylor
expansion of the transmission coefficient T(o). These calculations
are presented in the Supplementary Note 2 and the results are
similar to the analogous beam-shift calculations by Götte and
Dennis48. The refined dependences Dt nc; gð Þ are plotted in Fig. 5.
One can see that the curves described by the simplest
weak-measurement equations (11) and (12) are still quite close
to the refined curves for e ’ 0:29 although little quantitative
difference is noticeable. However, basically, the adiabatic
weak-measurement approximation works very well even for the
given e and one can safely use equations (11) and (12).

Discussion
We have revealed interesting peculiarities of inelastic resonant
scattering of a 1D wave packet in the vicinity of a zero of
the scattering coefficient. Such near-zero scattering exhibits
remarkable analogy with quantum weak measurements of the
momentum variable near a phase singularity of the complex wave
function. In the scattering problem, this analogy manifests itself
as an anomalously large time delay and frequency shift of the
scattered wave packet. These are the results of fine interference of
Fourier components with small amplitudes in the scattered wave
packet.

The typical Wigner time delay is estimated as the inverse
linewidth of the resonance, that is, the time of the wave packet
trapping in the resonator. For the near-zero scattering, the time
delays are dramatically enhanced up to the wavepacket duration
scale. Similarly, the frequency shift is enhanced to the scale of the
spectral width of the pulse. Importantly, the previously known
Wigner time-delay formula diverges in the zero-scattering point.
Using the weak-measurement theory, we have derived simple
non-diverging expressions, which accurately describe the time
and frequency shifts in the near-zero scattering regime.

We have observed the theoretically predicted enhanced time
delays and their dependences on the parameters in an optical 1D

scattering experiment. We have used Gaussian-like pulses
propagating in a nano-fibre with a side-coupled toroidal micro-
resonator. The zero transmission coefficient corresponds to the
so-called ‘critical coupling’ known in the theory of resonators.
Owing to the high quality of the resonator (narrow linewidth), the
duration of the pulses in our experiment was only B3.5 times
larger than the inverse linewidth. Nonetheless, we clearly
observed the predicted resonant behaviour of the time delay,
which reached the pulse-duration magnitudes (that is, was
amplified by the factor of B3.5), both positive (subluminal
propagation) and negative (superluminal propagation). Thus, this
proof-of-principle experiment provides clear evidence of the
described phenomena.

It is important to emphasize that all previously known
examples of quantum weak measurements and anomalous
wavepacket (or wave-beam) shifts dealt with 2D or 3D systems
with internal degrees of freedom (polarization or spin). In sharp
contrast to this, we observe similar effects in a 1D scalar wave
system. This is possible because of the non-Hermitian nature of
this system, which involves complex frequencies and phases, and
generates an effectively 2D vortex in the dependence of the
scattering coefficient on the complex frequency.

We finally note that the results presented in this work are quite
general. They can be applied to any wave system with a near-zero
scattering of 1D wave packets. For instance, besides the example
considered here, this can be the near-zero reflection from a
dissipative cavity in 1D classical-wave systems31,32,50 or an
analogous quantum reflection from a complex double-barrier
potential.

Data availability. The data that support the findings of this study
are available from the corresponding authors upon request.
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