Quantifying Non-Markovianity with Temporal Steering: Supplementary Material
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In this supplementary material we give a few illustrative examples of the calculation of the temporal steerable
weight and its application as a measure of strong non-Markovianity for some prototype models.

HOW TO CALCULATE THE STEERABLE WEIGHT:
A PEDAGOGICAL EXAMPLE

Here we show explicitly how to calculate the steerable
weight of Skrzypczyk et al. [1] in a simple example. Specifi-
cally, we assume three types of measurements corresponding
to the projections on the eigenstates of the Pauli operators:
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[R) = (|0) +[1))/v2, and |L) = (|0) — i|1))//2, which

can be interpreted as: horizontal, vertical, diagonal, antidi-

agonal, right-circular, and left-circular polarization states for

the optical polarization qubits, respectively. We can label the

eigenstates of the Pauli operators together with their eigenval-

ues as follows: |z1) = |+) with 27 = +1, |z2) = |—) with

To = —1, ‘y1> = |+> with Y1 = +1,...,and |22> = |1> with

Z9 = —1.

Then, possible unnormalized states of Bob o,, (x =
X,Y, Z) for a given two-qubit state p read
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where [ is the single-qubit identity operator. A classical ran-
dom variable held by Alice,

(@i | X2i), (il Yyi), (il Z]zi)], (3)

can take the following values:
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Az =[-1,+1,—1], M= [-1,+1,+1],
As = [+1,—1,-1], A= [+1,—1,+1],
A7 = [+1,+1,—-1], Ag= [+1,+1,+1] 4)

The extremal deterministic single-party conditional probabil-
ity distributions for Alice read
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Let us denote an unsteerable assemblage as

gﬁ_ZDA alz) JA—ZDA . (0

n=1

Then, we have
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The steerable weight SW can be given as the solution of the
following semidefinite program: Find

8
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n=1
such that
(o5 = o) =0 and oy, 20 ©)
fori =1,2,...,6 and n = 1,...,8. By using a numerical

package for convex optimization [2—4], one can implement
this semidefinite program in a straightforward way. This is
easily generalized to the temporal case by replacing the two-
qubit measurements in Eq. (2) with measurements on a single
qubit, followed by evolution under the channel A.

EXAMPLE 1: COHERENT RABI OSCILLATIONS OF
A MARKOVIAN SYSTEM

As a first simple example of the behavior of the temporal-
SW under a Markovian dynamics, we consider a qubit that
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FIG. 1. (Color online) The temporal steerable weight (temporal-SW)
as a function of evolution time when a system is in (a) a Markovian
environment (example 1) and (b) non-Markovian environment (ex-
ample 2). (a) The temporal-SW when the system undergoes coher-
ent Rabi oscillations and purely Markovian decay (example 1). The
black dashed, red solid, and blue dotted curves represent the results
of the decay rate y1/g1 = 0, 1/6, and 1, respectively. The time
t is in units of 1/g1, and % is set to 1. (b) The temporal-SW when
the system interacts with a non-Markovian environment (example 2).
The black dashed, red solid, and blue dotted curves represent the re-
sults of the decay rate y2/J = 0, 0.03, and 0.1, respectively. Here,
the time ¢ is in units of 1/.J.

undergoes coherent Rabi oscillations and purely Markovian
decay. The Hamiltonian of the system is

H =hgi(o4 +0-), (10)

where hg; is the coherent coupling strength between two
eigenstates, |+) and |—), of the qubit, and oy = |+)(—|
and o_ = |—)(+| can be considered the raising and lower-
ing operators, respectively. A Markovian channel induces a
dissipation rate y; from |+) to |—). We assume that the ini-
tial state, pg in Fig. 1 of the main text, is a maximally-mixed
state and then perform projective measurements M, in three

(or two) mutually-unbiased bases: X R Y/, and Z (or X and
Z). In Fig. 1(a), we plot the temporal-SW as a function of
the evolution time t. We can see that the temporal-SW al-
ways remains the maximal value of unity if there is no decay,
while the temporal-SW decreases monotonically when ~; is
non-zero, as expected; the dynamics of this system is Marko-
vian.

EXAMPLE 2: A SIMPLE NON-MARKOVIAN MODEL:
A QUBIT COHERENTLY COUPLED TO ANOTHER QUBIT

Our second example is that of a qubit coherently-coupled
to another qubit. If we treat one qubit as the system and the
other one as the environment (by tracing it out), we have a
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FIG. 2. (Color online) The degree of the non-Markovianity for a mul-
timode reservoir with Lorentzian spectral density (example 3). The
non-Markovianity Mrsw, defined by the temporal steerable weight,
as a function of the coupling strength g. Here, g is in units of spectral
width w,,.

very simple example of a non-Markovian environment. The
total Hamiltonian of the system in the interaction picture is

Hy = hJ(oyo? +olo?), (11)

where Jj_ and o? are the raising and lowering operators of the
1th qubit, and h.J is the coherent coupling between the system
and the environment. We assume the system qubit is also sub-
ject to an intrinsic decay with decay rate vo. In Fig. 1(b), we
plot the temporal-SW for various decay rates -y, after tracing
out the effective environment-qubit. The initial condition of
the system-qubit is that of a maximally-mixed state, while the
environment-qubit is in its excited state. As seen in Fig. 1(b),
there is a vanishing and a reappearance of the temporal-SW
of the system qubit. Since we know that the temporal-SW
should decrease monotonically under a Markovian dynam-
ics, the oscillation of temporal-SW naturally shows that the
qubit is undergoing non-Markovian evolution. This memory
effect in this simple example is easy to understand in that in-
formation regarding the state of the system-qubit flows to the
environment-qubit and returns at a later time; one cannot as-
sume that the evolution of the environment is not influenced
by its history.

EXAMPLE 3: A QUBIT COUPLED TO
A NON-MARKOVIAN MULTIMODE RESERVOIR

In general, the dissipation ~y rate in a Master equation de-
scription of an open-quantum system can be time-dependent,
ie. v = v(t). If v(t) < 0, it indicates that information can
flow back to the system and the system dynamics can be non-
Markovian. To show that the temporal-SW is sensitive to this,
we use the same example as in Breuer et al. [S], where a qubit
is coupled to a reservoir with a Lorentzian spectral density. In



this case, the decay rate can be written as
V() = -~ |G (12)

where
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with b = /w2 — 2gw,,. Here, g denotes the coupling
strength and w,, is the spectral width. We choose a mixed state
as the initial state and plot the non-Markovianity Nsw as a
function of g/w,, in Fig. 2. Our results agree well with those
in Ref. [6]: the non-Markovianity is zero when g/w,, < 0.5,
and increases monotonically as a function of g/w,,.
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