Quantifying Non-Markovianity with Temporal Steering: Supplementary Material

Shin-Liang Chen,¹ Neill Lambert,² Che-Ming Li,³ Adam Miranowicz,^{2,4} Yueh-Nan Chen,^{1,2,*} and Franco Nori^{2,5}

¹Department of Physics and National Center for Theoretical Sciences, National Cheng-Kung University, Tainan 701, Taiwan ²CEMS, RIKEN, 351-0198 Wako-shi, Japan

³Department of Engineering Science and Supercomputing Research Center, National Cheng-Kung University, Tainan City 701, Taiwan ⁴Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland

⁵Department of Physics, The University of Michigan, Ann Arbor, MI 48109-1040, USA

In this supplementary material we give a few illustrative examples of the calculation of the temporal steerable weight and its application as a measure of strong non-Markovianity for some prototype models.

HOW TO CALCULATE THE STEERABLE WEIGHT: A PEDAGOGICAL EXAMPLE

Here we show explicitly how to calculate the steerable weight of Skrzypczyk *et al.* [1] in a simple example. Specifically, we assume three types of measurements corresponding to the projections on the eigenstates of the Pauli operators:

$$X = |+\rangle\langle+|-|-\rangle\langle-|,$$

$$Y = |R\rangle\langle R|-|L\rangle\langle L|,$$

$$Z = |0\rangle\langle 0|-|1\rangle\langle 1|,$$
(1)

where $|0\rangle = |H\rangle$, $|1\rangle = |V\rangle$, $|\pm\rangle = (|0\rangle \pm |1\rangle)/\sqrt{2}$, $|R\rangle = (|0\rangle + i|1\rangle)/\sqrt{2}$, and $|L\rangle = (|0\rangle - i|1\rangle)/\sqrt{2}$, which can be interpreted as: horizontal, vertical, diagonal, antidiagonal, right-circular, and left-circular polarization states for the optical polarization qubits, respectively. We can label the eigenstates of the Pauli operators together with their eigenvalues as follows: $|x_1\rangle = |+\rangle$ with $x_1 = +1$, $|x_2\rangle = |-\rangle$ with $x_2 = -1$, $|y_1\rangle = |+\rangle$ with $y_1 = +1$, ..., and $|z_2\rangle = |1\rangle$ with $z_2 = -1$.

Then, possible unnormalized states of Bob $\sigma_{a|x}$ (x = X, Y, Z) for a given two-qubit state ρ read

$$\begin{aligned}
\sigma_{a|x}^{(1)} &\equiv \sigma_{+1|X} = \operatorname{Tr}_{A}[(|+\rangle\langle+|\otimes I)\rho], \\
\sigma_{a|x}^{(2)} &\equiv \sigma_{-1|X} = \operatorname{Tr}_{A}[(|-\rangle\langle-|\otimes I)\rho], \\
\sigma_{a|x}^{(3)} &\equiv \sigma_{+1|Y} = \operatorname{Tr}_{A}[(|R\rangle\langle R|\otimes I)\rho], \\
\sigma_{a|x}^{(4)} &\equiv \sigma_{-1|Y} = \operatorname{Tr}_{A}[(|L\rangle\langle L|\otimes I)\rho], \\
\sigma_{a|x}^{(5)} &\equiv \sigma_{+1|Z} = \operatorname{Tr}_{A}[(|0\rangle\langle 0|\otimes I)\rho], \\
\sigma_{a|x}^{(6)} &\equiv \sigma_{-1|Z} = \operatorname{Tr}_{A}[(|1\rangle\langle 1|\otimes I)\rho], \end{aligned}$$
(2)

where I is the single-qubit identity operator. A classical random variable held by Alice,

$$\lambda_n = [x_i, y_j, z_k] \equiv [\langle x_i | X | x_i \rangle, \langle y_i | Y | y_i \rangle, \langle z_i | Z | z_i \rangle], \quad (3)$$

can take the following values:

$$\lambda_{1} = [-1, -1, -1], \quad \lambda_{2} = [-1, -1, +1],$$

$$\lambda_{3} = [-1, +1, -1], \quad \lambda_{4} = [-1, +1, +1],$$

$$\lambda_{5} = [+1, -1, -1], \quad \lambda_{6} = [+1, -1, +1],$$

$$\lambda_{7} = [+1, +1, -1], \quad \lambda_{8} = [+1, +1, +1].$$
(4)

The extremal deterministic single-party conditional probability distributions for Alice read

$$[D_{\lambda_1}(+1|X), \dots, D_{\lambda_8}(+1|X)] = [0, 0, 0, 0, 1, 1, 1, 1],$$

$$[D_{\lambda_1}(-1|X), \dots, D_{\lambda_8}(-1|X)] = [1, 1, 1, 1, 0, 0, 0, 0],$$

$$\vdots$$

$$[D_{\lambda_1}(-1|X), \dots, D_{\lambda_8}(-1|X)] = [1, 0, 1, 0, 1, 0], 0$$
(5)

$$[D_{\lambda_1}(-1|Z), \dots, D_{\lambda_8}(-1|Z)] = [1, 0, 1, 0, 1, 0, 1, 0].$$
 (5)

Let us denote an unsteerable assemblage as

$$\sigma_{a|x}^{\text{US}} \equiv \sum_{\lambda} D_{\lambda}(a|x) \sigma_{\lambda} = \sum_{n=1}^{8} D_{\lambda_n}(a|x) \sigma_{\lambda_n}.$$
 (6)

Then, we have

$$\begin{aligned}
\sigma_{a|x}^{(1)\text{US}} &\equiv \sigma_{+1|X}^{\text{US}} = \sigma_{\lambda_5} + \sigma_{\lambda_6} + \sigma_{\lambda_7} + \sigma_{\lambda_8}, \\
\sigma_{a|x}^{(2)\text{US}} &\equiv \sigma_{-1|X}^{\text{US}} = \sigma_{\lambda_1} + \sigma_{\lambda_2} + \sigma_{\lambda_3} + \sigma_{\lambda_4}, \\
\sigma_{a|x}^{(3)\text{US}} &\equiv \sigma_{+1|Y}^{\text{US}} = \sigma_{\lambda_3} + \sigma_{\lambda_4} + \sigma_{\lambda_7} + \sigma_{\lambda_8}, \\
\sigma_{a|x}^{(4)\text{US}} &\equiv \sigma_{-1|Y}^{\text{US}} = \sigma_{\lambda_1} + \sigma_{\lambda_2} + \sigma_{\lambda_5} + \sigma_{\lambda_6}, \\
\sigma_{a|x}^{(5)\text{US}} &\equiv \sigma_{+1|Z}^{\text{US}} = \sigma_{\lambda_2} + \sigma_{\lambda_4} + \sigma_{\lambda_6} + \sigma_{\lambda_8}, \\
\sigma_{a|x}^{(6)\text{US}} &\equiv \sigma_{-1|Z}^{\text{US}} = \sigma_{\lambda_1} + \sigma_{\lambda_3} + \sigma_{\lambda_5} + \sigma_{\lambda_7}.
\end{aligned}$$
(7)

The steerable weight SW can be given as the solution of the following semidefinite program: Find

$$SW = 1 - \max \operatorname{Tr} \left(\sum_{n=1}^{8} \sigma_{\lambda_n} \right)$$
(8)

such that

$$\left(\sigma_{a|x}^{(i)} - \sigma_{a|x}^{(i)\text{US}}\right) \ge 0 \quad \text{and} \quad \sigma_{\lambda_n} \ge 0$$
 (9)

for i = 1, 2, ..., 6 and n = 1, ..., 8. By using a numerical package for convex optimization [2–4], one can implement this semidefinite program in a straightforward way. This is easily generalized to the temporal case by replacing the twoqubit measurements in Eq. (2) with measurements on a single qubit, followed by evolution under the channel Λ .

EXAMPLE 1: COHERENT RABI OSCILLATIONS OF A MARKOVIAN SYSTEM

As a first simple example of the behavior of the temporal-SW under a Markovian dynamics, we consider a qubit that

FIG. 1. (Color online) The temporal steerable weight (temporal-SW) as a function of evolution time when a system is in (a) a Markovian environment (example 1) and (b) non-Markovian environment (example 2). (a) The temporal-SW when the system undergoes coherent Rabi oscillations and purely Markovian decay (example 1). The black dashed, red solid, and blue dotted curves represent the results of the decay rate $\gamma_1/g_1 = 0$, 1/6, and 1, respectively. The time t is in units of $1/g_1$, and \hbar is set to 1. (b) The temporal-SW when the system interacts with a non-Markovian environment (example 2). The black dashed, red solid, and blue dotted curves represent the results of the decay rate $\gamma_2/J = 0$, 0.03, and 0.1, respectively. Here, the time t is in units of 1/J.

undergoes coherent Rabi oscillations and purely Markovian decay. The Hamiltonian of the system is

$$H = \hbar g_1(\sigma_+ + \sigma_-), \tag{10}$$

where $\hbar g_1$ is the coherent coupling strength between two eigenstates, $|+\rangle$ and $|-\rangle$, of the qubit, and $\sigma_+ = |+\rangle\langle-|$ and $\sigma_- = |-\rangle\langle+|$ can be considered the raising and lowering operators, respectively. A Markovian channel induces a dissipation rate γ_1 from $|+\rangle$ to $|-\rangle$. We assume that the initial state, ρ_0 in Fig. 1 of the main text, is a maximally-mixed state and then perform projective measurements $M_{a|x}$ in three (or two) mutually-unbiased bases: \hat{X} , \hat{Y} , and \hat{Z} (or \hat{X} and \hat{Z}). In Fig. 1(a), we plot the temporal-SW as a function of the evolution time t. We can see that the temporal-SW always remains the maximal value of unity if there is no decay, while the temporal-SW decreases monotonically when γ_1 is non-zero, as expected; the dynamics of this system is Markovian.

EXAMPLE 2: A SIMPLE NON-MARKOVIAN MODEL: A QUBIT COHERENTLY COUPLED TO ANOTHER QUBIT

Our second example is that of a qubit coherently-coupled to another qubit. If we treat one qubit as the system and the other one as the environment (by tracing it out), we have a

FIG. 2. (Color online) The degree of the non-Markovianity for a multimode reservoir with Lorentzian spectral density (example 3). The non-Markovianity \mathcal{N}_{TSW} , defined by the temporal steerable weight, as a function of the coupling strength g. Here, g is in units of spectral width ω_w .

very simple example of a non-Markovian environment. The total Hamiltonian of the system in the interaction picture is

$$H_{\rm int} = \hbar J (\sigma_+^1 \sigma_-^2 + \sigma_-^1 \sigma_+^2), \tag{11}$$

where σ^i_+ and σ^i_- are the raising and lowering operators of the *i*th qubit, and $\hbar J$ is the coherent coupling between the system and the environment. We assume the system qubit is also subject to an intrinsic decay with decay rate γ_2 . In Fig. 1(b), we plot the temporal-SW for various decay rates γ_2 , after tracing out the effective environment-qubit. The initial condition of the system-qubit is that of a maximally-mixed state, while the environment-qubit is in its excited state. As seen in Fig. 1(b), there is a vanishing and a reappearance of the temporal-SW of the system qubit. Since we know that the temporal-SW should decrease monotonically under a Markovian dynamics, the oscillation of temporal-SW naturally shows that the qubit is undergoing non-Markovian evolution. This memory effect in this simple example is easy to understand in that information regarding the state of the system-qubit flows to the environment-qubit and returns at a later time; one cannot assume that the evolution of the environment is not influenced by its history.

EXAMPLE 3: A QUBIT COUPLED TO A NON-MARKOVIAN MULTIMODE RESERVOIR

In general, the dissipation γ rate in a Master equation description of an open-quantum system can be time-dependent, i.e. $\gamma = \gamma(t)$. If $\gamma(t) < 0$, it indicates that information can flow back to the system and the system dynamics can be non-Markovian. To show that the temporal-SW is sensitive to this, we use the same example as in Breuer *et al.* [5], where a qubit is coupled to a reservoir with a Lorentzian spectral density. In

this case, the decay rate can be written as

$$\gamma(t) = -\frac{2}{G(t)}\frac{d}{dt}|G(t)|, \qquad (12)$$

where

$$G(t) = e^{-\omega_w t/2} \left[\cosh\left(\frac{bt}{2}\right) + \frac{\omega_w}{b} \sinh\left(\frac{bt}{2}\right) \right]$$
(13)

with $b = \sqrt{\omega_w^2 - 2g\omega_w}$. Here, g denotes the coupling strength and ω_w is the spectral width. We choose a mixed state as the initial state and plot the non-Markovianity \mathcal{N}_{TSW} as a function of g/ω_w in Fig. 2. Our results agree well with those in Ref. [6]: the non-Markovianity is zero when $g/\omega_w < 0.5$, and increases monotonically as a function of g/ω_w . * yuehnan@mail.ncku.edu.tw

- P. Skrzypczyk, M. Navascués, and D. Cavalcanti, "Quantifying Einstein-Podolsky-Rosen steering," Phys. Rev. Lett. 112, 180404 (2014).
- [2] M. Grant and S. Boyd, "CVX: Matlab software for disciplined convex programming," (2008).
- [3] M. Andersen, J. Dahl, and K. Vandenberghe, *CVXOPT: Python* software for convex optimization (2014). url:http://cvxopt.org/.
- [4] S. Boyd and L. Vandenberghe, *Convex Optimization* (Cambridge University Press, Cambridge, 2004).
- [5] H.-P. Breuer, E.-M. Laine, and J. Piilo, "Measure for the degree of non-Markovian behavior of quantum processes in open systems," Phys. Rev. Lett. 103, 210401 (2009).
- [6] E.-M. Laine, J. Piilo, and H.-P. Breuer, "Measure for the non-Markovianity of quantum processes," Phys. Rev. A 81, 062115 (2010)