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In this supplementary material we give a few illustrative examples of the calculation of the temporal steerable
weight and its application as a measure of strong non-Markovianity for some prototype models.

HOW TO CALCULATE THE STEERABLE WEIGHT:
A PEDAGOGICAL EXAMPLE

Here we show explicitly how to calculate the steerable
weight of Skrzypczyk et al. [1] in a simple example. Specifi-
cally, we assume three types of measurements corresponding
to the projections on the eigenstates of the Pauli operators:

X = |+〉〈+|−|−〉〈−|,
Y = |R〉〈R|−|L〉〈L|,
Z = |0〉〈0|−|1〉〈1|, (1)

where |0〉 = |H〉, |1〉 = |V 〉, |±〉 = (|0〉 ± |1〉)/
√

2,
|R〉 = (|0〉 + i|1〉)/

√
2, and |L〉 = (|0〉 − i|1〉)/

√
2, which

can be interpreted as: horizontal, vertical, diagonal, antidi-
agonal, right-circular, and left-circular polarization states for
the optical polarization qubits, respectively. We can label the
eigenstates of the Pauli operators together with their eigenval-
ues as follows: |x1〉 = |+〉 with x1 = +1, |x2〉 = |−〉 with
x2 = −1, |y1〉 = |+〉 with y1 = +1, . . . , and |z2〉 = |1〉 with
z2 = −1.

Then, possible unnormalized states of Bob σa|x (x =
X,Y, Z) for a given two-qubit state ρ read

σ
(1)
a|x ≡ σ+1|X = TrA[(|+〉〈+|⊗I)ρ],

σ
(2)
a|x ≡ σ−1|X = TrA[(|−〉〈−|⊗I)ρ],

σ
(3)
a|x ≡ σ+1|Y = TrA[(|R〉〈R|⊗I)ρ],

σ
(4)
a|x ≡ σ−1|Y = TrA[(|L〉〈L|⊗I)ρ],

σ
(5)
a|x ≡ σ+1|Z = TrA[(|0〉〈0|⊗I)ρ],

σ
(6)
a|x ≡ σ−1|Z = TrA[(|1〉〈1|⊗I)ρ], (2)

where I is the single-qubit identity operator. A classical ran-
dom variable held by Alice,

λn = [xi, yj , zk] ≡ [〈xi|X|xi〉, 〈yi|Y |yi〉, 〈zi|Z|zi〉], (3)

can take the following values:

λ1 = [−1,−1,−1], λ2= [−1,−1,+1],

λ3 = [−1,+1,−1], λ4= [−1,+1,+1],

λ5 = [+1,−1,−1], λ6= [+1,−1,+1],

λ7 = [+1,+1,−1], λ8= [+1,+1,+1]. (4)

The extremal deterministic single-party conditional probabil-
ity distributions for Alice read

[Dλ1
(+1|X), . . . , Dλ8

(+1|X)] = [0, 0, 0, 0, 1, 1, 1, 1],

[Dλ1
(−1|X), . . . , Dλ8

(−1|X)] = [1, 1, 1, 1, 0, 0, 0, 0],

...
[Dλ1(−1|Z), . . . , Dλ8(−1|Z)] = [1, 0, 1, 0, 1, 0, 1, 0]. (5)

Let us denote an unsteerable assemblage as

σUS
a|x ≡

∑
λ

Dλ(a|x)σλ =

8∑
n=1

Dλn
(a|x)σλn

. (6)

Then, we have

σ
(1)US
a|x ≡ σUS

+1|X = σλ5
+ σλ6

+ σλ7
+ σλ8

,

σ
(2)US
a|x ≡ σUS

−1|X = σλ1
+ σλ2

+ σλ3
+ σλ4

,

σ
(3)US
a|x ≡ σUS

+1|Y = σλ3 + σλ4 + σλ7 + σλ8 ,

σ
(4)US
a|x ≡ σUS

−1|Y = σλ1
+ σλ2

+ σλ5
+ σλ6

,

σ
(5)US
a|x ≡ σUS

+1|Z = σλ2
+ σλ4

+ σλ6
+ σλ8

,

σ
(6)US
a|x ≡ σUS

−1|Z = σλ1 + σλ3 + σλ5 + σλ7 . (7)

The steerable weight SW can be given as the solution of the
following semidefinite program: Find

SW = 1−max Tr
( 8∑
n=1

σλn

)
(8)

such that (
σ
(i)
a|x − σ

(i)US
a|x

)
≥ 0 and σλn ≥ 0 (9)

for i = 1, 2, . . . , 6 and n = 1, . . . , 8. By using a numerical
package for convex optimization [2–4], one can implement
this semidefinite program in a straightforward way. This is
easily generalized to the temporal case by replacing the two-
qubit measurements in Eq. (2) with measurements on a single
qubit, followed by evolution under the channel Λ.

EXAMPLE 1: COHERENT RABI OSCILLATIONS OF
A MARKOVIAN SYSTEM

As a first simple example of the behavior of the temporal-
SW under a Markovian dynamics, we consider a qubit that
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FIG. 1. (Color online) The temporal steerable weight (temporal-SW)
as a function of evolution time when a system is in (a) a Markovian
environment (example 1) and (b) non-Markovian environment (ex-
ample 2). (a) The temporal-SW when the system undergoes coher-
ent Rabi oscillations and purely Markovian decay (example 1). The
black dashed, red solid, and blue dotted curves represent the results
of the decay rate γ1/g1 = 0, 1/6, and 1, respectively. The time
t is in units of 1/g1, and h̄ is set to 1. (b) The temporal-SW when
the system interacts with a non-Markovian environment (example 2).
The black dashed, red solid, and blue dotted curves represent the re-
sults of the decay rate γ2/J = 0, 0.03, and 0.1, respectively. Here,
the time t is in units of 1/J .

undergoes coherent Rabi oscillations and purely Markovian
decay. The Hamiltonian of the system is

H = h̄g1(σ+ + σ−), (10)

where h̄g1 is the coherent coupling strength between two
eigenstates, |+〉 and |−〉, of the qubit, and σ+ = |+〉〈−|
and σ− = |−〉〈+| can be considered the raising and lower-
ing operators, respectively. A Markovian channel induces a
dissipation rate γ1 from |+〉 to |−〉. We assume that the ini-
tial state, ρ0 in Fig. 1 of the main text, is a maximally-mixed
state and then perform projective measurementsMa|x in three
(or two) mutually-unbiased bases: X̂ , Ŷ , and Ẑ (or X̂ and
Ẑ). In Fig. 1(a), we plot the temporal-SW as a function of
the evolution time t. We can see that the temporal-SW al-
ways remains the maximal value of unity if there is no decay,
while the temporal-SW decreases monotonically when γ1 is
non-zero, as expected; the dynamics of this system is Marko-
vian.

EXAMPLE 2: A SIMPLE NON-MARKOVIAN MODEL:
A QUBIT COHERENTLY COUPLED TO ANOTHER QUBIT

Our second example is that of a qubit coherently-coupled
to another qubit. If we treat one qubit as the system and the
other one as the environment (by tracing it out), we have a

g

FIG. 2. (Color online) The degree of the non-Markovianity for a mul-
timode reservoir with Lorentzian spectral density (example 3). The
non-Markovianity NTSW, defined by the temporal steerable weight,
as a function of the coupling strength g. Here, g is in units of spectral
width ωw.

very simple example of a non-Markovian environment. The
total Hamiltonian of the system in the interaction picture is

Hint = h̄J(σ1
+σ

2
− + σ1

−σ
2
+), (11)

where σi+ and σi− are the raising and lowering operators of the
ith qubit, and h̄J is the coherent coupling between the system
and the environment. We assume the system qubit is also sub-
ject to an intrinsic decay with decay rate γ2. In Fig. 1(b), we
plot the temporal-SW for various decay rates γ2, after tracing
out the effective environment-qubit. The initial condition of
the system-qubit is that of a maximally-mixed state, while the
environment-qubit is in its excited state. As seen in Fig. 1(b),
there is a vanishing and a reappearance of the temporal-SW
of the system qubit. Since we know that the temporal-SW
should decrease monotonically under a Markovian dynam-
ics, the oscillation of temporal-SW naturally shows that the
qubit is undergoing non-Markovian evolution. This memory
effect in this simple example is easy to understand in that in-
formation regarding the state of the system-qubit flows to the
environment-qubit and returns at a later time; one cannot as-
sume that the evolution of the environment is not influenced
by its history.

EXAMPLE 3: A QUBIT COUPLED TO
A NON-MARKOVIAN MULTIMODE RESERVOIR

In general, the dissipation γ rate in a Master equation de-
scription of an open-quantum system can be time-dependent,
i.e. γ = γ(t). If γ(t) < 0, it indicates that information can
flow back to the system and the system dynamics can be non-
Markovian. To show that the temporal-SW is sensitive to this,
we use the same example as in Breuer et al. [5], where a qubit
is coupled to a reservoir with a Lorentzian spectral density. In
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this case, the decay rate can be written as

γ(t) = − 2

G(t)

d

dt
|G(t)|, (12)

where

G(t) = e−ωwt/2

[
cosh

(
bt

2

)
+
ωw
b

sinh

(
bt

2

)]
(13)

with b =
√
ω2
w − 2gωw. Here, g denotes the coupling

strength and ωw is the spectral width. We choose a mixed state
as the initial state and plot the non-Markovianity NTSW as a
function of g/ωw in Fig. 2. Our results agree well with those
in Ref. [6]: the non-Markovianity is zero when g/ωw < 0.5,
and increases monotonically as a function of g/ωw.
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