
Zhang et al. Reply: The preceding Comment [1] admitted
and confirmed that the calculations in our Letter [2] are
correct. The Comment [1] uses the Caldeira-Leggett model
for a harmonic oscillator to question the physical relevance
of an unbounded total Hamiltonian for only one of three
examples explored in Ref. [2]. Below we show how
important and well-known aspects of the physical relevance
of the Hamiltonian used in Ref. [2] address the question.
The total Hamiltonian used in Ref. [2], Htot ¼P
iεia

†
i ai þ

P
kωkb

†
kbk þ
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ikVikða†i bk þ b†kaiÞ (valid for

both fermion and boson systems), is indeed the Fano-
Anderson (FA) Hamiltonian in condensed matter physics
[3,4]. It is also referred to as the Lee-Friedrichs Hamiltonian
in atomic physics [5,6]. This is the basic Hamiltonian for
investigating quantum resonances and the decay of impu-
rities or discrete states embedded in a continuum, and it is
widely used in atomic physics, quantum optics, condensed
matter, as well as quantum field theory. The physical
relevance of the FA Hamiltonian includes the famous
Fano effect, Anderson localization, the Dicke effect and
superradiance, resonant tunnelings, etc., just to name a few
examples. The localized modes (or dressed bound states)
existing outside and inside of the environment spectra are a
general consequence of this Hamiltonian, which can be
obtained by simply solving the Schrödinger equation given
in many textbooks and review articles, e.g., see Refs. [4,6,7],
and have been observed experimentally in different physical
systems [8]. Thus, very surprisingly, the Comment [1]
questions the physical relevance of a well-established and
experimentally justified Hamiltonian.
When the environment is initially in thermal equilibrium,

the Schrödinger equation is no longer valid because the
whole system is initially not in a pure state. Then the
nonequilibriun dynamics of open systems arises, and
the master equation approach becomes fundamental. We
derived, for the first time, the exact master equation for the
FA Hamiltonian, for both fermion systems [9] and boson
systems [10]. In our Letter [2], within our exact master
equation formalism, we show that localized modes (dressed
bound states) lead to dissipationless nonequilibrium
dynamics, a general long-lived non-Markovian behavior
for open systems. Thus, the system cannot reach equilib-
rium with its environment (see the detailed proof given in
Ref. [11]). This agrees with what Anderson pointed out in
his seminal paper [3]: that localization does not allow the
system to approach equilibrium.
In Ref. [2], we consider three very different examples to

illustrate the generality of the non-Markovian dynamics. One
of the localized-mode energies, given in the first example in
Ref. [2], is negative but finite (close to zero, see the 2nd inset
in Fig. 1 of Ref. [1]) in the strong-coupling regime. The
Comment [1] argues that this negative energy could cause the
total Hamiltonian to be unbounded (if the total particle
number goes to infinity). We have shown rigorously that
because the total Hamiltonian conserves the total particle

number, the system has a well-defined ground state in each
fixed-particle-number state space [12]. Also, within our
exact master equation formalism, the total energy is always
positive definite [12]. The unboundedness of the total
Hamiltonian is irrelevant to the nonequilibrium dynamics
investigated in Ref. [2], and the Comment [1] is incorrect
when stating that this unboundedness casts serious doubts on
the usefulness of the approach.
The authors of the Comment [1] use the Caldeira-Leggett

(CL) model [13] to argue that any residual counterrotating
terms will cause the system to tend towards a state with
infinite negative energy (thermodynamically unstable).
The counterrotating terms in the CL model originate from
Hint¼
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kða†bkþab†kþa†b†kþabkÞ in which

the last two terms, i.e., the counterrotating terms, corre-
spond to the processes of generating or annihilating two
quanta of energy out of the blue, from nothing. One should
be aware that the CL model is a semiempirical one; its
physical motivation is to derive the classical dissipation
motion of a Brownian particle from quantum mechanics.
This is valid in a high-temperature environment in the
weak-coupling limit, as specified in Ref. [13], where it is
well known that the counterrotating terms have no physical
contribution. In the strong-coupling regime, if adding the
counterrotating terms would cause the system to tend
towards the ground state with infinite negative energy, as
the Comment [1] suggests, then according to renormaliza-
tion theory, the counterrotating terms must contain unphys-
ical features and should be properly subtracted away from
the Hamiltonian, similar to the subtraction introduced by
Caldeira and Leggett themselves to ensure the potential
stability in the original CL Hamiltonian [13]. This is a
problem in the CL Hamiltonian, and it has nothing to do
with the FA Hamiltonian.
In summary, the physical relevance of the FA Hamiltonian

used in our Letter [2] is well established in the literature.
The unboundedness of this Hamiltonian questioned in
Ref. [1] is irrelevant to the nonequilibrium dynamics
investigated in Ref. [2]. At the same time, the physical
relevance of the CL Hamiltonian used in Ref. [1] for a
harmonic oscillator should always be examined when one
goes beyond the physical conditions spelled out in Ref. [13].
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