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Pseudochemotactic drifts of artificial microswimmers
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We numerically investigate the motion of active artificial microswimmers diffusing in a fuel concentration
gradient. We observe that, in the steady state, their probability density accumulates in the low-concentration
regions, whereas a tagged swimmer drifts with velocity depending in modulus and orientation on how the
concentration gradient affects the self-propulsion mechanism. Under most experimentally accessible conditions,
the particle drifts toward the high-concentration regions (pseudochemotactic drift). A correct interpretation of
experimental data must account for such an “anti-Fickian” behavior.

DOI: 10.1103/PhysRevE.92.012114 PACS number(s): 05.40.Jc, 82.70.Dd, 47.63.Gd, 87.17.Jj

I. INTRODUCTION

Chemotaxis, defined as the movement of motile cells or
organisms in response to a chemical gradient, is a well-studied
phenomenon [1]. Bacteria and other single- or multicellular
organisms propel themselves up or down the concentration
gradient of a particular substance in their search for nutrients
or to avoid antagonists. Inspired by chemotaxis in biology,
researchers synthesized artificial microswimmers [2,3] that
can move in response to a chemical stimulus [4,5]. They
showed that Janus particles (JP), in the form of two-faced
Au-Pt colloidal rods that catalyze hydrogen peroxide redox,
are attracted by a hydrogen peroxide source. Under such
conditions, JPs act as molecular “robots” and can thus be
employed in practical applications, such as the design of new
intelligent drugs [6]. More sophisticated chemical robots have
been proposed that utilize artificial chemotaxis to navigate
autonomously [7].

The simplest and, possibly, best established model of self-
propulsion is encoded by the Langevin equations [9–12]

ẋ = v0 cos φ +
√

D0ξx(t), ẏ = v0 sin φ +
√

D0ξy(t),

φ̇ = √
Dφξφ(t), (1)

where r = (x,y) are the coordinates of the swimmer in the
plane, v0 its self-propulsion speed, and Dφ an orientational
diffusion constant, whose reciprocal, τφ , quantifies the time-
persistency of the particle’s Brownian motion. Here, ξi(t),
with i = x,y,φ, are zero-mean and δ-correlated Gaussian
noises with 〈ξi(t)ξj (0)〉 = 2δij δ(t). For long observation times
t , with t � τφ , or lengths l, with l � lφ ≡ v0τφ , the effec-
tive diffusion constant, D, defined by the asymptotic law
limt→∞〈r2(t)〉 = 4Dt [13], is D = D0 + Ds , where D0 is due
to thermal fluctuations in the suspension, and Ds = v2

0/2Dφ is
a (typically) much larger self-propulsion term, which depends
on the chemical composition of the suspension itself.

Let us consider now a chemical reactor consisting of a
narrow, straight channel of length L oriented along the x
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axis, and a free JP moving in it (Fig. 1) [8]. A constant
concentration gradient of the chemical that fuels the particle’s
self-propulsion is maintained by connecting the channel to
two reservoirs in thermal equilibrium with concentrations
ρL < ρR . The chemical concentration in the channel, ρ(x),
will then grow linearly from left to right. At the channel ends,
x = ±L/2, two porous membranes allow the chemical flow in
and out but prevent the JP from escaping into the reservoirs.
We speculate, based on experimental observations [9,14–16],
that both v0 and Dφ (and therefore Ds) may depend on ρ(x) to
some unspecified extent. We only assume that both v0(x) and
Dφ(x) are nondecreasing functions of the channel coordinate
x. Indeed, a higher fuel concentration typically enhances active
Brownian motion. For this reason, the right and left channel
endpoints are termed, respectively, hot and cold. We then ask
ourselves two closely related questions. Upon injecting the JP
at the center of the channel, x = 0: (1) Which containment
membrane is the JP more likely to hit first? (2) On which side
of the channel is it going to sojourn the most time?

This might sound paradoxical, but we came to the conclu-
sion that the injected JP is finally attracted toward the left (cold)
exit, even if, immediately after injection, it may drift to either
direction, depending on the x-dependence of the propulsion
parameters v0 and τφ . For the most common case when
the x-dependence of τφ is much weaker than Ds [9,14–16],
the injected particle points decidedly to the right (hot) exit.
Reconciling these seemingly conflicting mechanisms is of
paramount importance to control the chemotaxis of artificial
microswimmers as opposed to bacterial chemotaxis [17,18].
To avoid misunderstandings we remark that the adjectives hot
and cold refer here to the regions in the reactor where the
effective swimmer diffusion due to the selfpropulsion, Ds(x),
is the highest and lowest, respectively. The thermal diffusion,
D0, is assumed to be x-independent, which means that thermal
gradients do not enter our analysis. Accordingly, in the absence
of thermal gradients and for low fuel concentrations, additional
transport contributions due to hydrodynamic effects in the
suspension fluid can be safely neglected.

This paper is organized as follows. In Sec. II we present
numerical results for the “splitting probabilities” that a JP,
injected at the center of the channel, exits it through the
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FIG. 1. (Color online) Chemical reactor with a stationary fuel
concentration gradient, ρ(x) (see text). A Janus particle injected in
the middle (a) tends to drift to the right even if its probability density,
P0(x), peaks on the left (b). The data in panel (b) are for v0(x) ∝ ρ(x)
with D0 = 0.01, ηv = 1, δv = 1, δφ = 0, and Dφ = 0.1.

right or left end and the corresponding mean first-exit times.
The particle clearly undergoes a transient drift toward the hot
end of the channel, whereas its stationary distribution tends
to accumulate at the opposite end. In Sec. III we interpret
our data by means of a phenomenological 1D Langevin
equation that describes the diffusion of a Brownian particle
with the spatial-dependent diffusion coefficient Ds(x). The
spatial dependence of Ds(x) generates the drift term here
detected as a transient drift. Finally, in Sec. IV we discuss
the implications of our findings in the interpretation of recent
experiments on the diffusion of JPs in concentration gradients.

II. NUMERICAL RESULTS

Our answers to questions (1) and (2) are based on the
simulation data reported in Fig. 2. As a study case, we
considered the x-dependent self-propulsion parameters,

v0(x) = v0(1 + δvx/L)ηv , Dφ(x) = Dφ(1 + δφx/L)ηφ ,

(2)

where δv = �v0/v0 and δφ = �Dφ/Dφ are both nonnegative,
and from now on, v0 and Dφ are shorthands for v0(0) and
Dφ(0) at the injection point. We also set ηv = 1 and ηφ = 2,
so that for δv = δφ the self-propulsion diffusion term, Ds(x) =
v2

0(x)/2Dφ(x), is x-independent, i.e., Ds(x) = Ds . That is,
the JP is expected to diffuse uniformly along the channel.
On the contrary, we observed that the stationary probability
density function (p.d.f.), P0(x), of a single JP in such a close-
ended channel tends to accumulate against the left exit, as
displayed in Fig. 2(a). This effect is the strongest as δv is
increased at δφ = 0. Vice versa, as δφ is raised and δv lowered,
P0(x) tends to flatten out. For δv = 0, no matter what δφ ,
P0(x) = L−1. Actually, the x-dependence of Dφ(x) seems not
to sensibly affect P0(x) for any choice of ηφ [Fig. 2(a), inset].
In conclusion, to answer question (2), the injected JP tends to
dwell where v0(x) is the lowest, as suggested in Ref. [17], that
is by the cold extremity of the channel (reverse chemotaxis).

When one looks at the transient dynamics immediately
following the particle injection, a surprising outcome appears.
We injected the particle at x = 0 and clocked the time it
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FIG. 2. (Color online) Janus particle in a concentration gradient,
Eq. (2), with ηv = 1, ηφ = 2, and different δφ and δv: (a) P0(x)
for D0 = 0.01. Data for D0 = 0.01 and different ηφ are plotted in
the inset; (b) NR/NL and TL/TR (inset) vs. D0; and (c) ε vs. D0,
Eq. (9). Other simulation parameters: v0 = 1, Dφ = 1, L = 100lφ and
channel width yl = 5. The solid curves are the analytical predictions
based on Eqs. (5) and (6) with α = 1/2 and α = 1, respectively, for
δφ = 0 and δv = 0.

takes to hit either the right or left containment membrane.
We repeated this numerical experiment N = 106 times and
determined the probability the particle first reached the right
or left exit, NR,L/N , and the corresponding mean-first-passage
times (MFPT), TR,L, from 0 to ±L/2. The ratios NR/NL and
TL/TR are plotted, respectively, in the main panel and the inset
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of Fig. 2(b). In the regime of low thermal noise, D0 	 Ds , we
obtained distinct results, depending on which x-dependence is
stronger, v0(x) or Dφ(x). [Note that we used the same ηv and
ηφ as in Fig. 2(a) for P0(x)]. In the first case, the particle tries
to leave the channel through the right exit and, accordingly,
TL > TR . Vice versa, on suppressing the x-dependence of
v0(x), while leaving Dφ(x) unchanged, the particle directs
itself preferably toward to left exit and TL < TR .

This means that for δv � δφ the injected particle initially
drifts up the ρ(x) gradient (pseudochemotaxis), at odds with
Ref. [17]. Only when the increase of v0(x) along the channel is
accompanied by a suitably stronger increase of its orientational
rate, Dφ , the injected particle drifts immediately down the
gradient, in agreement with Fick’s law for ordinary Brownian
motion. Magnitude and orientation of the transient drift are
characterized in the forthcoming section by means of the
unique rectification factor ε. This result is remarkable because
P0(x) tends to accumulate in any case around the concentration
minima. This behavior is reminiscent of the “drift without
current” effect experimentally observed in Ref. [19,20] and
numerically investigated in Ref. [21] for thermal Brownian
motion in confined geometries. However, the magnitude of
the phenomenon reported here is significantly larger and more
easily accessible to experimental demonstration.

III. PHENOMENOLOGICAL ANALYSIS

An analytical treatment of the model of Eq. (1) is viable in
two limiting cases, i.e., δφ = 0, δv > 0, and δv = 0, δφ > 0.
For this purpose we implemented the approach of Ref. [22] to
reduce the fully three-dimensional dynamics of Eq. (1) to the
more tractable 1D phenomenological diffusion law,

ẋ = αD′
α(x) +

√
Dα(x)ξ (t), (3)

where the prime sign denotes an x derivation and (i)
α = 1/2 and D1/2(x) = D0 + v2

0(x)/2Dφ , for δφ = 0, and
(ii) α = 1 and D1(x) = D0 + v2

0/2Dφ(x), for δv = 0. Here,
the multiplicative noise term has to be handled according
to Ito’s prescription [13] and ξ (t) is defined like the noises
of Eq. (1). Note that the Eq. (3) can be rewritten as
ẋ = √

Dα(x) ◦ ξ (t), with ◦ denoting the Stratonovitch or
anti-Ito prescription, respectively, in cases (i) and (ii). The
corresponding Fokker-Planck equation (FPE) is

∂

∂t
P (x,t) = ∂

∂x

[
−vα(x) + ∂

∂x
Dα(x)

]
P (x,t)

= − ∂

∂x
j (x,t), (4)

with vα(x) = αD′(x) for the appropriate value of α

[17,23]. The stationary p.d.f. for zero net current, j0 ≡
limt→∞ j (x,t) = 0, reads

P0(x) = lim
t→∞ P (x,t) = N /Dα(x)1−α, (5)

where N is a normalization constant. In particular, for α = 1,
i.e., x-independent v0, P0(x) = 1/L. The extension to cases
with j0 = 0 is straightforward.

Regarding the transient statistics of a particle injected at the
center of the channel, x = 0, a simple “splitting probability”
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FIG. 3. (Color online) Channel diffusion for ηv = 1 and δφ = 0:
(a) P0(x) for Dφ = 0.1, v0 = 1.5, and different δv and D0 (see
legends). Inset: P0(x) for D0 = 0.02, Dφ = 0.1, δv = 1, and different
ηv; (b) NR/NL vs. D0 for δv = 2/3 and different Dφ ; and (c) TL/TR

vs. D0 for δv = 2/3 and different Dφ . Other simulation parameters
are: v0 = 1.5, L = 100lφ , and channel width yl = 5. Inset in panel
(b): NR/NL vs. Dφ for D0 = 0.03 and L = 100 (squares) and 100lφ
(circles). Inset in panel (c): TL/TR vs. L/lφ for D0 = 0.03, and
different Dφ . The remaining simulation parameters are as in the
relevant main panel. Dashed and solid curves are the corresponding
analytical predictions based on Eqs. (5) and (6) for α = 1/2.

calculation [13] leads to

NR

N
=

∫ 0
−L/2[Dα(x)P0(x)]−1dx∫ L/2
−L/2[Dα(x)P0(x)]−1dx

. (6)
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FIG. 4. (Color online) Channel diffusion for δv = 0 and different
δφ and ηφ (in legends): (a) NR/NL vs. v0 for D0 = 0.03; (b) NR/NL vs.
D0 for v0 = 1.5; and (c) TL/TR vs. D0 for v0 = 1.5. In (a)–(c) Dφ =
0.1, L = 100lφ , and yL = 5. The solid curves are the corresponding
analytical predictions based on Eqs. (5) and (6) for α = 1.

with NR + NL = N . Analogously, for the MFPTs in a channel
with absorbing endpoints, we have [13]

TL(δα) = 〈T̃ (x)〉(0,L/2) − 〈T̃ (x)〉(−L/2,L/2) = TR(−δα), (7)

where δ1/2 = δv and δ1 = δφ ,

T̃ (x) =
∫ x

−L/2
dzψα(z)/Dα(z)

∫ L/2

z

dy/ψα(y),

and 〈. . . 〉(a,b) = ∫ b

a
(. . . )dx/ψα(x)/

∫ b

a
dx/ψα(x), with

ψα(x) = [Dα(x)]α . The second equality in Eq. (7) follows
immediately from x → −x symmetry considerations. The
ratios NR/NL and TL/TR have been computed numerically.
The results plotted for α = 1/2 (Fig. 3) and for α = 1 (Fig. 4)
confirm the consistency of our phenomenological approach in
both regimes.

Clearly, our approach hinges on the phenomenological
Eq. (3) and the explicit expressions we used for vα and Dα(x).
We now justify our choice for both.

(i) δφ = 0, δv > 0. In view of the third equation (1),
we know that cos φ(t) behaves like a (non-Gaussian) col-
ored noise with an asymptotic autocorrelation function
〈cos φ(t) cos φ(0)〉 � (1/2)e−Dφ |t | for t � τφ [24]. The JP
diffusion coefficient at x can thus be derived from Kubo’s
formula [12,23],

D = D0 + lim
t→∞

∫ t

0
v2

0(x)〈cos φ(t) cos φ(0)〉dt = D1/2(x),

as anticipated in Eq. (3).
The drift velocity, vα(x), of a JP with an x-independent

self-propulsion time constant, τφ , amounts to the average of
v0(x) over its persistence length lφ(x) = v0(x)τφ , i.e.,

vα(x) = 1

2

[
v0

(
x + lφ

2

)
− v0

(
x − lφ

2

)]
� 1

2
v′

0(x)v0(x)τφ,

(8)
hence vα = αD′

α(x) as in Eq. (4) with α = 1/2.
(ii) δφ > 0, δv = 0. Calculating D(x) in this case is

straightforward. The FPE corresponding to the first and third
Langevin Eq. (1),

∂

∂t
P̄ =

[
−v0 cos φ

∂

∂x
+ D0

∂2

∂x2
+ Dφ(x)

∂2

∂φ2

]
P̄ ,

with P̄ = P̄ (x,φ,t), admits a uniform p.d.f., as one can prove
by substitution; hence, the P0(x) of Eq. (5) with α = 1.
The diffusion coefficient will be calculated again through
Kubo’s formula: since in the stationary regime x and t

are statistically independent, D = D1(x). Regarding the drift
velocity, the condition j0 = 0 in Eq. (3) requires that vα(x) =
Dα(x)(ln[Dα(x)P0(x)])′, namely, for α = 1, v1(x) = D′

1(x),
as expected.

Coming back to the plots of Figs. 3 and 4, we stress that:
(i) The insets of Figs. 3(b) and 3(c) illustrate the dependence

of NR,L and TR,L on the channel length L: TR,L scale like L2,
whereas NR,L grow insensitive to L. Of course, both statements
are valid as long as L � lφ ;

(ii) Our expressions for TL,R(δα), adapted from Ref. [13],
correctly reproduce the limiting values TR,L(δα) = L2/8D0 for
D0 	 Ds (gradient effects are superseded by thermal noise),
and TR,L(0) = L2/8Ds for D0 = 0 and δα → 0 (purely active
Brownian motion);

(iii) On comparing the curves for NR/NL in Figs. 3(b) and
4(b) and those for TL/TR in Figs. 3(c) and 4(c), the different
dependence of the two ratios on Dφ at low thermal noise
becomes apparent. This can be easily explained by inspecting
the corresponding analytical expressions in the limit D0 → 0.
For δφ = 0, δv > 0, i.e., α = 1/2, the two ratios are functions
of δv only and, therefore, independent of Dφ . For δv = 0,
δφ = 0, i.e., α = 1, they grow insensitive to v0, but do depend
on δφ and, hence, Dφ . Accordingly, the limits D0 → 0 and
v0 → ∞ coincide, as confirmed, for instance, by the numerical
data in Figs. 4(a) and 4(b).

Finally, to fully answer our starting question (1), as the
most likely exit end in the general case δv = 0 and δφ = 0, we
computed the rectification factor,

ε ≡ 〈vα(0)〉/v0 =
(

NR

NL

TL

TR

− 1

)/(
NR

NL

TL

TR

+ 1

)
, (9)
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where the ratios NR/NL and TL/TR are combined together
to quantify both the sign and magnitude of the symmetry-
breaking mechanism responsible for the pseudochemotactic
drifts. The most effective right (left) rectification corresponds
to ε = ±1, whereas for ε = 0 the opposite pulls by v0(x) and
Dφ(x) cancel each other. Note that for ηv = 1, ηφ = 2, and
δv = δφ , the transient rectification does not vanish [Fig. 2(c)],
even if under the same conditions TL = TR [Fig. 2(b), inset].

IV. CONCLUDING REMARKS

The phenomenon of “drift without current” has been
explained in Refs. [19,25] using the phenomenological Eq. (3),
by noticing that the statistical ensemble governing the average
drift (i.e., the rectification factor ε in our notation) is different
from the one required to compute the average current, j0 = 0.
The former consists of the representative points exiting an
infinitesimally narrow neighborhood with coordinate x, with
equal x-dependent jump length in either direction, whereas
the latter consists of all points crossing a channel cross-section
with coordinate x at a given time, no matter what their jumping
length. The two ensembles differ as an effect of multiplicative
noise [i.e., the x-dependence of Dα(x)] and so do the currents
thus calculated.

Self-propelling artificial microswimmers reproduce that
very same situation as a combined effect of nonequilibrium
and the higher dimensionality of their dynamics, Eq. (1).
In contrast to bacterial chemotaxis [17], for an artificial
microswimmer the self-propulsion parameters do not depend
on the orientation. Here a dependence on the swimmer’s
orientation might come into play due to, say, inertial or
memory (i.e., nonlocal) effects, but surely not to some
internal sensor-actuator pathways, like in bacteria [1]. The
microswimmers considered here are characterized by very

low Reynolds numbers and small dimensions compared to
the ρ(x) length scale; therefore, an orientation dependence of
the swimmer’s self-propulsion mechanism is not an option.

For artificial microswimmers under the most common
experimental conditions, Dφ is only weakly affected by the
ρ gradient, while v0(x) is reported to grow linearly with ρ and
then saturate at higher ρ [9,14–16]. The onset of “anti-Fick”
cold-to-hot (pseudochemotactic) currents can thus be easily
demonstrated. For instance, a source steadily releasing fuel
into a JP suspension causes a concentration gradient around it;
JPs with x-independent rotational dynamics are driven away
from the fuel source, whereas a tagged JP floating in such a de-
pletion zone actually drifts toward the source. This prediction
is in contrast with the experimental findings of Ref. [4], where
Au-Pt microrods are reported to progressively cluster around
an H2O2 fuel source. If we assume that the self-propulsion
model of Eq. (1) holds good for a free swimmer in the bulk (as
established under the most diverse experimental conditions
[9,11,26]), the only explanation for such a discrepancy is
that, upon migrating toward the fuel source, the JPs come
into contact with one another and eventually aggregate, as
suggested, e.g., in Ref. [27]. Drifts without current become
observable at low swimmer concentration.
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