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Certifying single-system steering for quantum-information processing
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Einstein-Podolsky-Rosen (EPR) steering describes how different ensembles of quantum states can be remotely
prepared by measuring one particle of an entangled pair. Here, we investigate quantum steering for single quantum
d-dimensional systems (qudits) and devise efficient conditions to certify the steerability therein, which we find
are applicable both to single-system steering and EPR steering. In the single-system case our steering conditions
enable the unambiguous ruling out of generic classical means of mimicking steering. Ruling out “false-steering”
scenarios has implications for securing channels against both cloning-based individual attack and coherent
attacks when implementing quantum key distribution using qudits. We also show that these steering conditions
also have applications in quantum computation, in that they can serve as an efficient criterion for the evaluation of
quantum logic gates of arbitrary size. Finally, we describe how the nonlocal EPR variant of these conditions also
function as tools for identifying faithful one-way quantum computation, secure entanglement-based quantum
communication, and genuine multipartite EPR steering.
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I. INTRODUCTION

Einstein-Podolsky-Rosen (EPR) steering was originally
introduced by Schrödinger [1] in response to the EPR
paradox [2]. Such steering is the ability of one party, Alice,
to affect the state of another remote party, Bob, through
her choice of measurement [1]. This relies on both the
entanglement of the pair shared between Alice and Bob and
the measurement settings chosen for each particle of the pair.
Recently, the concept of EPR steering has been reformulated
in terms of an information-theoretic task [3] showing that
two parties can share entanglement even if the measurement
devices of one of them are uncharacterized (or untrusted).
This formulation also illustrates a strict hierarchy between
Bell nonlocality, steering, and entanglement. It is worth noting
that, as with Bell inequalities and entanglement witnesses,
which have been widely used to verify quantum correlations,
EPR steering inequalities [4] and steering measures [5] have
been introduced to detect and quantify the steerability of
bipartite quantum systems. It is also now understood that
steering has applications in certain quantum key distribution
(QKD) schemes, where one of the parties does not trust their
measurement apparatus, i.e., one-sided device-independent
QKD (1SDI-QKD) [6]. In addition to these theoretical break-
throughs several experimental demonstrations of EPR steering
have been reported [7–9].

Since the reformulation of EPR steering by Wiseman
et al. [3], there has been a range of investigations into steering’s
unique properties, quantification, and potential extensions. For
example, it has been shown that there exist entangled states by
which steering can be performed in only one direction [10–12],
from Alice to Bob but not from Bob to Alice. In addition,
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the original bipartite steering effect has been generalized to
genuine multipartite steering [13–16]. Moreover, a temporal
analog of the steering inequality has been introduced [17],
and a nontrivial operational meaning to violations of such
an inequality was found through a connection to the security
bounds of certain QKD schemes [17].

Given this range of breakthroughs in our understanding of
quantum steering, a natural question arises: does there exist a
strict and experimentally efficient criteria for quantum steering
that can be used to certify the reliability of both quantum
communication (like QKD) and quantum computation tasks?
So far, it was been shown that 1SDI-QKD [6] benefits from
EPR steering. However, there is no unified scheme for the
use of quantum steering for generic quantum-information
processing tasks. In fact, the role of quantum steering in
quantum computation, if any, is not clear.

Here, we present a simple but unified picture to connect
quantum steering with such generic quantum-information
tasks. See Fig. 1 for a schematic illustration of a typical imple-
mentation. Two steering conditions are introduced to identify
genuine single-system quantum steering in the presence of
errors and which can be applied to both quantum computa-
tion and quantum communication using qudits (systems of
arbitrary dimension). Both steering conditions need only the
minimum of two local measurement settings for experimental
implementation. Our results give a strict meaning of violating
the temporal analog of the steering inequality [17] and extend
the 1SDI-QKD from qubit [6] to qudit cases. Moreover, we
show how these conditions can be applied in the standard
nonlocal EPR setting and then used to validate quantum
computation for both the quantum circuit model [18] and
one-way quantum computing [19]. Finally, we discuss the
implications for certifying genuine multipartite EPR steering
and implementing multipartite secret sharing with partially
uncharacterized measurement devices.
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FIG. 1. (Color online) Single-system steering for quantum-
information tasks. The state âi is sent from Alice to Bob. Here âi

is a postmeasurement state of a qudit ρs under the measurement
Ai for i = 1,2. By sharing certain information distributed via a
classical communication channel (not shown), Alice can steer the
state of Bob’s particle by asking him to perform the quantum
operation U . For example, by simply choosing U as an identity
operator, Alice’s steering enables them to realize QKD. When U is
an arbitrary quantum logic gate, steering single systems is equivalent
to performing quantum computation. To identify whether Alice can
implement such steering, Bob can use the steering condition (7) or (9)
to rule out the results mimicked by generic classical strategies. As
illustrated, Bob performs measurements Bu(i) to implement these
certifications. These steering conditions ensure secure quantum
communication and faithful quantum computation (see Table I). Here,
it is allowed that Alice and Bob have no spatial separation but access
the single system at different times.

II. QUANTUM STEERING FOR SINGLE SYSTEMS

In the scenario of single-system quantum steering, Alice’s
ability to affect the quantum state Bob has access to is based
on both her ability to prepare an arbitrary quantum state to
send to Bob and her knowledge, if any, about the state Bob
finally receives (which may differ from her prepared state, for
various reasons) [20]. If Alice has full information about the
quantum system Bob is holding, she is capable of steering this
system into an arbitrary state. Alice can follow two steps to
achieve this (Fig. 1).

First, Alice prepares a specific state of a qudit with a
given initial state state ρs generated from some quantum
source, before sending it to Bob, by performing comple-
mentary measurements Ai for i = 1,2. Once the particle is
measured with a chosen Ai , ρs becomes âi ≡ |ai〉ii〈ai | for
ai ∈ v = {0,1, . . . ,d − 1}, where the d states constitute an
orthonormal basis {|ai〉i} [20]. The set of states {|a2〉2} is
complementary to the state set {|a1〉1} by defining |a2〉2 =
1/

√
d

∑d−1
a1=0 ωa2a1 |a1〉1, with ω = exp(i2π/d).

Second, the particle in the state âi is sent to Bob. Here Bob
does not know the state of particle âi sent from Alice. To steer
Bob’s state âi into other quantum states U(âi) ≡ UâiU

†, Alice
can directly perform the unitary operation U by herself before
the particle transmission, or publicly, via a classical channel,
ask Bob to apply U on |ai〉i . While the quantum operation U is
announced publicly, the state U(âi) is still unknown to Bob. It
is clear that Alice has complete knowledge about the quantum
system held by Bob since the state ρs , the measurement Ai ,
and the subsequent operation U are designed by Alice. When
Bob performs measurements on his particle after the operation
U , his two complementary measurements Bu(i) for i = 1,2 are
specified by the orthonormal bases {|bu(i)〉u(i) ≡ U |bi〉i |bu(i) =
bi ∈ v} with the results {bu(i)}.

In an ideal case, the state received by Bob is the same as the
initial state âi prepared by Alice under the transformation U .
In practical situations, however, noise from the environment
or other artificial effects introduce an unknown source of
randomness. In order to explicitly qualify whether Alice can
steer the states of the particles eventually held by Bob, and
rule out either third-party eavesdropping, classical mimicry of
the channel, or to qualify the quality of the channel itself, we
consider the following generic classical means of describing
state preparation, transitions between states, and the limits to
which they can influence the measurement results of Bob.

First, we assume that the state of the particle sent by Alice
can be described by a classical realistic theory which predicts
the particle is in a state described by a fixed set (A1 = a1,A2 =
a2). Suppose next that P (a1,a2) is the probability that, before
the measurements are performed, the particle is in a state
(a1,a2). Under this assumption the marginal probability P (ai)
and the conditional probability P (ai |aj ) for i,j = 1,2 and
i �= j should follow the relation

P (a1,a2) = P (a1)P (a2|a1) = P (a2)P (a1|a2). (1)

Second, we assume that the particle state can change,
while it is being transmitted from Alice to Bob, from
(a1,a2) to an unknown state ρλ with a transition probability
P [λ|(a1,a2)]. Then, the state of the particle changes to∑

a1,a2
P (a1,a2)

∑
λ P [λ|(a1,a2)]ρλ. To connect this state with

our steering scenario, where the state of the particle, and
how it evolves, may depend on the choice to measure
a1 or a2 individually, we rewrite the transition probability
as P [λ|(a1,a2)] = P (λ|ai)P (aj |λ,ai)/P (aj |ai) [22]. From
which, combined with the relation (1), the joint probability
of finding (a1,a2) and observing λ as the final state can be
explicitly represented by

P [(a1,a2),λ] = P (a1,a2)P [λ|(a1,a2)]

= P (ai)P (λ|ai)P (aj |λ,ai). (2)

As shown by (1) and (2), it does not matter what order Alice
does a series of measurements, the joint probability will always
be the same. The state of the particle that Bob holds is then

ρB =
d−1∑
ai=0

P (ai)
∑

λ

P (λ|ai)ρλ. (3)

When summing over all a1 and a2, Eq. (2) becomes

P (λ) =
∑
a1

P (a1)P (λ|a1) =
∑
a2

P (a2)P (λ|a2). (4)

With the above classical realistic description of Alice’s states,
the state received by Bob becomes independent of the measure-
ment setting chosen by Alice, i.e., ρB = ∑

λ P (λ)ρλ, implying
that Bob always has the same state whatever measurement Ai

and operation U Alice designs. This means Alice cannot steer
Bob’s states. We call the states with this feature unsteerable.
The above proof can be seen as equivalent to that used in
the derivation of EPR steering inequalities and extended EPR
steering conditions, where Alice’s measurement results are
assumed to be a classical distribution. See Appendix A for
detailed discussions.
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Finally, if Alice’s state and the unknown states ρλ are
described by a classical theory of realism, and thus only
classically correlated with Bob’s results, then the descriptions
Eqs. (1), (2), and (4) are applicable to ρλ as well. However,
here Bob’s measurement results are assumed to be based on
measurements on a quantum particle. Thus the expectation
values of the two mutually unbiased measurements Bu(1) and
Bu(2) with respect to the unknown quantum states ρλ obey the
quantum uncertainty relation in the entropic form [23]

H (Bu(1)|λ) + H (Bu(2)|λ) � log2(d), (5)

where H (Bu(i)|λ) = −∑d−1
bu(i)=0 P (bu(i)|λ) log2 P (bu(i)|λ).

III. QUANTUM STEERING CONDITIONS

A. Steering conditions

In order to distinguish steerability from the results mim-
icked by the methods based on the classical theories considered
above, in what follows we will introduce two quantum steering
conditions of the from S > αR , where S is the kernel of the
criterion and αR is the maximum value of the kernel supported
by classical theories. For ideal steering, S will be maximized.
Since ruling out classical mimicry is equivalent to excluding
unsteerable states (3), exceeding the αR will deny, or rule out,
processes (e.g., noisy channels) that make once steerable states
unsteerable and thus assist in confirming genuine quantum
steering.

The kernel of our first steering condition is

SdU ≡
2∑

i=1

d−1∑
ai=0;bu(i)=ai

P (ai,bu(i)). (6)

For ideal steering the maximum value for the kernel is SdU =
2. Whereas, for the states described by Eq. (3), we have αR =
1 + 1/

√
d. Thus the quantum steering condition reads

SdU > 1 + 1√
d

. (7)

For any unsteerable states the measured kernel will not violate
this bound. To determine the maximum value of the kernel
supported by realistic theories, we consider the expectation
value of the kernel SdU for the state ρB (3). Then SdU becomes

SdU,R =
2∑

i=1

d−1∑
ai=0

∑
λ

Tr[U |ai〉ii〈ai |U †ρλ]P (λ|ai)P (ai).

This can be further manipulated to give

SdU,R �
∑

λ

P (λ)(Tr[|m〉11〈m|ρλ] + Tr[|n〉22〈n|ρλ])

� 1 + 1√
d

,

where m,n ∈ v. The first inequality is derived by using
the relation (4) about P (λ), and the classical bound αR =
1 + 1/

√
d is then obtained by determining the maximum

eigenvalue of the operator |m〉11〈m| + |n〉22〈n|.
Our second steering condition is based on the mutual

information between Alice and Bob. From the point of view of
information shared between sender and receiver, the ability for

Alice to steer Bob’s state is confirmed if the mutual dependence
between the measurement results of Alice and Bob is stronger
than the dependence of Bob’s measurement outcomes on the
unknown states ρλ and ρB . This condition of steerability can
be represented in terms of the mutual information as follows:

2∑
i=1

I (Bu(i); Ai) >

2∑
i=1

I (Bu(i); {λ}). (8)

From the basic definition of mutual information, Eq. (8)
implies that

2∑
i=1

d−1∑
ai=0

P (ai)H (Bu(i)|ai) <

2∑
i=1

∑
λ

P (λ)H (Bu(i)|λ).

Imposing the relation (5) on the state ρλ, we obtain the second
steering condition of the form

SentU = −
2∑

i=1

d−1∑
ai=0

P (ai) H (Bu(i)|ai) > log2

(
1

d

)
. (9)

In addition to the steering conditions devised here, violating
the temporal steering inequality [17] can serve as an indicator
of single-system steering. In Appendix B, we show that
this inequality can be derived from these same classical
conditions (1) and (3), which provides a stricter interpretation
to violations of that inequality. As shown therein, the steering
conditions are related to practical quantum-information tasks
and can be more useful than the temporal steering inequality
alone, from a practical point of view. See Appendix C for a
concrete demonstration of the sensitivity of these conditions.

In particular, one of the main advantages of the steering cri-
teria is that they can be efficiently implemented in experiments.
A minimum of two measurement settings are sufficient to
measure the kernels SdU and SentU . In addition, they are robust
against noise, which is demonstrated in Appendix D (alongside
an analysis of the robustness of the steering inequality for
single systems).

B. Implications of the steering conditions

We have used a generic classical description of state
preparation and transitions between states to derive the
threshold αR for our steering conditions. The allows us to
use these conditions to certify quantum steering (EPR steering
and single-system steering) when the measurement apparatus
of Alice is uncharacterized or when both Alice’s measurement
device and the operation U are not trustworthy.

It is important to note that ruling out such a classical
description, or mimicry, is equivalent to excluding the set of
unsteerable states (3). Thus satisfying these conditions will
deny, or rule out, processes that make states unsteerable. For
example, it is possible that, while the measurement devices
of Alice functions as well as expected, any processes that can
change the states of particles from â1 and â2 to unknown states
belonging to {ρλ} will cause Alice to be ignorant about the
true connection between her true measurement outcomes and
Bob’s states. Such state changes make Bob’s state unsteerable,
as described by Eq. (3).

In practical situations, one usually does not know the
full information about the noise from the environment, or
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other artificial effects which introduce an unknown source
of randomness. The steering conditions (7) and (9) can certify
the ability of Alice to steer the states of the particles eventually
held by Bob, and then rule out third-party eavesdropping,
classical mimicry of the channel, and any processes that make
the transmitted particles unsteerable. Hence these steering
conditions can be considered as an objective tool to evalu-
ate the reliability of quantum communication and quantum
computation.

IV. EXAMPLE APPLICATION TO QUANTUM
COMMUNICATION

As an example of a practical application of our steering
conditions in quantum communication we consider the fol-
lowing scenario. When the state of the qudit sent from Alice
to Bob changes from the state âi to a state Ureal(âi) through a
channel Ureal, the value of the kernel SdU is

SdU =
2∑

i=1

d−1∑
ai=0

P (ai) F (ai,u(i)),

where the probabilities P (ai) = Tr[ρsâi] and the state fideli-
ties [18] F (ai,u(i)) = Tr[Ureal(âi)âu(i)]. Let us assume that an
error is introduced by a quantum cloning machine [24] which
copies equally well the states of both bases, F (ai,u(i)) = F ,
for all a ∈ v [25]. If Alice wants to demonstrate steering of
Bob’s particle in the presence of such eavesdropping, they
have to find SdU = 2F > 1 + 1/

√
d , or alternatively the state

fidelity must satisfy the condition

F >
1

2

(
1 + 1√

d

)
.

It is equivalent to saying that the disturbance, D = 1 − F , or
error rate, has to be lower than a certain upper bound Dind =
(1 − 1/

√
d)/2. This bound is exactly the same as the well-

known security threshold [24].
For the second steering condition (9), we derive a second

criterion on the state fidelity F [25]:

F̃ > − 1
2 log2(d),

where F̃ ≡ F log2(F ) + (1 − F ) log2 [(1 − F )/(d − 1)]. This
provides the upper bound, Dcoh, on D under coherent attacks. If
D < Dcoh, then Alice can steer Bob’s state. Interestingly, this
bound Dcoh exactly coincides with the existing result [24,26].
The above two conditions on F are summarized in Table I.

TABLE I. A summary of the steering conditions for quantum-
information processing. The criteria derived from steering conditions
for secure quantum communications and faithful quantum computa-
tions are represented in terms of the state fidelity F and the process
fidelity Fprocess, respectively.

Condition Communication Computation

SdU > 1 + 1√
d

F > 1
2

(
1 + 1√

d

)
Fprocess > 1√

d

SentU > log2

(
1
d

)
F̃ > − 1

2 log2(d) Fprocess > 1 − 2Dcoh

V. EXAMPLE APPLICATION TO QUANTUM
COMPUTATION

When the measured kernels S are larger than the maximum
values αR predicted by classical theories, the real process
describing the state transitions Ureal can be said to be close
to the target unitary quantum operations U that Alice and
Bob expect [27]. Validating such a unitary is a common,
and sometimes difficult, task in quantum computation. To
understand how to evaluate such a transformation using our
steering conditions, we rewrite the condition (7) as

1

d

2∑
i=1

d−1∑
ai=0

Tr[Ureal(âi)âu(i)] > 1 + 1

d
.

Here, without losing any generality, we assume that ρs = I/d,
where I is the identity matrix. The quantity

Fâi→U(âi ) ≡ 1

d

d−1∑
a=0

Tr[Ureal(âi)âu(i)]

can be considered as an average fidelity between Ureal(âi)
and âu(i) over all the d states. With the average state
fidelities Fâi→U(âi ) for the complementary bases A1 and A2,
one can obtain the lower bound of the process fidelity
Fprocess ≡ Tr[UrealU] by F process � Fâ1→U(â1) + Fâ2→U(â2) −
1 [28]. Hence, using the steering condition together with the
above relation, we obtain a condition for a faithful quantum
process in terms of process fidelity:

Fprocess >
1

d
.

Taking a two-qubit entangling gate for an example, this
indicator coincides with the well-known criterion [28] in terms
of the concurrence C [29]. Two qubits can be considered or
recast as a single system with a level number d = 22 = 4. The
entanglement capability of a two-qubit entangling gate, like
a controlled-NOT operation, can be defined by the minimal
amount of entanglement that can be generated by the real
operation Urel. In terms of the concurrence C, a measure of
quantum entanglement, it is found that C � 2Fprocess − 1 [28].
Then, for a nontrivial gate, one requires C > 0, which implies
that Fprocess > 1/2. Our condition on Fprocess derived from the
steering condition (7) coincides with this criterion. Note that
the condition derived from the second steering condition (9)
is Fprocess > 62.14%, tighter than that resulted from the
condition (7).

The above results can be efficiently implemented with a
minimum of two measurement settings. This is especially
useful to evaluate experimental quantum logic gates of
arbitrary size, for example, an experimental three-qubit Toffoli
gate with trapped ions [30]. For a three-qubit gate (d = 23), the
condition on the process fidelity is Fprocess > 1/

√
8 ≈ 35.36%.

The process fidelity of the experimental quantum Toffoli gate
with trapped ions reported in [30] is Fprocess = 66.6(4)%,
which can be identified as being functional according to our
proposed criterion. When the number of qubits N increases, the
classical bound will decrease with

√
d = 2N/2 and approach

zero when N is large.
The second steering condition (9) can be used to evaluate

experimental quantum gates. When using the same conditions
as Dcoh to consider the quality of gate operations under
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coherent attacks, one can obtain the condition on Fprocess in
terms of Dcoh:

Fprocess > 1 − 2Dcoh,

which is tighter than the criterion derived from the first
condition (7). The relation F = Fâ1→U(â1) = Fâ2→U(â2) is used
above. Alternatively, the gate can be also qualified if the aver-
age state fidelity satisfies F > 1 − Dcoh. Table I summarizes
the above two conditions on Fprocess.

VI. EPR STEERING CONDITIONS AND APPLICATIONS

As discussed above, traditional EPR-steering and
single-system-steering scenarios mirror each other. In the
language we use, this can be understood from the fact that,
by changing the role of λ [31], both steering conditions (7)
and (9) can be used to detect EPR steering for bipartite d-level
systems shared between Alice and Bob. See Appendix A 2 d.
However, the converse is also true, such that EPR steering
inequalities, for example, the inequalities used in the
experiments [7,8], can serve as criteria for single-system
steering (see Ref. [17] and Appendix B).

When using the bipartite counterpart of steering condi-
tions (7) and (9) for quantum communication, one obtains
security criteria for quantum channels that are the same as the
single-system case, which can thus be considered as a d-level
extension of 1SDI-QKD [6]. Similarly, the EPR steering con-
ditions give criteria of computation performance for quantum
gates realized in one-way modes [19]. A quantum gate U can
be encoded in a bipartite maximally entangled state [32]:

|U 〉 = 1√
d

d−1∑
ai=0

|ai〉i |Out(ai)〉,

where |Out(ai)〉 ≡ U |In(ai)〉, and |In(ai)〉 is the input state
of the quantum gate U . A readout of the gate operation,
|Out(ai)〉, depends on the measurement result ai , which is just
the effect of EPR steering. See Appendix E for an application
to a two-qubit gate realized in the one-way mode. Hence our
EPR steering conditions can indicate reliable gate operations
for experiments [33] in the presence of uncharacterized
measurement devices.

The idea of bipartite steering conditions based on (7)
and (9) can be straightforwardly generalized to genuine
multipartite EPR steering. The main ingredient is to consider
a kernel, from either the joint probabilities like Eq. (6) or the
entropic conditions in Eq. (9), for a specific bipartition of
a multipartite system. Then a complete kernel of a steering
condition is composed of the joint probabilities, or entropic
conditions, for all possible bipartitions of the multipartite
system. See [16] for concrete examples for steering conditions
based on (7). In particular, the entropic condition for genuine
multipartite EPR steering using (9) could be useful for
multipartite quantum secret sharing [34] when coherent
attacks occur in the quantum network.

VII. CONCLUSION AND OUTLOOK

We investigated the concept of quantum steering for
single quantum systems and pointed out its role in quantum

information processing. We derived two steering conditions to
certify such steering. These conditions ensure secure QKD
using qudits and provide criteria for efficiently evaluating
experimentally quantum logic gates of arbitrary computing
size (see Table I). Moreover, the bipartite counterparts of our
steering conditions can detect EPR steerability of bipartite
d-level systems, and have practical uses for evaluating one-
way quantum computing and quantum communication with
entangled qudits and verifying genuine multipartite EPR
steering. It may be interesting to investigate further the
connection between single-system steering and other types
of quantum steering such as one-way steering [10–12].

ACKNOWLEDGMENTS

This work was partially supported by the RIKEN iTHES
Project, the MURI Center for Dynamic Magneto-Optics via the
AFOSR Award No. FA9550-14-1-0040, the IMPACT program
of JST, and a Grant-in-Aid for Scientific Research (A). C.-
M.L. acknowledges the partial support from the Ministry of
Science and Technology, Taiwan, under Grants No. MOST
101-2112-M-006-016-MY3 and No. MOST 104-2112-M-006
-016-MY3. Y.-N.C. was partially supported by the Ministry
of Science and Technology, Taiwan, under Grant No. MOST
103-2112-M-006-017-MY4. N.L. was partially supported by
the FY2015 Incentive Research Project.

APPENDIX A: COMPARING SINGLE-SYSTEM STEERING
WITH EPR STEERING

In this section we compare EPR steering with single-system
steering by discussing their basic assumptions and the classical
mimicries, or simulation, of steering effects (Fig. 2). This
provides a clear connection between EPR and single-system
steering and the steering conditions for both cases discussed
in our work. From this comparison, we show that classical
mimicry or simulation can in both cases be considered as
equivalent.

1. EPR steering for quantum-information processing (QIP)

Compared with the single-system steering [Fig. 2(a)], the
scenario of EPR steering also consists of two steps: First, Alice
generates a bipartite entangled system from an entanglement
source (sometimes termed an EPR source) [Fig. 2(b)]. To have
a concrete comparison, let us assume that this entangled state
is of the form

|�〉 = 1√
d

d−1∑
a1=b1=0

|a1〉A1 ⊗ |b1〉B1 (A1)

where {|a1〉A1 ≡ |a1〉1|a1 ∈ v} and {|b1〉B1 ≡ |b1〉1|b1 ∈ v}.
Second, Alice keeps one particle of the entangled pair

and sends the other particle to Bob. A subsequent unitary
operator U is applied on Bob’s subsystem according to the
instructions of Alice. This transformation can be done either
by Bob after receiving the particle, or by Alice herself before
the transmission of the particle. After such a transformation,
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  UâiU
†

bu(i)ai

0,1,...,d-1

Bu(i)
1 2

Alice
Bob

U

0,1,...,d-1

(a)

(c)
(a1,a2 ) ρi ρλ

bu(i)ai

0,1,...,d-1

Bu(i)
1 2

Bob
U

0,1,...,d-1

(e)
ρi ρλ

Alice
(a1,a2 )

bu(i)ai

0,1,...,d-1

Ai
1 2

Bu(i)
1 2

Alice Bob
U

0,1,...,d-1

EPR

(b)

bu(i)ai

0,1,...,d-1

Bu(i)
1 2

Alice
Bob

U

0,1,...,d-1

(d)
(a1,a2 ) ρλρi

bu(i)ai

0,1,...,d-1

Bu(i)
1 2

Alice Bob
U

0,1,...,d-1

(f)
ρλ

ρi

(a1,a2 )

FIG. 2. (Color online) Comparison between single-system steering and EPR steering. We compare these two scenarios by, first, their basic
concepts of ideal single-system steering (a) and ideal EPR steering (b), and, second, classical mimics of single-system steering (c),(e) and EPR
steering (d),(f). For the ideal case, Alice can use the effect of EPR steering, by sharing the entangled states (EPR source), to implement the
operation U on the state of Bob’s qudit. While the resources utilized for quantum steering are different, the state of the particle finally held by
Bob can be steered into a corresponding quantum state, UâiU

†, for both quantum steering scenarios. To distinguish classical mimicry from
genuine quantum steering, the respective classical models based on realistic theories (c) and (d) are introduced. These “classical simulations”
can be concretely represented in the practical descriptions of, for example, unqualified measurements of Alice and the unqualified operation U

performed by Alice or Bob [(e) and (f)]. As shown in (e) and (f), these effective simulations are equivalent.

the state vector of the bipartite system becomes

(I ⊗ U )|�〉 = 1√
d

d−1∑
a1=b1=0

|a1〉A1 ⊗ U |b1〉B1.

Then, depending on Alice’s measurement result a1, the state
of the particle finally held by Bob can be steered into a
corresponding quantum state, Uâ1U

†, which is the same as
the result derived from single-system steering. When the state
|�〉 is represented in the bases {|a2〉A2 ≡ |a2〉2|a2 ∈ v} and
{|b2〉B2 ≡ |b2〉2|b2 ∈ v}, we have

|�〉 = 1√
d

∑
a2+b2

.=0

|a2〉A2 ⊗ |b2〉B2, (A2)

where
.= denotes equality modulo d. Through the same method

as that shown above, Alice can steer the state of Bob’s
particle into the quantum state, Ub̂2U

†, by the measurement
on her subsystem with a result a2 satisfying the correlation
a2 + b2

.= 0.
We remark that, for an EPR source creating entangled states

that are different from |�〉, the transformation U could be
implemented in other ways. For example, when Alice and Bob
share bipartite supersinglets [35], which are expressed as

|�〉 = 1√
d

∑
ai+bi=d−1

(−1)ai |ai〉Ai ⊗ |bi〉Bi, (A3)

for i = 1,2, Alice can steer the state of Bob by directly measur-
ing her qudit in a basis featured in U . Since supersinglets are
rotationally invariant [35], i.e., (R ⊗ R)|�〉 = |�〉, where R is
a rotation operator, Alice’s measurement in the basis {R|ai〉i}
will steer the state of Bob’s qudit into a corresponding state,

R|bi〉i , for ai + bi = d − 1. For d = 2, supersinglets become
unitary invariant and provide a resource for implementing any
unitary transformations U to Bob’s qubit.

2. Steering conditions

For both ideal single-system and EPR steering scenarios,
the state received by Bob, b̂i , is the same as or perfectly
correlated with the initial state âi prepared by Alice under
the transformation U . However, for Bob’s limited knowledge
about the measurements used or the particle prepared by
Alice, her measurement results become untrusted to Bob. He is
uncertain whether these measurements and state preparation
are qualified. In the worst case where Alice’s measurement
outcomes may be randomly generated from her apparatus,
classical simulations then can describe Alice’s measurement
results. To show that Alice has true steerability in practical
situations, we introduced the steering conditions (7) and (9),
to distinguish genuinely quantum steering from classical
mimicry. In what follows, we will detail this classical mimicry
and its implication for practical applications. With these
examples, it will be clear that the proof for single-system
conditions can be seen as equivalent to that used in the
derivation of EPR steering conditions.

a. Mimicry of single-system steering

In the case of single-system steering, as detailed in the
main text, the classical mimicry of steering is based on the
realistic assumptions that (1) the state of the particle sent by
Alice can be described by a fixed set (a1,a2), and (2) the state
can change from (a1,a2) to another state λ which corresponds
to a quantum state of the qudit ρλ finally held by Bob; see
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Fig. 2(c). In order to see this mimicry from a practical point of
view, one can think that, for example, such a situation arises as
a result of the unqualified measurement device and the states
of particles sent to Bob. For some reason, Alice’s measurement
apparatus does not properly output real measurement results ai

but randomly generates outcomes with a distribution P (a1,a2)
[see Eq. (1)] that correspond to some output states ρi when the
measurement setting i is chosen by Alice. After the unqualified
operation U , the state ρi becomes the unknown state ρλ which
constitutes an unsteerable state ρB [Eq. (3)]. Here the joint
probability of finding (a1,a2) and observing λ as the final state
satisfies the classical relation (2). It is equivalent to say that
Alice can consider the joint set (a1,a2), with the probability of
occurrence P (a1,a2), as describing predetermined instructions
for her to prepare and send a particle with final quantum state
ρλ to Bob. See Fig. 2(e).

It is also possible that the operation U is qualified but
the measurement device of Alice is not. The two realism
assumptions are applicable to this case as well. The above
classical mimicry scenario can be recast such that the output
states ρi already correspond to the unknown state ρ

(0)
λ ; see

Fig. 3(a). It does not matter what the subsequent qualified
operation on the particle U is, the final states held by Bob
ρλ constitute an unsteerable state ρB . From a practical point
of view, similarly, one can think that Alice’s measurement
apparatus randomly generates outcomes with the probability
of occurrence P (a1,a2) that correspond to unknown output
states ρ

(0)
λ [Fig. 3(c)].

b. Mimicry of EPR steering

The above scheme for mimicking single-system steering
can be readily mapped to the case of EPR steering. Here, the
mimicry of EPR steering depends on two similar assumptions:
(1) the state of the particle held by Alice can be described by
a fixed set obeying realism (a1,a2), and (2) a given set (a1,a2)
corresponds to some quantum state, ρλ, of the qudit finally held
by Bob; see Fig. 2(d). The unqualified bipartite state shared
between her and Bob, and a subsequent unqualified operation,
can result in such assumptions. For example, let us assume
that the entanglement source does not create entangled pairs

but a qudit with state ρi for Bob and another separable particle
for Alice instead. For the state ρi there is a corresponding
measurement setting i chosen by Alice, for which Alice’s
measurement device creates an output of a random signal with
a distribution described by the probability P (a1,a2) (1). The
subsequent operation U takes ρi to an unknown state ρλ, and
then the final state held by Bob is unsteerable (3). The classical
relation (2) is again applicable to this transition between
states. Here it is reasonable to incorporate the entanglement
source into the measurement apparatus as a single unqualified
experiment setup for Alice. See Fig. 2(f). Then it is effectively
a scenario where Alice observes a set (a1,a2) appearing with
probability P (a1,a2) which creates a particle with a final
quantum state ρλ for Bob.

As discussed in the above mimicry of single-system steer-
ing, it is possible that the operation U is qualified but Alice’s
measurement apparatus, including the EPR source, is not. In
this case one can effectively consider that the unqualified EPR
source outputs a fixed set (a1,a2) for Alice’s particle and a
qudit that is already in an unknown state ρi = ρ

(0)
λ for Bob

[Fig. 3(b)]. For any qualified operation U on the particle state
ρ

(0)
λ , the final state held by Bob is still unsteerable. From the

same practical point of view as introduced above, we can think
that the joint set (a1,a2), with the probability of occurrence
P (a1,a2), resulting from the random outcomes of Alice’s
device, corresponds to a particle with final quantum state ρλ

for Bob; see Fig. 3(d). It is clear that the joint probability of
finding (a1,a2) and observing λ as the final state in this case
satisfies the classical relation (2).

c. Equivalence between the steering mimicries

With the above concrete explanations of the classical
mimicry for both the single-system steering and EPR steering,
one can interpret these two classical scenarios as being
equivalent to each other. See Figs. 2(e) and 2(f) and Figs. 3(c)
and 3(d). Following the same approach based on the realistic
assumptions and their practical scenarios, in what follows we
will discuss two more cases to complete the proof of the
equivalence between the steering mimicries.

bu(i)ai
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Bu(i)
1 2

Alice
Bob

0,1,...,d-1

(a)
(a1,a2 ) ρλ

(0) ρλ
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Bu(i)
1 2

Bob
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(c)
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(0) ρλ
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(a1,a2 )

bu(i)ai
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(d)
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(0)

(a1,a2 )
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FIG. 3. (Color online) Steering mimicries where the operation U is qualified but the measurement device of Alice is not. The classical
mimics of single-system steering (a) and EPR steering (b) are based on the realistic assumptions that (1) the state of the particle sent by Alice
can be described by a fixed set (a1,a2), and (2) the state can change from (a1,a2) to another state λ which corresponds to a quantum state of the
qudit ρλ finally held by Bob. One can concretely represent these scenarios in the practical descriptions of unqualified Alice’s apparatus (c) and
(d), respectively. These concrete simulations are then shown to be equivalent.
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FIG. 4. (Color online) Mimicries of EPR steering where the EPR source is qualified but the measurement device of Alice is not. (a) The
unqualified operation is used, and (b) the operation used is qualified in the mimicry. These two possible situations can be described by the two
realism conditions and represented in practical descriptions (c) and (d), respectively. The demonstration (c) has the analog of single-system
steering described by Fig. 2(e). The concrete mimicry (d) is equivalent to that of single-system steering depicted in Fig. 3(c).

The case where Alice’s measurement apparatus is unqual-
ified, while the EPR source functions as expected, can raise
two other possible scenarios which again can be shown to
be covered by “realism” assumptions. Figure 4(a) depicts
one of the possibilities. As the operation U is unqualified,
one can practically think that Alice’s measurement apparatus
generates random outcomes with a distribution P (a1,a2),
independent of the entangled pair generated from the EPR
source. The subsequent operation makes the state of the
qudit of the entangled pair sent to Bob, say ρi , change
to ρλ as illustrated by Fig. 4(c). It is clear that such
mimicry of EPR steering is equivalent to the simulation
of single-system steering described by Fig. 2(e) [see also
Fig. 2(c)].

Figure 4(b) illustrates the other situation where the entan-
glement source and the operation U are qualified but Alice’s
measurement apparatus is not. A possible concrete example for
this case is the following. The unqualified measurement device
of Alice always measures her particle of the entangled pair,
say |�〉, in the first basis {|a1〉1|a1 ∈ v} intrinsically whatever
measurement setting Alice chooses, and it announces random
signals a1 or a2 as an outcome. Such a measurement, combined
with the random signals, make the state of the qudit sent
to Bob unsteerable, i.e., ρi = ρ

(0)
λ belongs to the same set

{|b1〉1|b1 ∈ v} whatever measurement setting chosen by Alice
and as such then constitutes an unsteerable state ρB after the
operation U ; see Fig. 4(d). This is an analog of EPR-steering
mimicry to that of single-system steering described by Fig. 3(c)
[see also Fig. 3(a)].

d. EPR steering conditions for QIP

As shown above, the mimicry of single-system steering is
equivalent to that mimicking EPR steering. Then the steering
conditions (7) and (9) derived for single systems can be
mapped onto, and subsequently be used for verification of,
EPR steering for bipartite d-dimensional systems. Then, such
EPR steering conditions can certify the reliability of QIP
scenarios where entangled pairs are shared between Alice
and Bob. When the state |�〉 is used to mediate steering
the EPR steering condition that corresponds to (7) is of the

form

S (EPR)
dU� ≡

d−1∑
a1=bu(1)=0

P (a1,bu(1))

+
∑

a2+bu(2)
.=0

P (a2,bu(2)) > 1 + 1√
d

. (A4)

Similarly, with proper changes to the above joint probabilities,
we have the following steering condition for supersinglets:

S (EPR)
dR� ≡

∑
au(1)+bu(1)=d−1

P (au(1),bu(1))

+
∑

au(2)+bu(2)=d−1

P (au(2),bu(2)) > 1 + 1√
d

, (A5)

where, for Alice who implements quantum measurements, the
measurement outcomes {au(i)} result from the measurement
described by the basis {|au(i)〉u(i) ≡ R|ai〉i |au(i) = ai ∈ v}.
Here Bob uses the same measurements as those used by Alice.
For the EPR steering conditions represented in the entropic
forms, we have

S (EPR)
entU� ≡ −

2∑
i=1

d−1∑
ai=0

P (ai) H (Bu(i)|ai) > log2

(
1

d

)
, (A6)

for the state |�〉 shared by Alice and Bob, and

S (EPR)
entR� ≡ −

2∑
i=1

d−1∑
au(i)=0

P (au(i)) H (Bu(i)|ai) > log2

(
1

d

)
,

(A7)

for the supersinglets.
As detailed above, the mimicry of single-system steering

based on realistic theories is equivalent to that of EPR
steering where Alice’s outcomes follow realist theories but
Bob performs quantum measurements. Hence the proof for the
conditions (7) and (9) can be readily applied to the above EPR
steering conditions. In addition, following the same analysis
of quantum communication based on single-system steering
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as introduced in the main text, these bipartite counterparts
of steering conditions provide security criteria for quantum
channels that are equivalent to the single-system cases.

APPENDIX B: EPR STEERING INEQUALITY FOR
SINGLE-SYSTEM STEERING

The classical condition (1) and its implications, Eqs. (2)
and (3), provide a strict meaning of violating the single-system
analog of the EPR steering inequality used in the experiment of
Smith et al. [8], i.e., the temporal steering inequality introduced
in [17]. The kernel of this steering inequality reads

SN ≡
N∑

i=1

E
[〈
Bi,tB

〉2
Ai,tA

]
, (B1)

where

E
[〈
Bi,tB

〉2
Ai,tA

] =
1∑

a=0

P (Ai,tA = a)
〈
Bi,tB

〉2
Ai,tA

=a
(B2)

and N = 2 or 3 is the number of measurement for Alice and
Bob. The probability of measuring Ai = a at the time tA is
denoted by P (Ai,tA = a). The expectation value about Bob’s
measurement at the time tB , conditioned on the measurement
result of Alice, is defined by

〈
Bi,tB

〉
Ai,tA

=a
=

1∑
b=0

(−1)b P
(
Bi,tB = b

∣∣Ai,tA = a
)
.

To obtain the upper bound derived from generic classical
means, we first introduce the final state of Bob’s particle (3)
into the above equation and then have

〈
Bi,tB

〉
Ai,tA

=a
=

1∑
b=0

(−1)b
∑

λ

P
(
Bi,tB = b|λ)

P
(
λ|Ai,tA = a

)

=
∑

λ

P
(
λ|Ai,tA = a

) 〈
Bi,tB

〉
λ
.

Then it is clear that

E
[〈
Bi,tB

〉2
Ai,tA

]

�
1∑

a=0

P
(
Ai,tA = a

) ∑
λ

P
(
λ|Ai,tA = a

) 〈
Bi,tB

〉2
λ
.

Second, we use the result (4) derived from the criterion on
state transition (2) in the main text to obtain

P (λ) =
1∑

a=0

P
(
Ai,tA = a

)
P

(
λ|Ai,tA = a

)
,

for all measurements i. The temporal inequality is

SN �
N∑

i=1

∑
λ

P (λ)
〈
Bi,tB

〉2
λ

�
∑

λ

P (λ) = 1.

Thus SN > 1 can be considered as a condition for single-
system steering and deny processes that make states
unsteerable.

APPENDIX C: COMPARISON BETWEEN STEERING
CONDITIONS AND THE TEMPORAL STEERING

INEQUALITY

One of the main differences between the steering conditions
and the temporal steering inequality is in their practical
applications to quantum-information tasks. In what follows
we will illustrate a simple example to show that, compared
with the temporal steering inequality, the steering conditions
can fulfill certain requirements so as to be useful as checks for
the reliability of QIP.

Let us assume that a source generates particles in the state
ρs = |0〉11〈0| for Alice’s subsequent use for steering. The task
of Alice and Bob is to perform an identity operation I , or
alternatively, to maintain the states of the particles during
the particle transmission. For such an information task, the
steering condition (7) for d = 2 and U = I used by them to
check the steerability can be of the form

S2I ≡
1∑

a1=b1=0

P (a1,b1) +
1∑

a2=b2=0

P (a2,b2) > 1 + 1√
2
.

When the particles are transmitted without any disturbance,
they will have S2I = 2. To concretely show the undesired
situation, e.g., a wrong gate operation in quantum computation,
or an unwanted interaction between the qubit and the quantum
channel in quantum communication, we assume that there
exists an effective operation X = |0〉11〈1| + |1〉11〈0| on the
qubit such that the final state of the qubit held by Bob is
X|bi〉i . Such an operation can make the qubit flip when the
state is prepared in |0〉1 or |1〉1. Then the value of the kernel
S2I becomes S2I = 1, i.e., the reliability of the qubit state is
not certified by the steering condition (7).

Using the same number of measurement settings (N = 2),
the temporal steering inequality is still violated by SN = 2,
and this cannot reveal the real effect of a qubit flip on
the particle during transmission. Hence, the present form of
the temporal steering inequality cannot be used in practical
quantum-information tasks, while our steering conditions can
because of their stricter behavior. However, after properly
revising the kernel SN by introducing a quantum operation
U , the revised version of the temporal inequality also can
serve the same role as the steering conditions. Its derivation
and experimental demonstrations will be detailed elsewhere.

The above consideration is also true for the bipartite
nonlocal counterpart. When Alice and Bob share the state
|�〉 = 1√

2

∑1
a1=b1=0 |a1〉A1 ⊗ |b1〉B1 to perform the same task

as above, they can certify the reliability by using the steering
condition (A4) for d = 2 and U = I ,

S (EPR)
dU� ≡

1∑
a1=b1=0

P (a1,b1) +
1∑

a2=b2=0

P (a2,b2) > 1 + 1√
2
.

If there is a bit flip error in the transmission of Bob’s qubit, then
the state suffering from such effect (I ⊗ X)|�〉 cannot give
results that satisfy the above condition to act as a reliability
check (S (EPR)

dU� = 1) but still can violate the inequality (SN =
2 > 1). Then, the EPR steering inequality cannot respond to
the effect of a qubit flip in the bipartite nonlocal scenario.

062310-9



LI, CHEN, LAMBERT, CHIU, AND NORI PHYSICAL REVIEW A 92, 062310 (2015)

2 3 4 5 6 7 8 9 10
0.20

0.22

0.25

0.27

0.30

0.32

0.35

0.37

0.40

Qudit dimension d

N
oi

se
 to

le
ra

nc
e 

p

SenpU

SdU

SN

FIG. 5. (Color online) Noise tolerance of steering conditions (7)
and (9). If the probability of white nose pnoise < p, then the single-
system steering, that underlies the qudits sent by Alice with the states
ρi(ai,pnoise), can be certified by the steering conditions (7) or (9).
Here the threshold of noise intensity p is an indicator showing the
noise tolerance of these steering criteria. Note that the noise tolerance
of the certification based on violating the EPR steering inequality,
i.e., SN > 1, implemented with two measurement settings (N = 2)
is the same as that of the steering condition (7) for two-dimensional
systems (the EPR steering inequality introduced by Smith et al. [8] is
applicable to d = 2 only). For large d , both the conditions (7) and (9)
are robust against noise up to p = 50%.

APPENDIX D: ROBUSTNESS OF STEERING CONDITIONS

We consider the following scenario to determine the
robustness of the proposed steering conditions. Let us suppose
that in the presence of white noise the pure state |ai〉i of the
qudit prepared by Alice’s measurements will become

ρi(ai,pnoise) = pnoise

d
I + (1 − pnoise)âi , (D1)

where pnoise is the probability of uncolored noise. Then the
steerability revealed by using the qudits with states ρi(pnoise) is
certified by our steering conditions if the intensity of uncolored
noise pnoise is smaller than some noise threshold, pnoise < p.
Here p can be considered as an indicator showing the noise
tolerance of the steering conditions; see Fig. 5. We determine

the noise threshold p by considering the critical noise intensity
such that S(pnoise) = αR . For the steering condition (7), we
have

p =
(
1 − 1√

d

)
2
(
1 − 1

d

) , (D2)

which shows that the steering condition is robust and the noise
is even tolerable up to p = 50% for large d. The robustness of
the steering condition (9) is similar to that of the condition (7),
and its noise tolerance in terms p also can be up to p = 50%
for large d.

APPENDIX E: EPR STEERING FOR ONE-WAY
QUANTUM COMPUTING

A cluster state can be represented by an array of vertices,
where each vertex is initially in the state of (|0〉 + |1〉)/√2
where |0〉 and |1〉 constitutes an orthonormal basis. Every
connected line (edge) between vertices realizes a controlled-
phase (CPHASE) gates acting as |m〉 ⊗ |n〉 → ωmn|m〉 ⊗ |n〉,
where ω = exp(i2π/2) and m,n ∈ {0,1} [19]. In the present
illustration, we consider a four-qubit chain-type cluster state
of the form

|C4〉 =
1∑

m=0

1∑
n=0

1∑
j=0

1∑
k=0

ωmn+nj+jk|n〉A1

× ⊗ |j 〉A2
⊗ |m〉B1

⊗ |k〉B2
(E1)

where |q〉Al
= |q〉Br

≡ |q〉 for q = 0,1 and l,r = 1,2. The
state |C4〉 represented in a horseshoe graph is shown in
Fig. 6(a). Here we assume that Alice holds two of the qubits,
A1 and A2, and Bob has the rest, B1 and B2.

When sharing such a genuine four-partite entangled state
between them, Alice’s quantum measurements on her qubits
can realize a quantum gate operation U on the state of the
qubits held by Bob:

U = (H ⊗ H )CPHASE, (E2)

where H is the Hadamard operation; see Fig. 6(b). To clearly
see the gate operation realized in this one-way model, we

mm
0,1

A1i
1 2 1 2

Alice

0,1

n
0,1

1 2
n

1 2

Bob

A2i

A1

A2

B1

B2 B2i

B1i

�

�

H

H

0,1

(a) (b)

|m B1i

|n B2i

FIG. 6. (Color online) EPR steering for one-way quantum computing. (a) A genuine four-qubit chain-type cluster state shared by Alice
and Bob is represented by a fully connected horseshoe graph. Alice, who performs the measurements A1i and A2i for i = 1,2 on her qubits
A1 and A2, respectively, can reveal the EPR steering effect to realize the gate operation U on the qubits of Bob B1 and B2. (b) The state
|m〉B1i ⊗ |n〉B2i is an input of the quantum gate U composed of one two-qubit CPHASE gate and two single-qubit Hadamard operations. For
one-way quantum computing, the outcomes of Alice’s measurements, m and n, corresponding to the postmeasurement state |m〉A1i ⊗ |n〉A2i ,
determines the output state of the gate operation, U (|m〉B1i ⊗ |n〉B21i).
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rephrase the state vector of |C4〉 in the following form:

|C4〉 =
1∑

m=0

1∑
n=0

|m〉A11 ⊗ |n〉A21 ⊗ U
(|m〉B11 ⊗ |n〉B21

)
(E3)

where |q〉Al1 = |q〉Br 1 ≡ (|0〉 + (−1)q |1〉)/√2 for q = 0,1
and l,r = 1,2. One can consider the state |m〉B11 ⊗ |n〉B21 as
an input of the quantum gate U . Then the outcomes of Alice’s
measurements A11 and A21, m and n, corresponding to the
post measurement state |m〉A11 ⊗ |n〉A21, determines the output
state of the gate operation, U (|m〉B11 ⊗ |n〉B21). For example, as
Alice performs measurements and has the results m = 0 and
n = 0, the state of Bob’s qubits (|0〉 + |1〉) ⊗ (|0〉 + |1〉)/2
will be transformed by U into an entangled state (|0〉 ⊗
|0〉 + |0〉 ⊗ |1〉 + |1〉 ⊗ |0〉 − |1〉 ⊗ |1〉)/2. Alice can perform
different measurements to transform input states prepared in
different basis by the same gate operation U . The cluster state
also can be of the form

|C4〉 =
1∑

m=0

1∑
n=0

|m〉A12 ⊗ |n〉A22 ⊗ U
(|m〉B12 ⊗ |n〉B22

)
(E4)

where |q〉Al2 = |q〉Br 2 ≡ (|0〉 + (−1)q i|1〉)/√2 for q = 0,1
and l,r = 1,2.

Through the connection between Alice’s measurements on
her qubits and the resulting states of Bob’s qubits as illustrated
above, one can think of the quantum gate U as being encoded
in a bipartite maximally entangled state

|U 〉 = 1

2

3∑
ai=0

|ai〉i ⊗ |Out(ai)〉, (E5)

where |ai〉i ≡ |m〉A1i
⊗ |n〉A2i

with ai = m × 21 + n × 20 and
|Out(ai)〉 ≡ U |In(ai)〉, and |In(ai)〉 ≡ |m〉B1i

⊗ |n〉B2i
is the

input state of the quantum gate U . Hence the effect of EPR
steering reveals that a readout of the gate operation, |Out(ai)〉,
depends on the measurement result ai .

Our EPR steering conditions serves as a useful tool to iden-
tify reliable gate operations for experiments in the presence
of uncharacterized (or untrusted) measurement devices. For
example, for the above concrete case, we have the following
EPR steering conditions:

S (EPR)
dUC4

≡
3∑

a1=bu(1)=0

P (a1,bu(1))

+
3∑

a2=bu(2)=0

P (a2,bu(2)) > 3/2, (E6)

where {bu(i)} denotes the results obtained from Bob’s measure-
ment specified by {|bu(i)〉u(i) ≡ U |In(bi)〉|bu(i) = bi ∈ v}. It is

easy to find that the kernel S (EPR)
dUC4

and its condition for EPR
steering are exactly the same as their single-system analogs (6)
and (7).

It is worth noting that the idea of bipartite EPR steering
effects and the steering condition (E6) for one-way quantum
computing is rather different from that based on genuine
multipartite EPR steering [16]. The present steering condition
detects EPR steering with respect to the fixed bipartite splitting
of the four qubits A1,A2 and B1,B2. When certifying genuine
four-partite EPR steering for one-way quantum computing,
one needs the concept and method introduced in [16] to
consider and verify quantum steering with respect to all
bipartite splittings of the four qubits.
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to the states âu(i), i.e., F (ai,u(i)) = 1, it is clear that SdU = 2.
Whereas, if there exists an error source which reduces the
state fidelity F (ai,u(i)), the value of the kernel SdU will
decrease as well. If a cloner makes all the state fidelities
under the same measurement setting have the same value,
say F (a1,u(1)) = F and F (a2,u(2)) = F̄ , for all a ∈ v, then
SdU becomes SdU = F + F̄ . When the cloning machine copies
equally well the states of both bases, then the state fidelities in
both bases are identical, F = F̄ . For the second criterion on the
state fidelity, it is worth noting that the conditional entropy can
be represented by H (Bu(i)|ai) = −F (ai,u(i)) log2 F (ai,u(i)) −∑

b �=a 	(bu(i)ai) log2 	(bu(i)ai), where 	(bu(i)ai) denotes the
probability of error state transition from ai to bu(i) for bu(i) �= ai .
When taking the same condition as on the quantum cloning
machine for the first criterion into consideration and assuming

that the possible errors are equiprobable 	(bu(i)ai) = (1 −
F )/(d − 1), we derive a second criterion on the state fidelity
F from the second steering condition (9).

[26] L. Sheridan and V. Scarani, Phys. Rev. A 82, 030301(R) (2010).
[27] This evaluation is based on whether the process Ureal goes

beyond the classical descriptions of the input states and their
state evolution, and gives us a tool by which to evaluate a given
real transformation.

[28] H. F. Hofmann, Phys. Rev. Lett. 94, 160504 (2005).
[29] S. Hill and W. K. Wootters, Phys. Rev. Lett. 78, 5022 (1997).
[30] T. Monz, K. Kim, W. Hansel, M. Riebe, A. S. Villar, P. Schindler,

M. Chwalla, M. Hennrich, and R. Blatt, Phys. Rev. Lett. 102,
040501 (2009).

[31] One can change the role of λ from that of variables for describing
correlations between Bob and Alice’s results via unknown states
to hidden random variables for describing correlations between
Alice’s classical state and Bob’s quantum one.

[32] A one-way quantum computer relies on genuine multipartite
cluster states [19] to perform gate operations. Here the state
|U〉 for one-way quantum computing is the Schmidt form of
cluster states with respect to a fixed bipartition, which splits the
total systems into measurement part and readout of quantum
gate. The Schmidt rank d , of the state |U〉, then represents the
size of computation. For example [33] (see also Appendix E),
a four-qubit cluster state can be used to implement quantum
circuit composed of two-qubit gates, and its Schmidt rank is
d = 4 for such a bipartition.

[33] P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter,
V. Vedral, M. Aspelmeyer, and A. Zeilinger, Nature (London)
434, 169 (2005); K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A.
Goebel, S. Chen, A. Mair, and J.-W. Pan, Phys. Rev. Lett. 99,
120503 (2007).
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