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Statistical mixtures of states can be more quantum than their superpositions:
Comparison of nonclassicality measures for single-qubit states
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A bosonic state is commonly considered nonclassical (or quantum) if its Glauber-Sudarshan P function is not
a classical probability density, which implies that only coherent states and their statistical mixtures are classical.
We quantify the nonclassicality of a single qubit, defined by the vacuum and single-photon states, by applying
the following four well-known measures of nonclassicality: (1) the nonclassical depth, τ , related to the minimal
amount of Gaussian noise which changes a nonpositive P function into a positive one; (2) the nonclassical
distance D, defined as the Bures distance of a given state to the closest classical state, which is the vacuum
for the single-qubit Hilbert space; together with (3) the negativity potential (NP), and (4) concurrence potential,
which are the nonclassicality measures corresponding to the entanglement measures (i.e., the negativity and
concurrence, respectively) for the state generated by mixing a single-qubit state with the vacuum on a balanced
beam splitter. We show that complete statistical mixtures of the vacuum and single-photon states are the most
nonclassical single-qubit states regarding the distance D for a fixed value of both the depth τ and NP in the whole
range [0,1] of their values, as well as the NP for a given value of τ such that τ > 0.315 4. Conversely, pure states
are the most nonclassical single-qubit states with respect to τ for a given D, NP versus D, and τ versus NP. We
also show the “relativity” of these nonclassicality measures by comparing pairs of single-qubit states: if a state
is less nonclassical than another state according to some measure then it might be more nonclassical according
to another measure. Moreover, we find that the concurrence potential is equal to the nonclassical distance for
single-qubit states. This implies an operational interpretation of the nonclassical distance as the potential for the
entanglement of formation.
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I. INTRODUCTION

One of the central problems of quantum theory, already
raised by its founders [1–4], is the question of testing whether a
given physical system cannot be properly described classically.
This problem has attracted special interest in quantum optics
[5,6], quantum information [7,8], and recently even in quantum
biology [9,10]. In this paper, we address the problem of
not only testing but also quantifying nonclassicality (or
quantumness) of light or, more generally, of a bosonic system.

In general, a state is referred to as nonclassical if its
Glauber-Sudarshan P function [11,12] cannot be considered
a classical probability density [13], which means that it is not
positive (semidefinite). In other words, a state that cannot be
expressed as a statistical mixture of coherent states is called
nonclassical. Otherwise the state is considered classical. It
is worth noting that if the P function is more singular than
the Dirac δ function (which is the case for, e.g., the Fock
states), then it is also nonpositive. Thus, the nonpositivity of
the P function is the necessary and sufficient condition for
nonclassicality.

There exist several criteria of nonclassicality. However,
most of these criteria can only show a signature of non-
classicality. They do not provide any quantitative measure
of the nonclassicality. Thus, they cannot be used to compare

the amount of nonclassicality present in two different states.
Besides the above-mentioned P -function-based criterion of
nonclassicality, all the finite sets of other criteria are sufficient
but not necessary. Only an infinite set (or hierarchy) of
nonclassicality criteria can be considered a sufficient and
necessary condition of nonclassicality (see, e.g., Ref. [14]).
Thus, these finite-set criteria of nonclassicality may be better
viewed as witnesses of nonclassicality rather than measures
of nonclassicality. This limitation of the existing criteria of
nonclassicality is well known and several efforts have been
made to quantify nonclassicality. These efforts led to the
introduction of various measures of nonclassicality.

For example, in 1987, Hillery introduced a distance-based
measure of nonclassicality [15]. Specifically, the trace distance
of a quantum state from the nearest classical state can be
considered as a measure of nonclassicality associated with the
given quantum state. This idea of distance-based measures has
attracted considerable attention in quantum optics [16–20].
This intuitive definition is easy to understand but extremely
difficult to compute, as it requires minimization over an infinite
number of variables. Specifically, one needs to minimize
over the set of all possible classical states in order to identify
an optimal reference classical state that yields a minimum
distance with respect to a given nonclassical state. This is the
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main problem associated with the distance-based measures
of nonclassicality. Because of this computational difficulty,
until now the nonclassical distance has not exactly been
computed for any nonclassical state according to the original
definition. However, the computational difficulty associated
with Hillery’s original measure can be circumvented by
measuring the distance of a given nonclassical state from a
specific class of classical states. This approach was adopted
in a few works. For example, Marian et al. [18] defined a
simplified version of the Hillery nonclassical distance for
a single-mode Gaussian state of a radiation field as the
Bures distance between the state and the set of all classical
single-mode Gaussian states. Wünsche et al. [16,17] measured
the distance of a given state from the set of only coherent
states. Specifically, they used the Hilbert-Schmidt distance
of a pure state ρ from the coherent states as a quantitative
measure of nonclassicality of ρ [17]. Almost in the similar
line, Mari et al. [21] introduced a measure of nonclassicality of
a state ρ in terms of its trace-norm distance from the set of all
states having the positive Wigner function. Strictly speaking,
this quantifier of nonclassicality is not a proper measure since
some nonclassical states do have positive Wigner function (as
discussed below with respect to a nonclassicality volume).
Similarly, Dodonov and Renó [20] used the Hilbert-Schmidt
distance from the set of all displaced thermal states as a
quantitative measure of nonclassicality. These measures
are naturally free from the problem that arises due to the
minimization over the set of arbitrary classical states.

In 1991, Lee [22] introduced a quantitative measure of
nonclassicality which is usually referred to as nonclassical
depth. It is well known that noise can destroy nonclassicality.
Lee used this property to define the nonclassical depth
as the minimum amount of noise required to destroy the
nonclassicality. This measure is not continuous and for every
non-Gaussian pure state it is always equal to 1 [23]. As a
consequence, one cannot use this measure to compare the
amount of nonclassicality present in two non-Gaussian pure
states. The nonclassical depth was applied in dozens of papers
(see, e.g., Refs. [23–25] and for reviews see Refs. [5,26]).

In 2004, Kenfack and Życzkowski [27] introduced the
concept of the nonclassical volume, which is a quantitative
parameter of nonclassicality corresponding to the volume of
the negative part of the Wigner function. A nonzero value of
the volume definitely indicates the existence of a nonclassical
state, but this volume is not useful as a measure in general, since
the Wigner function cannot detect the presence of nonclassical-
ity in all quantum states. Specifically, the Wigner function of a
squeezed coherent state is not negative. As a consequence, the
nonclassical volume vanishes for all squeezed coherent states,
although they are nonclassical according to the definition based
on the nonpositivity of the P function. This example implies
that, in general, the nonclassical volume is not an appropriate
measure of nonclassicality.

Various other methods to test (or witness) nonclassical-
ity (see, Ref. [13] and references therein) and quantify it
[28–30] have been developed by Vogel et al. In particular,
the nonclassicality witnesses [14], based on the matrices
of the normally ordered moments of, e.g., annihilation and
creation operators, have attracted considerable interest as
an infinite set of observable conditions corresponding to a

necessary and sufficient condition for nonclassicality. Var-
ious generalizations have been studied, including tests of
spatiotemporal nonclassical properties of multimode fields
[31–33]. Moreover, this approach was the inspiration to
introduce entanglement witnesses based on the matrices of
moments of annihilation and creation operators of the partially
transposed density matrices [34,35] (for generalizations see,
e.g., Refs. [36,37]). The relations between these entanglement
and nonclassicality criteria were also studied in detail (see,
e.g., Ref. [32]). Note that the majority of these works have
solely described nonclassicality (or entanglement) witnesses
rather than nonclassicality measures. Only the more recent
works of Vogel et al. (see, e.g., Refs. [28–30]) were focused
on quantifying nonclassicality. For example, an experimentally
accessible method to determine a degree of nonclassicality was
recently described in Ref. [30].

With the advances in quantum computation and informa-
tion, many measures of entanglement (which is a specific
manifestation of nonclassicality) have been studied. Unfortu-
nately, measures of entanglement cannot be applied directly to
all nonclassical states. For example, nonclassicality of single-
mode states cannot be measured directly by using a measure of
entanglement. Interestingly, an indirect way to use measures of
entanglement as measures of nonclassicality was suggested by
Asboth et al. [38]. Specifically, if a single-mode nonclassical
(classical) state is combined with the vacuum at a beam
splitter, then the output state will be entangled (separable),
for which various entangled measures can be applied. For
example, in the original Ref. [38], the relative entropy of
entanglement and the logarithmic negativity (referred to as
entanglement potentials) were applied as measures of entan-
glement produced at the output of a balanced beam splitter as
the result of combining a nonclassical state with the vacuum. In
principle, one can use any other measure of entanglement (e.g.,
the concurrence related to the entanglement of formation) to
measure nonclassicality using this approach. Recently, Vogel
and Sperling [29] studied the approach in Ref. [38] to measure
nonclassicality based on the Schmidt rank as an entanglement
potential. Note that this measure based on the Schmidt rank is
discontinuous (analogously to the nonclassical depth, as it is
explained in detail in Sec. III A). Here we apply the continuous
entanglement potentials, which are based on the negativity and
concurrence.

It is important to clarify our usage of the term entanglement
potential, which is more general than that used in the original
Refs. [38] and [29]. Specifically, we use this notion by
referring to any entanglement measure applied to the output
of the auxiliary beam splitter used in Ref. [38]. Thus, in our
understanding, the following measures can be considered as
special cases of entanglement potentials: the negativity and
concurrence potentials, as well as those based on (i) the
logarithmic negativity, (ii) relative entropy of entanglement,
and (iii) Schmidt numbers. However, strictly speaking, Asboth
et al. [38] referred solely to measure (i) as the entanglement
potential, while to measure (ii) as the entropic entanglement
potential. Moreover, Vogel and Sperling [29] are not referring
to the measure (iii) as an entanglement potential at all.

We analyze the nonclassicality of states only. Note that the
nonclassicality of operations (see, e.g., Refs. [39–41]) can also
be studied by applying various measures.
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The discussion above shows that there exists a large number
of quantitative measures of nonclassicality. However, none
of the measures can be considered superior, as all of them
have some limitations and different physical (or operational)
interpretations. Here we discuss the relativity of a set of
nonclassicality measures which can be observed even for
the simplest nontrivial case of a single qubit defined as
a coherent or incoherent superposition of the vacuum and
single-photon states. We also report our analytical solutions
for the Lee nonclassical depth, the negativity potential, and
the Hillery nonclassical distance. The latter is found to be
equivalent to the concurrence potential. Further, we find
boundary states, which are maximally nonclassical states
according to one nonclassicality measure for a given value
of another nonclassicality measure.

It is well known, and already confirmed experimentally
[42], that statistical mixtures of the vacuum and single-photon
states are nonclassical (except for the vacuum). We find, which
is the most important result of this paper, that such statistical
mixtures can be more nonclassical than coherent or partially
incoherent superpositions of the vacuum and single-photon
states. This can be noticed by comparing their nonclassicality
for two chosen measures.

For the clarity of our presentation, we analyze the alge-
braically simplest nonclassical states, i.e., single-qubit states,
which can be written in a general form in the Fock basis as
follows:

ρ(p,x) ≡ [ρmn] =
[

1 − p x

x∗ p

]
, (1)

where the parameters are p ∈ [0,1], |x| ∈ [0,
√

p(1 − p)], and
m,n = 0,1.

The paper is organized as follows. In Sec. II we recall the
definitions of four popular nonclassicality measures, and, more
importantly, we find analytical formulas for these measures for
arbitrary single-qubit states. In Sec. III we present the main
results of this paper, which show the relativity of ordering
states with respect to their degree of nonclassicality. We also
demonstrate that the nonclassicality of mixed states can exceed
that of superposition states. We conclude in Sec. IV.

II. NONCLASSICALITY MEASURES FOR
SINGLE-QUBIT STATES

A. Nonclassical depth

Here we recall the concept of the nonclassical depth τ

introduced by Lee [22,24] (for a review see Ref. [5] and
references therein). We present the definition of τ in a
slightly different form as based on the standard Cahill-Glauber
s-parametrized quasiprobability distribution (QPD) rather than
the R function used by Lee. Then we find a compact formula
for the nonclassical depth for arbitrary single-qubit states.

We start from the Fock-state representation of the s-
parametrized QPD, W (s)(α), for an arbitrary dimensional state
ρ as [43]

W (s)(α) =
∞∑

m,n=0

ρmn〈n|T (s)(α)|m〉, (2)

given in terms of

〈n|T (s)(α)|m〉 = c

√
n!

m!
ym−n+1zn(α∗)m−nLm−n

n (xα), (3)

where s ∈ [−1,1], c = 1
π

exp[−2|α|2/(1 − s)], xα =
4|α|2/(1 − s2), y = 2/(1 − s), z = (s + 1)/(s − 1), and
Lk

n(xα) are the associate Laguerre polynomials [44]. In special
cases, Lk

0(xα) = 1 and Lk
1(xα) = 1 + k − xα . Moreover, α

is a complex number, where its real and imaginary parts
can be interpreted as canonical position and momentum,
respectively. The operator T (s)(α) is defined in the Fock
representation by Eq. (3) or, equivalently, by the formula
T (s)(α) = 1

π
yz(a†−α∗)(a−α), where a (a†) is the annihilation

(creation) operator. In the special cases of s = −1,0,1,
the QPD W (s)(α) becomes the Husimi Q, Wigner W , and
Glauber-Sudarshan P functions, respectively.

For a general single-qubit state, Eq. (2) reduces to

W (s)(α) = cy[ρ00 + z(1 − xα)ρ11 + 2yRe(αρ01)]. (4)

As already explained, the standard definition of nonclassicality
is based on the nonpositivity of the P function. The s-
parametrized QPDs can be used to quantify the degree of
nonclassicality. For example, the concept of the nonclassical
depth of Lee [22] can be easily understood by recalling the
relation between two QPDs, W (s1) and W (s2), with s2 < s1:

W (s2)(α) = c′
∫

exp

(
−2|α − β|2

s1 − s2

)
W (s1)(β)d2β, (5)

where c′ = 2/[π (s1 − s2)]. It is seen that all the QPDs can be
obtained from the P function (s1 = 1) by its convolution with
the Gaussian noise. By decreasing the parameter s from 1, the
P function for a given nonclassical state becomes non-negative
at some value (say s0). This is because the Husimi function
(s = −1) is non-negative for any state. The Lee nonclassical
depth τ is simply related to this Cahill-Glauber parameter s0,
viz. τ = (1 − s0)/2.

From the QPD, given by Eq. (4), for a general single-qubit
state we can write that

τ = 1 − s0

2
= 1

2
− 1

2
min

α
s−(α), (6)

where

s−(α) = 1 + [2Re(αx) − p] −
√

[2Re(αx) − p]2 − 4p|α|2.
(7)

We found analytically the minimum of Eq. (6), which leads
to the following simple general formula for the nonclassical
depth of an arbitrary single-qubit state, given in Eq. (1):

τ [ρ(p,x)] = ρ2
11

ρ11 − |ρ01|2 = p2

p − |x|2 , (8)

assuming p ∈ (0,1] and |x| ∈ [0,
√

p(1 − p)]. While for p =
0, the formula is simply given by τ [ρ(0,0)] = 0.

B. Entanglement potentials

Here we study the negativity and concurrence potentials as
measures of nonclassicality based on the unified description of
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nonclassicality and entanglement by applying a beam-splitter
(BS) transformation as introduced in Ref. [38].

The BS transformation can formally be described by
the Hamiltonian H = 1

2 (a†b + ab†), where a = |0〉〈1| =
[0,1; 0,0] and, analogously, b are the annihilation opera-
tors of the input modes. The unitary transformation UBS =
exp(−iH t) in the four-dimensional Hilbert space can be
written as

UBS =

⎡
⎢⎣

1 0 0 0
0 cos(t/2) −i sin(t/2) 0
0 −i sin(t/2) cos(t/2) 0
0 0 0 1

⎤
⎥⎦ , (9)

where, for simplicity, we set � = 1. In general, T = cos2(t/2)
and R = sin2(t/2) correspond to the BS transmittance and
reflectance, respectively. A balanced beam splitter (with T =
R) corresponds to the evolution time t = π/2.

The state ρout, which is the output of the BS with a general
single-qubit state ρ, given in Eq. (1), and the vacuum at the
two input ports is given by

ρout = UBS(ρ ⊗ |0〉〈0|)U †
BS. (10)

In the special case for the balanced BS we have

ρout(p,x) =

⎡
⎢⎢⎢⎢⎣

1 − p 1√
2
ix 1√

2
x 0

− 1√
2
ix∗ 1

2p − 1
2 ip 0

1√
2
x∗ 1

2 ip 1
2p 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ . (11)

The output state is entangled (except when the input is in the
vacuum state), as can be verified by applying entanglement
measures. Here we apply the negativity N and concurrence C

for the BS output state ρout, which can be interpreted as non-
classicality measures referred to as entanglement potentials of
an input state ρ.

1. Negativity potential

The negativity potential (NP) of a single-mode input state
ρ can be defined as the negativity N of the two-mode output
state ρout, i.e.,

NP(ρ) ≡ N (ρout). (12)

Recall that the negativity for two qubits is given by [8]

N (ρout) = max
[
0,−2 min eig

(
ρ�

out

)]
, (13)

which is proportional to the negative eigenvalue of the matrix
ρ�

out corresponding to the partial transpose of ρout with respect
to one of the qubits. Thus, it is seen that the negativity
corresponds to the Peres-Horodecki separability condition
based on the partial transpose [45,46]. The negativity [or
more precisely, the logarithmic negativity, log2(N + 1)] has
an operational interpretation as the entanglement cost under
operations preserving the positivity of partial transpose (PPT)
[47,48]. It was also shown that the number of entangled degrees
of freedom of two subsystems can be estimated from the
negativity [49]. Thus, in analogy to these interpretations, the
NP can be also referred to as the entanglement potential for
the estimation of entangled dimensions or the potential for the
PPT entanglement cost.

We find that the NP for an arbitrary single-qubit state ρ(p,x)
can be given by the following formula:

NP[ρ(p,x)] = 1
3 [2Re( 3

√
2
√

a1 + 2a2) + p − 2], (14)

where

a1 = a2
2 − 2[5(p − 1)p + 6|x|2 + 2]3,

a2 = 14p3 − 21p2 + 15p + 9(p − 2)|x|2 − 4. (15)

This solution was found by solving the following equation for
the negativity [50]:

48 det ρ� + 3N4 + 6N3 − 6N2(	2 − 1)

−4N (3	2 − 2	3 − 1) = 0, (16)

which is given in terms of the measurable and invariant mo-
ments 	n = Tr[(ρ�)n]. The negativity is given by a much more
complicated formula than those for any other nonclassicality
measures studied here. Surprisingly, a direct calculation of the
eigenvalues of ρ�

out can result in an even more complicated
formula. Of course, Eq. (14) can be considerably simplified in
special cases. For example, the NP for ρ ′ = ρ(p = 1/8,x =
1/4) reads

NP(ρ ′) = 1
4

√
26 cos

{
1
3

[
π − arctg

(
1

66

√
38

)]} − 5
8 . (17)

The NP for other special states, which are important in our
comparisons, are analyzed in Sec. III.

2. Concurrence potential

In analogy to the NP, the concurrence potential (CP) of
a given single-qubit state ρ can be given in terms of the
concurrence C of the two-qubit output state ρout, viz.,

CP(ρ) ≡ C(ρout). (18)

The concurrence for a general two-qubit system is defined as
[51]

C(ρout) = max

⎧⎨
⎩0,2 max

j
λj −

∑
j

λj

⎫⎬
⎭ , (19)

where {λ2
j } = eig[ρout(σ2 ⊗ σ2)ρ∗

out(σ2 ⊗ σ2)], and σ2 is the
Pauli operator. This measure is monotonically related to the
entanglement of formation EF as follows [51]:

EF = h
(

1
2 [1 + √

1 − C2]
)
, (20)

which is given via the binary entropy h(x) = −x log2 x −
(1 − x) log2(1 − x). Thus the CP can also be referred to as
the potential for the entanglement of formation. A direct
calculation of the CP of ρ(p,x) leads us to a particularly simple
formula,

CP[ρ(p,x)] = 1 − 〈00|ρout|00〉 = ρ11 = p, (21)

for p ∈ [0,1] and |x| ∈ [0,
√

p(1 − p)].

C. Nonclassical distance

Here we calculate the nonclassical distance D, which is the
Hillery measure of nonclassicality (see, for a review, Ref. [5]
and references therein) for a specifically chosen set of classical
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states. We also show that this distance is equivalent to the CP
for single-qubit states.

The nonclassical distance D of a state ρ can be defined as
the distance of ρ to the nearest state from the set of all classical
states C as [15,18]

D(ρ) = 1

2
min
σ∈C

D2
B(ρ,σ ). (22)

In this paper, and contrary to the original Refs. [15,52], we
assume the distance to be the Bures metric DB(ρ,σ ) [53], or
equivalently, the Helstrom metric [54], which is simply related
to the fidelity F (ρ,σ ) as follows:

D2
B(ρ,σ ) = 2[1 −

√
F (ρ,σ )] . (23)

The fidelity is defined as [55]

F (ρ,σ ) = (Tr
√√

σρ
√

σ )2, (24)

which can also be interpreted as a transition probability [56]
or a quantum generalization of the Fisher information metric.
Several methods for measuring or estimating the fidelity are
known (see Ref. [57] and references therein). The fidelity for
single-qubit states simplifies to

F (ρ,σ ) = Tr(ρσ ) +
√

(1 − Trρ2)(1 − Trσ 2). (25)

We mention that the Bures distance can be applied in
quantifying not solely nonclassicality [18] but has also found
applications as indicators or measures of, e.g., state distin-
guishability [58], quantum entanglement [59,60], quantum
criticality [61], and light polarization [62].

It should be stressed that we look for the classical (or,
least nonclassical) states, belonging to the Hilbert space of an
investigated finite-dimensional system. Here we analyze the
Hilbert space of a single qubit, defined as a superposition of
the vacuum and single-photon Fock state. In this case the only
classical state is the vacuum. Thus, we set σ = |0〉〈0|, then
F (ρ,|0〉) = ρ00 = 1 − p. Thus, it is seen that such defined
nonclassical distance is exactly equal to the CP,

D[ρ(p,x)] = CP[ρ(p,x)] = p, (26)

for any values of p ∈ [0,1] and |x| ∈ [0,
√

p(1 − p)]. This
correspondence provides another quantum information inter-
pretation of the nonclassical distance.

We emphasize again that a nonclassical distance can be
defined differently, both by choosing another distance measure
and by extending the class C of classical states, for which
the minimization is performed. For example, in the original
papers of Hillery [15,52], the trace norm was used as a
distance measure,while Dodonov et al. [16,17,20] applied
the Hilbert-Schmidt distance. Moreover, the Kullback-Leibler
distance [63], which is also known as information divergence,
information gain, or relative entropy, can also be applied for
quantifying nonclassicality, in analogy to the entanglement
measures based on the relative entropy of entanglement
[59,64–68].

TABLE I. Examples of states satisfying all four special cases
of the inequalities given in Eq. (27), where ρ0 = ρ( 1

2 , 1
4 ), ρP(p) ≡

ρ[p,
√

p(1 − p)] is a pure state, and ρM(p) ≡ ρ(p,0) is a completely
mixed state.

Case Nonclassicality measures Examples of states ρ

1 τ (ρ) = D(ρ) = NP(ρ) |0〉,|1〉
2 τ (ρ) > D(ρ) > NP(ρ) ρ0

3 τ (ρ) > D(ρ) = NP(ρ) ρP(p) for p ∈ (0,1)
4 τ (ρ) = D(ρ) > NP(ρ) ρM(p) for p ∈ (0,1)

III. COMPARISON OF NONCLASSICALITY MEASURES

In general, for any single-qubit state ρ = ρ(p,x), the
following inequalities hold:

τ (ρ) � D(ρ) = CP(ρ) � NP(ρ). (27)

The left-hand inequality in Eq. (27) can be deduced by
comparing explicitly the general expression for τ and D, given
by Eqs. (8) and (26), respectively. The right-hand inequality
in Eq. (27) is equivalent to the well-known inequality C(ρ ′) �
N (ρ ′) for the concurrence and negativity for arbitrary two-
qubit states ρ ′. Thus, in particular, for the states ρout generated
by the BS from a single-qubit state ρ and the vacuum, Table I
lists all four special cases of these inequalities, together with
examples of states satisfying these cases.

In the following we analyze all the boundary states shown
in Figs. 1 and 2, and discuss the relativity of nonclassical
measures (see Tables II and III, and Fig. 3).

A. Boundary states

Figure 1 shows the nonclassicality regions for arbitrary
single-qubit states. The points [X(ρ),Y (ρ)] in these regions
are obtained for the generated 105 states ρ by performing a
Monte Carlo simulation. Here X and Y correspond to chosen
nonclassicality measures. Thus, by analyzing these graphs in
Fig. 1, one can say that some states are the most or least
nonclassical in terms of a measure X for a given value of a
measure Y .

Here we analyze the special cases of the general single-
qubit state ρ, which correspond to the single-qubit boundary
states shown in Figs. 1–3. We calculate the above-defined
nonclassicality measures for these states. In the Appendix, we
present the proofs that they are indeed the boundary states.

1. Pure states

Equation (1) for x = √
p(1 − p) reduces to a pure state

ρP = |ψp〉〈ψp|, where

|ψp〉 =
√

1 − p|0〉 + √
p|1〉. (28)

The BS output state for the input states |ψp〉 and |0〉 is simply
given by

|ψout〉 =
√

1 − p|00〉 +
√

p

2
(|10〉 − i|01〉). (29)

By recalling that

C(|ψout〉) = N (|ψout〉) = 2|c00c11 − c01c10| (30)
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FIG. 1. (Color online) Allowed values of the nonclassicality measures for single-qubit states: (a) nonclassical distance D versus nonclassical
depth τ , (b) negativity potential NP versus τ , and (c) D versus NP. The points correspond to a Monte Carlo simulation of 105 states ρ. Each
point is plotted for [D(ρ),τ (ρ)] in (a) and analogously for panels (b) and (c). The vertical broken line in panel (b) is plotted at τ0 ≈ 0.315 4.
The boundaries are given by pure states ρP [vertical red lines in the far right of (a) and (b), and the red diagonal line in (c)], completely mixed
states ρM (solid red upper curves), as well as partially mixed states ρ+ (bottom broken lines) and ρopt [corresponding to blue points right above
the curve for ρM in (b)]. In (b), it is barely visible that ρM is not the upper bound for τ < τ0. Thus, this region is magnified in Fig. 2(a). Note
that, in a mathematical sense, there are no states corresponding exactly to the broken lines at the bottom of (a) and (b) for 0 < τ � 1 and
D = NP = 0. However, one can find states being arbitrarily close to these lines.

for a general two-qubit pure state |ψ〉 = ∑
m,n=0,1 cmn|mn〉,

where cmn are the normalized complex amplitudes, one can
obtain the nonclassical measures as follows:

NP(|ψp〉) = D(|ψp〉) = ρ11 = p. (31)

In contrast to these equal measures, the nonclassical depth for
a pure state reads

τ (|ψp〉) = 1 − δp,0, (32)

in terms the Kronecker delta δp,0. In the special cases of
the vacuum and single-photon states, this formula reduces
to the known results [24]. It is clearly seen that the depth
τ is discontinuous, as τ [|ψ(p = 1)〉] ≡ τ (|0〉) = 0, while
τ [|ψ(p > 0)〉] = 1, even for p very close to zero. Note that
also the entanglement potential based on the Schmidt number
is discontinuous.

Pure states are the boundary states in the three panels of
Fig. 1 for the whole range [0,1] of the ordinate. In particular,
they correspond to the lower bound of the nonclassical distance
versus NP. Note that we are analyzing the potential based on the
negativity rather than the logarithmic negativity, as suggested
and applied in Ref. [38]. Thus the lower bound in Fig. 1(c) is
given by a straight line, which would not be the case otherwise.

2. Completely mixed states

In another special case, Eq. (1) for x = 0 describes a
completely mixed state,

ρM = (1 − p)|0〉〈0| + p|1〉〈1|, (33)

i.e., a statistical mixture of the vacuum |0〉 and single-photon
state |1〉. Thus we have

τ (ρM) = D(ρM) = p. (34)

The NP for any mixed state ρM(p) can be found from the
general formula given in Eq. (14), but here we apply a more
explicit and intuitive derivation. Specifically, if the input qubit

state is completely mixed, then one finds that the BS output
state reads

ρout(p,0) = UBS[ρM(p) ⊗ |0〉〈0|]U †
BS

= p|ψ̄−〉〈ψ̄−| + (1 − p)|00〉〈00|, (35)

where |ψ̄−〉 = (|10〉 − i|01〉)/√2. This is the statistical mix-
ture of a maximally entangled state and a separable state
orthogonal to it, which is often referred to as the Horodecki
state [8]. Such mixtures are often studied in the comparisons
of various entanglement and nonlocality measures [65,67–70].
Thus, the NP for a mixed ρM(p) reads as

NP(ρM) = N [ρout(p,0)] =
√

(1 − p)2 + p2 − (1 − p). (36)

Completely mixed states are the boundary states shown in the
three panels of Fig. 1. However, it is worth noting that they are
not extremal for the whole range of τ in Fig. 1(b), which is
shown in detail in Fig. 2(a) and discussed in the next paragraph.

3. Partially mixed optimal states

A preliminary analysis of Fig. 1(b) can lead to a conjecture
that completely mixed states ρM correspond to the upper
boundary of the NP for an arbitrary value of the depth
τ ∈ [0,1]. However, a closer scrutiny of Fig. 2(a), which is
the inset of Fig. 1(b), indicates that ρM is the extremal state
only for τ � τ0. This critical value is τ0 ≈ 0.315 4, as marked
by the vertical broken lines in Figs. 1(b) and 2. By contrast to
this, there are other states exhibiting higher nonclassicality if
τ < τ0. Thus, let us define the following partially mixed state

ρopt(τ ) ≡ ρ[popt(τ ),xopt(τ )], (37)

where x2
opt(τ ) = popt(τ ) − p2

opt(τ )/τ , which corresponds to the
maximum NP for a given τ [as shown in Fig. 2(a)], i.e.,

NP(ρopt(τ )) ≡ max
p

NP[ρ(p,
√

p − p2τ−1)]. (38)
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FIG. 2. (Color online) (a) The inset of Fig. 1(b) showing, in
greater detail, the boundaries for the NP versus nonclassical depth
τ . These boundaries are reached by the partially mixed optimal
states ρopt for τ < τ0 and completely mixed states ρM for τ � τ0. For
clarity, we do not plot here points corresponding to our Monte Carlo
simulation shown in Fig. 1. (b) Optimal parameters popt = 〈1|ρopt|1〉
and xopt = |〈0|ρopt|1〉| as a function of τ . These parameters are
discontinuous at τ = τ0, but, for clarity, we have plotted the red
and green vertical connecting lines at this point.

The optimal matrix elements popt and xopt are shown as a
function of τ in Fig. 2(b). These elements can easily be
obtained by numerically maximizing Eq. (14), with |x|2 =
p − p2/τ , for a given τ . It is seen that popt = τ and xopt = 0 for
τ � τ0; thus ρopt becomes ρM in this range of τ . Unfortunately,
we have not found a compact-form analytical expression for
ρopt for τ < τ0.

4. Partially mixed states with nonzero τ for vanishing D and NP

We also analyze the state ρ(p,x) defined in the right-hand
limit p → 0+ with properly chosen x as follows:

ρ+(τ0) = lim
p→0+

ρ(p,x0), (39)

TABLE II. Definition of states ρn, also shown in Fig. 3, and
the analytical values of their four nonclassicality measures. These
states are chosen for discussion of the relativity of the nonclassicality
ordering of general states.

State ρn τ (ρ) D(ρ) = CP(ρ) NP(ρ)

ρ0 = ρ( 1
2 , 1

4 ) 4
7

1
2 cos( 2

9 π ) − 1
2

ρ1 = |1〉〈1| 1 1 1

ρ2 = ρM[ 1
2 (

√
6 − 1)], 1

2 (
√

6 − 1) 1
2 (

√
6 − 1) 1

2

ρ3 = ρM( 1
2 ) 1

2
1
2

1
2 (

√
2 − 1)

ρ4 = ρP( 1
2 ) 1 1

2
1
2

ρ5 = ρM( 4
5 ) 4

5
4
5

1
5 (

√
17 − 1)

ρ6 = ρM( 3
5 ) 3

5
3
5

1
5 (

√
13 − 2)

where

x0 =
√(

1 + p − τ−1
0 p

)
p(1 − p), (40)

assuming τ0 ∈ (0,1]. Note that pure states with τ0 = 1 can
also be considered here. To be more explicit, let us analyze the
special case of ρ(p,x0), when τ0 = 1/2 and

p = D[ρ(p,x0)] = 10−n ⇒ τ [ρ(p,x0)] = 1

2 − 10−n
, (41)

for n = 0,1,2, . . . < ∞. It is seen that the nonclassical depth
is approaching the chosen nonzero value τ0 = 1/2 at the same
rate as the nonclassical distance is vanishing. In general, we
can write

τ [ρ+(τ0)] ≡ lim
p→0+

τ [ρ(p,x0)] = τ0,

NP[ρ+(τ0)] ≡ lim
p→0+

NP[ρ(p,x0)] = 0, (42)

D[ρ+(τ0)] ≡ lim
p→0+

D[ρ(p,x0)] = 0.

Thus, this state approaches the lower bound of the distance D

versus depth τ [shown as the bottom broken line in Fig. 1(a)]

TABLE III. Inequalities and examples of pairs of states (ρn,ρm)
satisfying them. The states ρn (with n = 1, . . . ,6) are defined in
Table II and are plotted in Fig. 3. Some inequalities imply same
orderings, and others involve different orderings of single-qubit states
by the nonclassical measures: depth τ , distance D, and negativity
potential NP.

1 τ (ρ1) > τ (ρ2) and D(ρ1) > D(ρ2)
2 τ (ρ1) = τ (ρ4) and D(ρ1) > D(ρ4)
3 τ (ρ4) > τ (ρ3) and D(ρ4) = D(ρ3)
4 τ (ρ2) < τ (ρ4) and D(ρ2) > D(ρ4)

5 τ (ρ1) > τ (ρ2) and NP(ρ1) > NP(ρ2)
6 τ (ρ1) = τ (ρ4) and NP(ρ1) > NP(ρ4)
7 τ (ρ4) > τ (ρ2) and NP(ρ4) = NP(ρ2)
8 τ (ρ5) < τ (ρ4) and NP(ρ5) > NP(ρ4)

9 NP(ρ1) > NP(ρ2) and D(ρ1) > D(ρ2)
10 NP(ρ2) = NP(ρ4) and D(ρ2) > D(ρ4)
11 NP(ρ4) > NP(ρ3) and D(ρ4) = D(ρ3)

12 NP(ρ6) < NP(ρ4) and D(ρ6) > D(ρ4)

042309-7



ADAM MIRANOWICZ et al. PHYSICAL REVIEW A 91, 042309 (2015)

FIG. 3. (Color online) Particular single-qubit states ρn defined explicitly in Table II and plotted in analogy to Fig. 1. As in Fig. 1, here the
boundaries are given by pure states ρP, completely mixed states ρM, together with the partially mixed states ρ+ and ρopt. There are no states
corresponding exactly to the broken lines and empty circles. Any inequality listed in Table III can be satisfied by properly choosing pairs of
these states. This analysis demonstrates the relativity of nonclassicality measures.

and the NP versus depth τ [see bottom of Fig. 1(b)]. Because
of the discontinuity of the depth τ , these lower bounds in
Figs. 1(a) and 1(b) are not exactly reached, as indicated by the
broken lines. This is also reflected in the definition of ρ+ given
by the right-hand limit in Eq. (39). Thus, strictly speaking
NP(ρ) = 0 (or, equivalently, D(ρ) = 0) for a given state ρ if
and only if τ (ρ) = 0. This is because all these quantities are
measures (rather than only witnesses) of nonclassicality, and
thus they give the necessary and sufficient conditions for the
nonclassicality of an arbitrary single-qubit state ρ.

B. Mixtures of states can be more nonclassical
than their superpositions

The analysis of Fig. 1 can lead to the conclusion that
the completely mixed states ρM are the most nonclassical
single-qubit states with respect to (i) the distance D for a
given value of the depth τ ∈ [0,1], (ii) D for a fixed value
of the NP ∈ [0,1], and (iii) the NP for a given value of
τ ∈ [τ0,1]. Conversely, pure states ρP are the most nonclassical
single-qubit states regarding τ versus D, τ versus NP, and NP
versus D.

This interpretation of the maximum nonclassicality of
mixed states should not be confused with the following
conclusion that dephasing could increase the nonclassicality.
Such dephasing results in decreasing the off-diagonal term x,
while keeping the diagonal terms unchanged. Specifically, one
can observe that

τ [ρP(p)] � τ [ρ(p,x)] � τ [ρM(p)],

NP[ρP(p)] � NP[ρ(p,x)] � NP[ρM(p)], (43)

D[ρP(p)] = D[ρ(p,x)] = D[ρM(p)],

for any x ∈ [0,1]. It is seen that by decreasing x, also
τ [ρ(p,x)] and NP[ρ(p,x)] decrease, while only D[ρ(p,x)]
remains unchanged. Thus, in this interpretation based on
the inequalities in Eq. (43), a mixed state ρM(p) is not
more nonclassical than a pure state ρP(p) assuming the same
element p.

Our reverse conclusion about mixed states, which are more
nonclassical than superposition states (including pure states),

refers to another comparison. To show this more explicitly,
we express ρ(p,x) in terms of some nonclassicality measures
instead of the parameters p,x. In particular, by inverting Eq. (8)
for τ = τ [ρ(p,x)] and by applying D = D[ρ(p,x)] = p, one
can express a general single-qubit state (assuming real x) in
terms of these nonclassicality measures, i.e.,

ρ(p,x) ≡ ρ ′(D,τ ) =
[

1 − D
√

D − D2τ−1√
D − D2τ−1 D

]
,

(44)
where τ ∈ [0,1] and D ∈ [0,τ ]. Analogously, we can express
ρ(p,x) in terms of other pairs of nonclassicality measures,
e.g.,

ρ(p,x) ≡ ρ ′′(N,τ ) = ρ ′′′(N,D), (45)

where N = NP[ρ(p,x)], although the expressions will be
much more complicated here. Analogously, we introduce the
symbols ρ ′

M, ρ ′′
M, and ρ ′′′

M, denoting the mixed state ρM, which
is expressed via the nonclassical measures analogously to ρ ′,
ρ ′′, and ρ ′′′, respectively. Note that the assumption of real x

follows from the property that the nonclassical measures τ

and NP depend solely on the absolute value of x, while D is
completely independent of x.

Thus, for a given value of the nonclassical depth, say τ1 ∈
[0,1], one can observe that

D[ρ ′
M(D1,τ1)] � D[ρ ′(D′,τ1)], (46)

where D′ ∈ [0,τ1] and D1 = τ1. For a given value of the depth
τ1 ∈ [τ0,1], where τ0 = 0.315 4, one finds that

NP[ρ ′′
M(N1,τ1)] � NP[ρ ′′(N ′′,τ1)], (47)

where N ′′ ∈ [N0,N1] and Ni =
√

(1 − τi)2 + τ 2
i − (1 − τi) for

i = 0,1. Moreover, for a given value of the NP, say N1 ∈ [0,1],
one observes that

D[ρ ′′′
M(D1,N1)] � D[ρ ′′′(D′′′,N1)], (48)

where D′′′ ∈ [N1,1] and here D1 = √
2N1(1 + N1) − N1. All

these three inequalities show that completely mixed states can
be considered as the most nonclassical single-qubit states for
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a fixed value of a proper nonclassical measure, as shown in the
corresponding panels of Fig. 1.

C. Relativity of nonclassicality measures

The nonclassicality measures can give different predictions,
not only concerning the absolute values, but more importantly,
regarding the ordering of states. In other words, by comparing
two states we cannot usually judge which of them is more
nonclassical.

It is somehow surprising that any pure state (different from
the vacuum) has the same maximum nonclassicality with
respect to the nonclassical depth, which is not the case for
the other discussed measures.

A natural conjecture concerning basic properties of good
nonclassicality measures can be formulated as follows: By
comparing the values of such measures for a pair of arbitrary
states ρ ′ and ρ ′′, one can order them uniquely. Specifically,
they should have the same degree of nonclassicality or one
of them should be less nonclassical than the other according
to all good nonclassicality measures. For example, if τ (ρ ′) <

τ (ρ ′′), then the same inequality should also hold for other
measures, including the NP and D. However, one can falsify
this conjecture by recalling a deeper relation between some
nonclassicality and entanglement measures and by referring
to the works where the relativity of entanglement measures
has already been demonstrated [65,69,71–73]. Here detailed
comparisons, shown in Table III and Fig. 3, give evidence for
this relativity even for nonclassicality measures, which are not
directly related to entanglement.

IV. CONCLUSIONS

Various measures of the amount of nonclassicality have
been proposed with respect to the definition of nonclassicality
based on the nonpositivity of the P function. Here we have
applied the following measures to quantify the nonclassicality
of single-qubit states: the Lee nonclassical depth τ , the Hillery
nonclassicality distance D, and the entanglement potentials
NP and CP.

We have found analytical expressions for these measures for
the simplest nontrivial example of single-qubit photon-number
states. These formulas clearly show the relativity of ordering
states with nonclassicality measures, as summarized in Tables I
and III. Only the CP and nonclassical distance were found to
be equivalent.

Further, we have found maximally and minimally nonclas-
sical states by comparing any two of these measures. Surpris-
ingly, statistical mixtures of states can be more nonclassical
than their superpositions. Indeed, mixed states are the most
nonclassical if one considers the nonclassicality distance for a
given value of either the nonclassical depth or of the NP in the
whole range [0,1] of the abscissa, as well as the NP versus the
nonclassical depth τ such that τ � τ0, where τ0 = 0.315 4 . . .,
as shown in Fig. 1. However, there are partially mixed states
which have the NP for a given value of τ ∈ [0,τ0) slightly
larger than for completely mixed states, as shown in Figs. 1(b)
and 2(a).

Both of our results, concerning (i) the relativity of ordering
states with nonclassicality measures and (ii) the nonclassicality

of mixed states exceeding that of superposition states, are
a consequence of the nonequivalence of some of the most
popular measures of nonclassicality, including the nonclassical
depth, nonclassical distance, and NP. There are also equivalent
measures, including the nonclassical distance, CP, and the po-
tential for the entanglement of formation, as given by Eq. (20).
Clearly, the above-mentioned counterintuitive properties do
not appear for such equivalent measures.

We found that the nonclassical distance D, as defined for the
specific choice of the reference classical states, corresponds to
the CP for arbitrary single-qubit states. This result shows an
operational interpretation of this nonclassical distance as the
potential for the entanglement of formation.

The present analysis can be extended to similar comparative
studies of other quantitative measures of nonclassicality of
single-, two-, and multimode systems. In particular, one
can focus on the comparative approaches to quantify the
nonclassicality of correlations as listed in, e.g., Ref. [74].

We believe that our study could further stimulate interest
in the nonclassicality measures applied to finite-dimensional
systems in finding their general properties, including their
operational interpretations.
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APPENDIX: PROOFS FOR BOUNDARY STATES

Here we prove that completely mixed states ρM, pure states
ρP, and partially mixed states, ρopt and ρ+, are the boundary
(or extremal) states shown in Figs. 1 and 2. Specifically:

(1) The upper bound in Fig. 1(a): As τ (ρ) � D(ρ) holds
for any single-qubit ρ as given in Eq. (27), then it is seen that
this bound is reached by the completely mixed states ρM, for
which it holds τ (ρM) = D(ρM).

(2) The upper bound in Figs. 1(b) and 2(a) was obtained
numerically by maximizing a single-variable function of the
NP, given in Eq. (14) with |x|2 = p − p2/τ , for a given
τ . In particular, the completely mixed states ρM correspond
to this upper bound for τ > τ0. Indeed, ρM satisfy the
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Karush-Kuhn-Tucker (KKT) conditions, as can be shown
analogously to the method applied for the two-qubit measures
of entanglement and Bell nonlocality [67,68,70]. We note
that these KKT conditions correspond to a refined method
of Lagrange multipliers [75].

(3) The upper and lower bounds in Fig. 1(c): The area in
the relation between the nonclassical distance (or, equivalently,
CP) and NP of arbitrary single-qubit states is the same as the
area in the relation between the concurrence and negativity
of arbitrary two-qubit states. As shown in Ref. [76], the two-

qubit pure states and the Horodecki states are the extremal
states for the concurrence versus negativity, but these states
can be generated from the pure and mixed single-qubit states,
respectively, as discussed in Sec. III A. Thus, the pure and
mixed single-qubit states are the extremal states for the relation
between the nonclassical distance and NP.

(4) The lower and right-hand bounds in Figs. 1(a) and 1(b)
are implied from the property that all these measures have their
values in the range [0,1].

This concludes our proofs of the boundary states.
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