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Besides the conventional transverse couplings between superconducting qubits (SQs) and electromagnetic
fields, there are additional longitudinal couplings when the inversion symmetry of the potential energies of the
SQs is broken. We study nonclassical-state generation in a SQ which is driven by a classical field and is coupled
to a single-mode microwave field. We find that the classical field can induce transitions between two energy levels
of the SQs, which either generate or annihilate, in a controllable way, different photon numbers of the cavity field.
The effective Hamiltonians of these classical-field-assisted multiphoton processes of the single-mode cavity field
are very similar to those for cold ions, confined to a coaxial rf-ion trap and driven by a classical field. We show
that arbitrary superpositions of Fock states can be more efficiently generated using these controllable multiphoton
transitions, in contrast to the single-photon resonant transition when there is only a SQ-field transverse coupling.
The experimental feasibility for different SQs is also discussed.
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I. INTRODUCTION

Superconducting qubit (SQ) circuits [1–8] possess discrete
energy levels and can behave as artificial “atoms.” In contrast to
natural atoms, which have a well-defined inversion symmetry
of the potential energy, these artificial atoms can be controlled
by externally applied parameters (e.g., voltage or magnetic
fluxes) [1–5], and thus, the potential energies for these qubits
can be tuned or changed from a well-defined inversion
symmetry to a broken one. Artificial atoms with broken
symmetry have some new features which do not exist in natural
atoms. For example, phase qubits do not have an optimal
point [9,10], so for these the inversion symmetry is always
broken.

When the inversion symmetry of these artificial atoms is
broken, then the selection rules do not apply [11–13], and
microwave-induced transitions between any two energy levels
in multilevel SQ circuits are possible. Thus, multiphoton and
single-photon processes (or many different photon processes)
can coexist for such artificial multilevel systems [11,12,14].
Two-level natural atoms have only a transverse coupling
between these two levels and electromagnetic fields. However,
it has been shown [12] that there are both transverse and
longitudinal couplings between SQs and applied magnetic
fields when the inversion symmetry of the potential energy
of the SQ is broken. Therefore, the Jaynes-Cummings model
is not suitable to describe the SQ-field interaction when the
inversion symmetry is broken.

Recently, studies of SQ circuits have achieved significant
progress. The interaction between SQ circuits and the elec-
tromagnetic field makes it possible to conduct experiments of
quantum optics and atomic physics on a chip. For instance,
dressed SQ states (e.g., in Refs. [15,16]) have been experi-
mentally demonstrated [17,18]. Electromagnetically induced
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transparency (e.g., Refs. [19–25]) in superconducting systems
has also been theoretically studied. Moreover, Autler-Townes
splitting [25–31] and coherent population trapping [32] have
been experimentally demonstrated in different types of SQs
with three energy levels. Experiments have shown that
SQs can be cooled (e.g., Refs. [33–36]) using techniques
similar to those for cooling atoms. Moreover, sideband
excitations [37,38] have been observed experimentally [39,40]
using superconducting circuits. Thus, SQs can be manipulated
as trapped ions (e.g., in Refs. [37,41,42]), but compared to
trapped ions, the “vibration mode” for SQs is provided by an
LC circuit or a cavity field.

In trapped ions [37,41,42], multiphonon transitions can be
realized with a laser field. Multiphoton processes in SQs with
driving fields [43] have been experimentally observed (e.g.,
in Refs. [44–49]) when the inversion symmetry is broken.
Thus, here we will show how nonclassical photon states can
be generated, via multiphoton transitions of a single-mode
electromagnetic field in a driven SQ, when the longitudinal
coupling field is introduced. We will derive an effective
Hamiltonian which is similar to the one for trapped ions.
The single-mode quantized field can be provided by either
a transmission line resonator (e.g., Refs. [50–53]) or an LC

circuit (e.g., Refs. [36,54,55]), where the SQ and the single-
mode field have both transverse and longitudinal couplings. In
contrast to the generation of nonclassical photon states using
a SQ inside a microcavity [56–59] with only a single-photon
transition, we will show that the Hamiltonian derived here can
be used to more efficiently produce nonclassical photon states
of the microwave cavity field when longitudinal-coupling-
induced multiphoton transitions are employed.

Our paper is organized as follows. In Sec. II, we derive an
effective Hamiltonian which is similar to the one for trapped
ions. We also describe the analogies and differences between
these two types of Hamiltonians. In Sec. III, we show how
to engineer nonclassical photon states using the multiphoton
coupling between the driven SQ and the quantized field. In
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Sec. IV, we discuss the relation between the initial state and
vacuum state, and the relation between the target state and
displaced number state. In Sec. V, we numerically analyze
the effect of the environment and imperfect parameters on
the target states. In Sec. VI, we discuss possible experimental
implementations of these proposals for different types of SQs.
Finally, we summarize our results.

II. MULTIPHOTON PROCESS INDUCED BY A
LONGITUDINAL COUPLING

A. Theoretical model

As schematically shown in Fig. 1, the shape of the potential
energy for some kinds of SQs (e.g., charge and flux qubits)
can be adjusted (from symmetric to asymmetric and vice versa)
by an external parameter, and thus, the two energy levels of
SQs can also be controlled. For charge and flux qubits, the
external parameters are the voltage and the magnetic flux,
respectively. However the potential energy of the phase qubits
is always broken, no matter how the external field is changed.
The generic Hamiltonians for different types of SQs can be
written as

Hq = �

2
ωzσz + �

2
ωxσx. (1)

As in experiments, we assume that both parameters ωz and
ωx can be controlled by external parameters. The parameter
ωz = 0 corresponds to the optimal point and well-defined
inversion symmetry of the potential energy of the SQs.
However, both nonzero parameters ωz and ωx correspond to a
broken inversion symmetry of the potential energy of the SQs.

External parameter

E1

Δ

E0

FIG. 1. (Color online) Schematic diagram showing how two en-
ergy levels change with the external parameter for superconducting
qubits. Here E0 and E1 are the eigenvalues of the ground and excited
states, respectively. These vary with external parameters. For charge
and flux qubits, the external parameters are the electric voltage and
magnetic flux, respectively. At the degenerate (or optimal) point,
where the external parameter takes a particular value, the energy
splitting reaches a minimum, � = �ωx , where the double potential
well is symmetric. In this case, there is only a SQ-field transverse
coupling. However, when the external parameter deviates from this
point, the double potential well is asymmetric, and there are both
transverse and longitudinal couplings between the SQs and the
applied electromagnetic field.

Below, we first provide a general discussion based on the qubit
Hamiltonian in Eq. (1), and then we specify our discussions
to different types of SQs. The discussion of their experimental
feasibilities will be presented after the general theory.

Let us now assume that a SQ is coupled to a single-mode
cavity field and is driven by a classical field, where the
Hamiltonian of the driven superconducting qubits is

H = Hq + �ωa†a + �gσz(a + a†) + ��dσz cos(ωdt + φd ).
(2)

Here a† (a) is the creation (annihilation) operator of a single-
mode cavity field with frequency ω. The parameter �d is the
coupling constant between the SQ and the classical driving
field with frequency ωd . The parameter g is the coupling
constant between the SQ and the single-mode cavity field.
The parameter φd is the initial phase of the classical driving
field.

Equation (2) shows that there are transverse and longitudi-
nal couplings between the SQs and the electromagnetic field.
This can become clearer if we rewrite the Hamiltonian in
Eq. (2) in the qubit basis, that is,

H =�

2
ωqσ̃z + �ωa†a + �gzσ̃z(a + a†) + �gxσ̃x(a + a†)

+ ��dzσ̃z cos(ωdt + φd ) + ��dxσ̃x cos(ωdt + φd ),
(3)

with four parameters gz = g cos θ , gx = −g sin θ , �dz =
�d cos θ , and �dx = −�d sin θ . Here the parameter θ is
given by θ = arctan(ωx/ωz), and the qubit eigenfrequency is
ωq = √

ω2
x + ω2

z .
The Hamiltonian in Eq. (3) shows that the qubit has both

transverse and longitudinal couplings to the cavity (driving)
fields with transverse gx (�x) and longitudinal gz (�z)
coupling strengths. When both ωz = 0 and �d = 0, Eq. (3)
is reduced to

H̃ = �

2
ωqσ̃z + �gσ̃x(a + a†), (4)

which has only the transverse coupling between the SQ
and the single-mode field. If we further make the rotating-
wave approximation, then Eq. (4) can be reduced to the
Jaynes-Cummings model, which has been extensively studied
in quantum optics [60]. That is, there is only a single-
photon transition process when the qubit is at the optimal
point. However, the transverse and the longitudinal couplings
between the SQ and the single-mode field coexist, when the
inversion symmetry of the potential energy is broken and ωz

is nonzero for the SQs. As shown below, this coexistence can
induce multiphoton transitions between energy levels of SQs
and can make it easy to prepare arbitrary nonclassical states of
the cavity field.

Below, we assume that both ωz and ωx are nonzero. We
also assume that the SQ and the quantized field satisfy the
large-detuning condition, that is,

ωq =
√

ω2
x + ω2

z � ω. (5)

In this case, the SQ and the quantized field are nearly decoupled
from each other when the classical driving field is not applied
to the SQs.
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B. Multiphoton processes and sideband excitations

Let us now study how multiphoton processes can be induced
via a longitudinal coupling by first applying a displacement
operator

D

(
η
σz

2

)
= exp

[
η
σz

2
(a† − a)

]
(6)

to Eq. (2) with

η = 2g/ω. (7)

Thus, η is the normalized qubit-cavity coupling. It is also
known as the Lamb-Dicke parameter. Hereafter, we denote the
picture after the transformation D(ησz/2) as the displacement
picture. In this case, we have an effective Hamiltonian

Heff = DHD† = �

2
ωzσz + �ωa†a + ��dσz cos(ωdt + φd )

+ �

2
ωx{σ+ exp[η(a† − a)] + H.c.}. (8)

From Eq. (8) with �d = 0, we find that if nω = ωz, then the
multiphoton processes, induced by the longitudinal coupling,
can occur between two energy levels formed by the eigenstates
of the operator σz. However, such a process is not well
controlled. Moreover, ωz is usually not perfectly equal to nω

for arbitrarily chosen n. These problems can be solved by
applying a classical driving field, in this case �d �= 0.

To understand how the classical field can help the cavity
field to realize multiphoton processes in a controllable way, let
us now apply another time-dependent unitary transformation

Ud (t) = exp

[
i

�
Hd (t)

]
(9)

to Eq. (8) with the Hamiltonian Hd defined as

Hd (t) = ��dσz

ωd

sin(ωdt + φd ), (10)

and then we can obtain another effective Hamiltonian

H
(d)
eff = UdHeffU

†
d − iUd

∂U
†
d

∂t
= �

2
ωzσz + �ωa†a

+ �ωx

2

∞∑
N=−∞

{JNσ+BN (t) + H.c.}, (11)

where the time-dependent expression BN (t) is given as

BN (t) = exp[η(a† − a) + iN (ωdt + φd )]. (12)

JN ≡ JN (xd ) is the N th Bessel function of the first kind, with
xd = 2�d/ωd and JN (xd ) = (−1)NJ−N (xd ), and η is similar
to the Lamb-Dicke parameter in trapped ions [41,42]. Via the
unitary

V0(t) = exp

[
i

�
H0t

]
, (13)

with

H0 = �

2
ωzσz + �ωa†a, (14)

we can further expand the Hamiltonian in Eq. (11), in the
interaction picture, into

Hint = �

2
ωx

∑
N,m,n

{
Jmn

N (t)σ+a†man + H.c.
}
, (15)

with

Jmn
N (t) = (−1)nJN

m!n!
ηm+n exp

[
−1

2
(η)2

]
× exp[iN (ωdt + φd ) + i(m − n)ωt + iωzt]. (16)

Equation (15) clearly shows that the couplings between the
SQs and the quantized cavity fields can be controlled via a
classical field when they are in the large-detuning regime.
Comparing the Hamiltonian in Eq. (15) with that for the
trapped ions [41,42], we find that the Hamiltonian in Eq. (15) is
very similar to that of the two-level ion, confined in a coaxial-
resonator-driven rf trap which provides a harmonic potential
along the axes of the trap. Therefore, in analogy to the case of
trapped ions, there are two controllable multiphoton processes
(called red- and blue-sideband excitations, respectively) and
one carrier process:

(i) When n > m, with n − m = k, and the transition
satisfies the resonant condition −Nωd = ωz − kω, with
N = −1,−2,−3, . . . , and k = 1, 2, 3, . . . , the driving fre-
quency −Nωd is red detuned from the qubit frequency ωz.
Thus, we call this multiphoton process the red process.

(ii) When n < m, with m − n = k, and the transition
satisfies the resonant condition −Nωd = ωz + kω, with
N = −1,−2,−3, . . . , and k = 1, 2, 3, . . . , the driving fre-
quency −Nωd is blue detuned from the qubit frequency ωz.
Therefore, we call this process the blue process.

(iii) When n = m and ωz = −Nωd (N = −1,−2, . . . ), the
driving field with −N photons can resonantly excite the qubit.
We call this transition the carrier process.

However, there are also differences between the Hamil-
tonian for trapped ions [41,42] and that in Eq. (15). These
differences are as follows:

(i) For a given frequency ωd of the driving field, there
is only one multiphoton-transition process in the system of
trapped ions to satisfy the resonant condition, but the SQs
can possess several different multiphoton processes, resulting
from the longitudinal coupling between the classical field
and the SQ. For instance, with the given frequencies ωd

and ω and for the couplings with the N th and N ′th Bessel
functions, two transitions with the red-sideband resonant
conditions, −Nωd = ωz − kω and −N ′ωd = ωz − k′ω, might
be satisfied. Once the condition (N ′ − N )/(k′ − k) = ω/ωd is
satisfied, these two resonant transitions can simultaneously
occur. Similarly, for the case of blue-sideband excitations, the
condition that two resonant transitions simultaneously occur
for the k and k′ photon processes is (N ′ − N )/(k − k′) =
ω/ωd . We can represent the transition type in the sign of k

and k′. Thus, if we want some terms with N ′ to be unresonant,
all we need to do is to let (N − N ′)/(k − k′) �= ω/ωd, i.e.,
ωz �= ω(N ′k − Nk′)/(N ′ − N ). One sufficient condition is
that ωz �= ωn/(N ′ − N ) (n = 0,±1,±2, . . . ).

(ii) The Lamb-Dicke parameter η for the trapped ions is
determined by the frequency of the vibration phonon, mass of
the ion, and the wave vector of the driving field. However, the
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TABLE I. Comparison of some parameters between the Hamiltonian in Eq. (15) and that of the trapped ions (e.g., in Ref. [42]). Here LD
refers to the Lamb-Dicke parameter.

Parameters Superconducting qubits (orders of magnitude) Trapped ions (orders of magnitude)

LD parameters 2g/ω ∼ 0.2–1.8 η ∼ 0.2–0.9
Carrier Rabi frequencies Renormalized JN ωx/2 Renormalized �

Driving field frequencies −Nωd (N = −1, −2, . . .) ωL

Lamb-Dicke parameter η here is determined by the frequency
ω of the single-mode quantized field and the coupling constant
g between the single-mode field and the SQ.

(iii) For multiphoton processes, the coupling between
trapped ions and the phonon is always on. However, such
processes can, in principle, be switched off at the zeros of the
Bessel functions of the first kind.

(iv) The term in Eq. (15) with N = 0 means that the driving
field has no help for the excitation of the SQ. Thus, this term is
neglected in the following discussions. However, the driving
field can always be used to excite the trapped ions when a
certain resonant condition is satisfied.

(v) For trapped ions, the ratio between the transition
frequency of the qubit and the frequency of the vibration
quanta is often about 109. Thus, the upper bound for the photon
number k in the multiphotn process is about k = 109. However,
in the SQ circuit, the frequency of the SQ can be several tens of
gigahertz, and the quantized cavity field can be in the regime
of gigahertz. Thus, the photon number k is not extremely large.
For example, if ωz/2π = 20 GHz and ω/2π = 2 GHz, then
the upper bound for k is 10 .

To compare similarities and differences, Table I lists the
main parameters of the Hamiltonian for trapped ions and those
of the SQ in Eq. (11). We should note that the Lamb-Dicke
parameter η can become very large in circuit QED systems
in the ultrastrong [61–63] and deep-strong [64–67] coupling
regimes. Our discussion below is in the ultrastrong-coupling
regime but can be straightforwardly extended to the deep-
strong-coupling regime.

C. Bessel functions and coupling strengths

In the process of generating nonclassical photon states, the
coupling strength Jmn

N (t) plays an important role. In our study
here, the Bessel functions of the first kind are crucial factors
in the coupling strengths. The possible values of the Bessel
functions depend on the ratio xd between the driving-field-SQ
Rabi frequency �d and the frequency ωd of the driving field.
For several recent experiments with superconducting quantum
circuits, the coupling constant �d is usually in the range from
several tens of megahertz to several hundreds of megahertz,
e.g., 10 MHz < �d/2π < 500 MHz. The frequency ωd/2π

of the driving field is in the range of gigahertz, e.g., 1 GHz �
ωd/2π � 20 GHz. Thus, the ratio xd is in the range

10−9 � xd � 1. (17)

For completeness and to allow a comparison between them,
several Bessel functions are plotted as a function of the param-
eter xd = 2�d/ωd in Fig. 2(a), which clearly shows J0(xd ) >

J1(xd ) > J2(xd ) > · · · > JN (xd ) in the range of 10−9 � xd �
1. Thus, if the classical driving field is chosen such that the

ratio xd is less than 0.5, then we only need to consider the terms
in the Hamiltonian in Eq. (15) with the Bessel functions J0(xd )
and |J1(xd )| = |J−1(xd )|, and other terms are negligibly small.
As discussed above, it should be noted that the frequency ωd

of the driving field has no effect on the coupling between the
SQ and the quantized field in terms of the Bessel function
J0(xd ). Thus, the driving-field-assisted transitions between the
SQ and the quantized field are determined by the terms with
the Bessel functions J±1(xd ) when other high-order Bessel
functions are neglected. Figure 2(a) also shows that the terms
with the Bessel function J±2(xd ) are also not negligible when
xd becomes larger, e.g., 0.5 � xd < 1.5. Thus, in the regime
0 � xd < 1.5, the terms with high-order Bessel functions (e.g.,
the ones with N � 3) can be neglected.

As an example, Figs. 2(b)–2(d) illustrate how |Jmn
1 (t)| are

affected by m, n, xd , and η. Since the maximal point occurs
at η = √

m + n, if other variables are fixed, we can find an
obvious shift of the maximal point along the η axis with
increasing m + n. We can also find that |Jmn

N (t)| have results
similar to those of |Jmn

1 (t)| versus m, n, xd , and η. By tuning xd

and η, we can change the Rabi frequencies and thus optimize
the generation time.

0 5

0

0.5

1

xd

J0

J1 J2 J3

J4

(a)

0
2

0

2

0

0.2

0.4

ηxd

|J
00 1

(t
)|

(b)

0
2

0

2

0

0.1

0.2

0.3

ηxd

|J
01 1

( t
)|

(c)

0
2

0

2

0

0.2

0.4

ηxd

|J
11 1

(t
)|

(d)

FIG. 2. (Color online) (a) Bessel functions JN (xd ) of the first
kind, with N = 0, 1, 2, 3, plotted as functions of the ratio xd .
(b) |J 00

1 (t)|, (c) |J 01
1 (t)|, and (d) |J 11

1 (t)| plotted as functions of η

and xd . Recall that xd = 2�d/ωd is the ratio between the driving
field-SQ Rabi frequency �d and the frequency ωd of the driving
field.
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III. GENERATING NONCLASSICAL PHOTON STATES
USING SUPERCONDUCTING QUANTUM CIRCUITS

In this section, we discuss how to generate nonclassical pho-
ton states via transverse and longitudinal couplings between
SQs and the single-mode cavity field, with the assistance of a
classical driving field.

A. Interaction Hamiltonian and time-evolution operators

Let us now analyze the interaction Hamiltonian and time
evolutions for the three different processes based on the
Hamiltonian in Eq. (15). We have three different interaction
Hamiltonians. In the interaction picture with the resonant
conditions of different photon processes, by assuming n =
m + k for the red-sideband excitation, m = n + k for the
blue-sideband excitation, and m = n for the carrier process.
We now discuss the general case for coupling constants with
any number of Bessel functions. For a red process with the
N th Bessel functions, we derive the Hamiltonian

Hr = J
(k)
N,r

∑
m

(−1)mη2mσ+a†mam+k

m!(m + k)!
+ H.c., (18)

with the resonant condition

−Nωd = ωz − kω.

For a blue process with the N th Bessel functions, we have the
Hamiltonian

Hb = J
(k)
N,b

∑
n

(−1)nη2nσ+a†(n+k)an

n!(n + k)!
+ H.c., (19)

with the resonant condition

−Nωd = ωz + kω.

The parameters J k
N,r and J k

N,b for the red process in Eq. (18)
and the blue one in Eq. (19) are given by

J
(k)
N,r = (−1)k

ωx

2
JN exp

[
−1

2

(
2g

ω

)2

+ iNφ
(β)
d

]
ηk, (20)

J
(k)
N,b = ωx

2
JN exp

[
−1

2

(
2g

ω

)2

+ iNφ
(β)
d

]
ηk, (21)

where the subscript β takes either r or b and we use φ
(β)
d

to characterize the initial phase of either the red or the blue
process. For the carrier process with the N th Bessel functions,
the interaction Hamiltonian is given by

Hc = J
(0)
N,c

∑
n

η2n (−1)nσ+a†nan

n!n!
+ H.c., (22)

with the resonant condition

−Nωd = ωz

and the coupling constant

J
(0)
N,c = 1

2ωxJN exp
[− 1

2η2 + iNφ
(c)
d

]
. (23)

We also note that all nonresonant terms were neglected when
Eqs. (18)–(22) were derived. The dynamical evolutions of the
systems corresponding to these three different processes can
be described via time-evolution operators. For example, for
the kth red-, blue-, and carrier-sideband excitations, we have,
respectively, the evolution operators

U
(k)
N,r (t) =

k−1∑
n=0

|n〉〈n|σ00 +
∞∑

n=0

cos
(∣∣�k,n

N,r

∣∣t)|n〉〈n|σ11 +
∞∑

n=0

e−iφ
k,n
N,r−iπ/2sin

(∣∣�k,n
N,r

∣∣t)|n + k〉〈n|σ−

+
∞∑

n=0

eiφ
k,n
N,r−iπ/2sin

(∣∣�k,n
N,r

∣∣t)|n〉〈n + k|σ+ +
∞∑

n=0

cos
(∣∣�k,n

N,r

∣∣t)|n + k〉〈n + k|σ00, (24)

U
(k)
N,b(t) =

k−1∑
n=0

|n〉〈n|σ11 +
∞∑

n=0

cos
(∣∣�k,n

N,b

∣∣t)|n〉〈n|σ00 +
∞∑

n=0

eiφ
k,n
N,b−iπ/2sin

(∣∣�k,n
N,b

∣∣t)|n + k〉〈n|σ+

+
∞∑

n=0

e−iφ
k,n
N,b−iπ/2sin

(∣∣�k,n
N,b

∣∣t)|n〉〈n + k|σ− +
∞∑

n=0

cos
(∣∣�k,n

N,b

∣∣t)|n + k〉〈n + k|σ11, (25)

and

U
(0)
N,c(t) =

∞∑
n=0

cos
(∣∣�0,n

N,c

∣∣t)|n〉〈n|σ11 +
∞∑

n=0

e−iφ
0,n
N,c−iπ/2sin

(∣∣�0,n
N,c

∣∣t)|n〉〈n|σ− +
∞∑

n=0

eiφ
0,n
N,c−iπ/2sin

(∣∣�0,n
N,c

∣∣t)|n〉〈n|σ+

+
∞∑

n=0

cos
(∣∣�0,n

N,c

∣∣t)|n〉〈n|σ00, (26)

where the complex Rabi frequency and its phase angle are defined as, respectively,

�
k,n
N,β = J

(k)
N,β

√
n!

(n + k)!
L(k)

n (η2), (27)

φ
k,n
N,β = arg

(
�

k,n
N,β

)
, (28)
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where β = r,b,c and J
(k)
N,β are given in Eqs. (20), (21),

and (23). Here L(k)
n (x) represents the generalized Laguerre

polynomials. Let us assume that the two eigenstates |g〉 and |e〉
of the Pauli operator σz satisfy σz|g〉 = −|g〉 and σz|e〉 = |e〉;
then we define the following operators σii as σ00 = |g〉〈g|,
σ11 = |e〉〈e|, σ01 = |g〉〈e|, and σ10 = |e〉〈g|.

B. Synthesizing nonclassical photon states

We find that the interaction Hamiltonians in Eqs. (18), (19),
and (22) in the displacement picture are very similar to those
for trapped ions [42]. Therefore, in principle the nonclassical
photon states can be generated by alternatively using the
above three different controllable processes. We expect that
the prepared target state is∣∣ψnmax

〉 = nmax∑
n=0

Cn|n〉 ⊗ |q〉, (29)

where nmax is a maximal photon number in the photon state of
the target state. Here |n〉 ⊗ |q〉 ≡ |n〉|q〉 denotes that the cavity
field is in the photon number state |n〉 and the qubit is in the
state |q〉, which can be either the ground |g〉 or excited |e〉 state.
The parameter |Cn|2 is the probability of the state |n〉 ⊗ |q〉.
The steps for producing the target state for both q = g and
q = e are very similar. We thus take q = g as an example to
present the detailed steps. The target state then takes the form∣∣ψnmax

〉 = nmax∑
k=0

Ck|k〉 ⊗ |g〉. (30)

We point out that all the states here (e.g., the target state)
are observed in the displacement picture if we do not specify
otherwise.

We assume that the system is initially in the state |0〉|g〉.
Then, by taking steps similar to those in Ref. [42], we can
generate an arbitrary state in which the states |ψn〉 in the
nth step and |ψn−1〉 in the (n − 1)th step have the following
relation:

|ψn〉 = U
(n)†
0 (tn)U (n)

N,βn
(tn)U (n)

0 (0)|ψn−1〉, (31)

with

|ψn〉 =
n∑

k=0

C
(n)
kg |k〉|g〉 + C

(n)
0e |0〉|e〉. (32)

Here, if n = nmax, C0e = 0, and C
(n)
kg = Ck , then |ψn〉 in

Eq. (32) is reduced to |ψnmax〉 in Eq. (30). Above, tn is the
time duration of the control pulse for the nth step. The unitary
transform U

(n)
0 (t) is defined as

U
(n)
0 (t) = V0(t)U (n)

d (t). (33)

Here V0(t) is given in Eq. (13). Also, U
(n)
d (t) is actually Ud (t)

in Eq. (9), but with ωd and φd replaced by ω
(n)
d and φ

(n)
d , which

denote, respectively, the frequency and phase of the driving
field for the nth step. Moreover, U

(n)
N,βn

(tn) denotes a unitary
transform of the nth step and is taken from Eqs. (24), (25),
or (26), depending on which one is chosen as βn among the
characters r , b, and c. In U

(n)
N,βn

(tn), the parameters ωd and φd

must also be replaced by ω
(n)
d and φ

(n)
d , respectively.

FIG. 3. (Color online) Schematic diagram for state generation of
the target state |ψnmax 〉 = ∑nmax

k=0 Ck|k〉 ⊗ |g〉, for example, nmax = 2.
(a) Step 0; the system is initially in the state |0〉 ⊗ |g〉, and the arrow
means that a carrier process is applied with the zero photon inside
the cavity, denoted by the operator U

(0)
N,c(t0). (b) Step 1; after step 0,

the system is in the state C
(0)
0g |0〉 ⊗ |g〉 + C

(0)
0e |0〉 ⊗ |e〉, in which the

parameters C
(0)
0e and C

(0)
0g are determined by the time duration t0. The

arrow means that a one-photon red process is applied with the time
evolution operator U

(1)
N,r (t1) after step 0 . (c) Step 2; after the step 1, the

system is in the state C
(1)
0g |0〉 ⊗ |g〉 + C

(1)
1g |1〉 ⊗ |g〉 + C

(1)
0e |0〉 ⊗ |e〉,

in which the coefficients of the superposition are determined by the
time durations t0 and t1. The arrow means that a two-photon red
process U

(2)
N,r (t2) is applied to the system after step 1. (d) After step

2 (with well-chosen time durations t0, t1, and t2), the system is in
the state C0|0〉 ⊗ |g〉 + C1|1〉 ⊗ |g〉 + C2|2〉 ⊗ |g〉, which is just the
target state |ψ2〉. Other superpositions can also be generated using
similar steps.

The target of the nth step is to generate state |ψn〉 from
state |ψn−1〉. We assume |ψn−1〉 is in the displacement picture,
which is the state generated after the (n − 1)th step. We first
use U

(n)
0 (tn) to transfer |ψn−1〉 from the displaced picture into

the interaction picture. Then we choose one of the evolution
operators in Eqs. (24)–(26) with a proper photon number to
reach the target state in Eq. (31). Since state |ψn〉 should also
be represented in the displaced picture, after the state of the
nth step via the evolution operators U

(n)
N,βn

(tn) and U
(n)
0 (0), we

have to transfer it back to the displaced picture, which results
in the appearance of U

(n)†
0 (tn) in Eq. (31).

The longitudinal coupling results in multiphoton processes.
Thus, the state preparation using the longitudinal coupling is,
in principle, more convenient than that using a single-photon
transition in the usual Jaynes-Cummings model [56]. For
example, the Fock state |n〉 can be generated with a carrier
process and a longitudinal coupling field-induced n-photon
process. However, it needs 2n steps (n-step carrier and n-step
red-sideband processes) to produce a Fock state |n〉 if we use
the Jaynes-Cummings model [56]. The selection of U

(n)
N,βn

(tn)
in Eq. (31) for each step is almost the same as that in Ref. [42].
That is, the target state in Eq. (29) can be obtained either
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via a one carrier process and nmax red-sideband excitations for
q = g, or through a one carrier process and nmax blue-sideband
excitations for q = e.

The steps to generate the target state in Eq. (30) from the
initial state |0〉|g〉 using carrier and red-sideband excitations
are schematically shown in Fig. 3 using a simple example. All
steps for the required unitary transformations are described
as follows. First, the initial state |0〉|g〉 is partially excited to
|0〉|e〉 by a carrier process (n = 0) with a time duration t0 such
that the probability |C(0)

0g |2 in |0〉|g〉 satisfies the condition

|C(0)
0g |2 = |C0|2, with C0 given in Eq. (30). After the carrier

process, the driving fields are sequentially applied to the qubit
with nmax different frequency-matching conditions, such that
single-photon, two-photon, to nmax-photon red processes can
occur. Thus, the subscript βn in the unitary transform U

(n)
N,βn

satisfies the conditions βn = c with n = 0 and βn = r for n �
1. By choosing appropriate time durations and the phases of the
driving fields in each step, which, in principle, can be obtained
using Eq. (31), we can obtain the target state shown in Eq. (30).
The detailed descriptions can be found in the Appendix.

IV. THE INITIAL STATE AND TARGET STATE

Above, we assumed that the target state is generated from
the initial state, which is the vacuum state in the displacement
picture defined by Eq. (6). However, in experiments, the initial
state is usually the ground state, obtained by cooling the sample
inside a dilution refrigerator. We now investigate the ground
state of the effective Hamiltonian when there is no driving field.
The Hamiltonian Heff without a driving field can be expressed
as

H ′
eff = �

2
ωzσz + �ωa†a + �

2
ωx{σ+ exp[η(a† − a)] + H.c.}

(34)

in the displacement picture. However, in the original picture,
the corresponding Hamiltonian is

H ′ = �

2
ωzσz + �

2
ωxσx + �ωa†a + �gσz(a + a†), (35)

which possesses the characteristics of broken symmetry and
strong coupling and is hence difficult to solve analytically. Due
to the mathematical equivalence between Eqs. (34) and (35), it
is also difficult to solve Eq. (34) analytically. We thus resort to
numerical calculations to obtain the ground state of H ′

eff . We
define the ground state of the Hamiltonian H ′

eff as |ψg〉 and the
probability of the ground state |ψg〉 being in the vacuum state
|0〉 as Pg,0. The relation between |ψg〉 and Pg,0 can be written
as

|ψg〉 = [ξ0|0〉 +
√

1 − |ξ0|2|δψg〉]|g〉, (36)

Pg,0 = |ξ0|2, (37)

where |δψg〉 denotes a superposition of photon number states
except the vacuum state. In Fig. 4, as an example, by taking
ωz/2π = 19.5 GHz and ω/2π = 2 GHz, we have plotted Pg,0

as a function of η and ωx . We find that the probability Pg,0 �
0.99, at least in the region 0 < η < 3.5 and 0 < ωx/ωz <

0.2. More specifically, the ground state of the Hamiltonian in

0

5

0

0.1

0.2
0.85

0.9

0.95

1

ηωx/ωz

P
g,

0

FIG. 4. (Color online) Probability Pg,0 for the ground state to be
the vacuum state in the displacement picture as a function of η and
ωx/ωz. Here we assume ωz/2π = 19.5 GHz, and ω = 2 GHz. Recall
that η is the normalized coupling or the Lamb-Dicke parameter.

Eq. (34) is closer to the vacuum state when the parameters η

and ωx are smaller. Thus, our assumption that the initial state
of the cavity field in the displacement picture is the vacuum
state can always be valid only if the related parameters, such
as ωx and η, are properly chosen.

We have demonstrated how to generate an arbitrary su-
perposition of different Fock sates from the vacuum state in
the displacement picture. Thus, once the state is generated, we
have to displace the generated state back to the original picture
via the displacement operator D†(ησz/2). For example, the
initial state |0〉|g〉 in the displacement picture becomes

D†
(

η

2
σz

)
|0〉|g〉 =

∣∣∣η
2
,0
〉
|g〉 (38)

in the original picture, where |α,n〉 = D(α)|n〉 denotes the
displaced number state [68]. Similarly, the target state |ψnmax〉
in the displacement picture becomes

∣∣ψD
nmax

〉 = nmax∑
n=0

Cn

∣∣∣η
2
,n
〉
|g〉 (39)

in the original picture. It is obvious that the initial state |η/2,0〉
of the cavity field in the original picture is a coherent state with
the average photon number (η/2)2, while the target state is the
superposition of the displaced number states.

The statistical properties of a displaced number state with
D(α)|n〉 can be described by the probabilities of the photon
number distribution as follows:

〈l|α,n〉 =
⎧⎨⎩

αl−n
√

n!/l!
exp(|α|2/2) L

(l−n)
n (|α|2), l � n,

(−α∗)(n−l)√l!/n!
exp(|α|2/2) L

(n−l)
l (|α|2), l < n.

(40)

Thus, the displaced target state in Eq. (39) can be written as

∣∣ψD
nmax

〉 = nmax∑
n=0

Cn

∞∑
l=0

|l〉
〈
l

∣∣∣∣η2 ,n

〉
|g〉

=
∞∑
l=0

CD
l |l〉 |g〉 , (41)
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0

0.5

0

0.5

P
D l

0 2 4
0

0.5

l

(a)

(c)

(b)

FIG. 5. (Color online) Photon number distributions of (a)
|η/2,0〉, (b) |η/2,2〉, and (c) (|η/2,0〉 + |η/2,2〉)/√2. Here l refers to
the photon number, and P D

l refers to the probability on |l〉. We have
taken the Lamb-Dicke parameter η = 2g/ω = 0.7.

where CD
l = ∑nmax

n=0 Cn〈l|η/2,n〉. The probability of the target
sate |ψD

nmax
〉 being in the photon number |l〉 in the original

picture can be given as

P D
l = ∣∣CD

l

∣∣2 =
nmax∑
n=0

nmax∑
m=0

CnC
∗
m

〈
l

∣∣∣η
2
,n
〉 〈η

2
,m

∣∣∣ l〉. (42)

In Fig. 5, as an example, the distribution probabilities P D
l

are plotted for different photon states; that is, |ψD
nmax

〉 is

taken as |η/2,0〉|g〉,|η/2,2〉|g〉, or (|η/2,0〉 + |η/2,2〉)|g〉/√2,
which is |0〉, |2〉, and (|0〉 + |2〉)/√2, respectively, in the
displacement picture. Figure 5 shows that the photon number
states in the displacement picture are redistributed after
these states are sent back to the original picture. Even though
the state in Fig. 5(c) is the linear sum of the states in Figs. 5(a)
and 5(b), the photon number distributions are not linearly
additive. It is because the interference between different
displaced number states, which corresponds to the terms of
m �= n in Eq. (42), can also give rise to the variation of the
photon number distribution. It is clear that a number state in
the displaced picture can become a superposition of number
states in the original picture, which might offer a convenient
way to prepare nonclassical photon states.

V. NUMERICAL ANALYSIS

We have presented a detailed analysis on how to prepare
nonclassical photon states using the longitudinal-coupling-
induced multiphoton processes in an ideal case. In this ideal
case, with the perfect pulse-duration and frequency-matching
conditions, we can prepare the perfect target state. However, in
practical cases, the system cannot avoid environmental effects.
Moreover, the imperfection of the parameters chosen also

affects the fidelity of the target state. For example, different
N describe different Bessel functions for effective coupling
strengths between the cavity field, the two-level system, and
the classical driving field. Then the optimization for the target
state will also be different. For concreteness, as an example,
let us study the effects of both the environment and imperfect
parameters on the target state

|ψ02〉 = 1√
2

(|0〉 + |2〉) |g〉 (43)

in the displacement picture, whose density matrix operator can
be given as

ρI = |ψ02〉 〈ψ02| . (44)

We also assume that the terms with the Bessel function for
N = −1 are chosen for the state preparation. But other terms
with the Bessel function order N ′ �= N are also involved. Thus,
we have to choose ωz �= ωn/(N ′ − N ) to minimize the effect
of these terms. Among all the terms with the Bessel function
order N ′, the dominant ones are those with N ′ = 0,1,±2. That
is, the chosen ωz has to satisfy the condition ωz �= nω, nω/2,
and nω/3.

To study the environmental effect on the state preparation,
we assume that the dynamical evolution of the system satisfies
the master equation

ρ̇ = −i[H,ρ] + Lq[ρ] + Lc[ρ] (45)

when the environmental effect is taken into account, where the
Hamiltonian H is given by Eq. (2) and

Lq[ρ] = 1

2

∑
1�j�i�0

γij (2σ̃ij ρσ̃ji − σ̃jj ρ − ρσ̃jj ), (46)

Lc[ρ] = κ

2
(2aρa† − a†aρ − ρa†a) (47)

describe the dissipation of the qubit and the cavity field,
respectively. Here ρ is the reduced density matrix of the qubit
and the cavity field. The operators σ̃ij are given by

σ̃ij = Ry(θ )σijR
†
y(θ ),

with Ry(θ ) = exp(−iθσy/2) and θ = arctan(ωx/ωz). This is
because we have used the eigenstates of σz as a basis (persistent
current basis) to represent the Hamiltonian of the qubit. Note
that γ10 is the relaxation rate, while γ11 and γ00 are the
dephasing rates. The parameter κ is the decay rate of the cavity
field. In the following calculations, we assume γ00 = 0.

We first neglect the environmental effects and just study
how the unwanted terms with the Bessel function for N ′ �= −1
affect the fidelity for different parameters xd = 2�d/ωd and
η = 2g/ω of the driving field and the cavity field when the
target state in Eq. (43) is prepared. We define the density
matrix

ρD = ∣∣ψD
02

〉 〈
ψD

02

∣∣ = D†
(
η
σz

2

)
ρID

(
η
σz

2

)
, (48)

which is the ideal target state in the original picture. The actual
target state generated in the original picture is denoted by the
density operator ρA when the effect of the unwanted terms
is taken into account. The fidelity for the target state is then
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TABLE II. The fidelities of the target state for different values of
the parameters xd = 2�d/ωd and η = 2g/ω. Here we have chosen
ωz/2π = 19.5 GHz, ωx/2π = 1.6 GHz, and ω/2π = 2 GHz.

Lamb-Dicke parameter η = 2g/ω

xd = 2�d/ωd 0.330 0.590 0.850 1.110 1.370

0.265 0.240 0.219 0.237 0.347 0.332
0.525 0.281 0.282 0.621 0.719 0.734
0.785 0.445 0.416 0.722 0.827 0.841
1.045 0.369 0.519 0.780 0.857 0.877
1.305 0.335 0.530 0.791 0.886 0.879

given by

F = Tr{ρAρD}. (49)

Let us now take the parameters ω/2π = 2 GHz and
ωz/2π = 19.5 GHz as an example to show how the parameters
affect the fidelity. The highly symmetry-broken condition is
satisfied by taking, e.g., ωx/2π = 1.6 GHz. We have listed
the fidelities for different η and xd in Table II, from which
we can find that larger values of η and xd are more likely to
induce a higher fidelity because, in the range considered for η

and xd , a larger xd can enhance the desired term by making
J−1(xd ) larger [see Fig. 2(a)], while η achieves the same goal
by enhancing the Rabi frequency for |0〉|e〉 ←→ |2〉|g〉 (see
Fig. 7 in the Appendix).

In Table II, the largest fidelity is Fm = 0.886, which occurs
at the optimal parameters η = ηm = 1.11 and xd = xm

d =
1.305, where we have also obtained the total time Tm = 1.82 ns
for generating the target state. From the above numerical
calculations, we show that the fidelity of the prepared target
state is significantly affected by the parameters of the qubit,
cavity field, and driving field. Note that the fidelities in Table II
may not be satisfactory for practical applications in quantum
information processing, which may require fidelities approach-
ing 100%. However, the fidelity can be further optimized
by carefully choosing suitable experimental parameters. For
instance, η = 1.5 and xd = 1.305 would produce a more de-
sirable fidelity of 0.9143, and it is still possible to obtain much
higher fidelities when related parameters are further optimized.
We should also mention that the effect of the unwanted terms
can be totally avoided if, for each generation step, the control
pulses for the driving frequency ωd , driving strength �d ,
driving phase φd , and the pulse duration t are all perfectly
designed to compensate the effect of the unwanted terms.

Now we study the environmental effect on the fidelity of the
prepared state by taking experimentally achievable parameters,
e.g., γ10/2π = κ/2π = 1 MHz and γ11/2π = 2 MHz. We also
choose η = ηm and xd = xm

d , and other parameters (i.e., ωx ,
ωz, and ω) are kept the same as in Table II. Now the fidelity
we obtain via numerical calculations is F ′

m = 0.8775.
The Wigner function represents the full information of the

states of the cavity field and can be measured via quantum
state tomography [69]. The Wigner function of the cavity field
has recently been measured in circuit QED systems [70,71].
To obtain the state of the cavity field, let us now trace out the
qubit part of the density operator for the qubit-cavity composite

system using the formula

ρp
c = Trq ρp = 〈g|ρp|g〉 + 〈e|ρp|e〉, (50)

where p refers to either D, I , or A. Here ρI is the ideal
target state in the displacement picture, ρD is the ideal target
state in the original picture, and ρA is the actual target state
in the original picture. Therefore, ρ

p
c is the cavity part of

the qubit-cavity-composite state ρp. It should be emphasized
here that the actual state ρA denotes the generated target
state in the original picture with the same parameters as
in the ideal case, but including the effects of both the
environment and unwanted terms. By definition, given an
arbitrary density operator ρ, the Wigner function W(β,β∗)
and the Wigner characteristic function CW (λ,λ∗) have the
following relations [72–74]:

CW (λ,λ∗) = Tr{ρ exp(λa† − λ∗a)}, (51)

W(β,β∗) =
∫

d2λ

π2
CW (λ,λ∗) exp(−λβ∗ + λ∗β). (52)

Moreover, if ρ is expanded in the Fock state space, i.e.,

ρ =
∑
mn

ρmn|m〉〈n|, (53)

then we have the Wigner function of ρ given by

W(β,β∗) =
∑
mn

ρmnWmn(β,β∗), (54)

where

Wmn

(
β,β∗) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2n−m+1

π
(−1)m

√
m!
n! βn−m

×e−2|β|2L(n−m)
m (4|β|2),

m < n,

2m−n+1

π
(−1)n

√
n!
m! β∗m−n

×e−2|β|2L(m−n)
n (4|β|2),

m � n.

(55)

As shown in Eq. (54), the Wigner function and the density
operator can, in principle, be derived from each other and are
closely related by the function Wmn(β,β∗). If {Wmn(β,β∗)}
are taken as the basis functions, then ρmn can be considered
the spectrum of W(β,β∗). Moreover, if we define ρD =
D(α)ρ D†(α) and its Wigner function as WD(β,β∗), through
the definitions in Eqs. (51) and (52), we can easily obtain

WD(β,β∗) = W(β − α,β∗ − α∗). (56)

It is clear that the displacement operator D(α) displaces
the Wigner function by α in the coordinate system. Since
ρD

c = D(ηm/2)ρI
c D†(ηm/2), the Wigner function for ρD

c ,
WD

c (β,β∗) and that for ρI
c , WI

c (β,β∗) must have the relation
WD

c (β,β∗) = WI
c (β − ηm/2,β∗ − ηm/2). Therefore, Fig. 6(a)

(for WI
c ) and Fig. 6(b) (for WD

c ) in fact have the same
profile except that there is a horizonal translation between
them. In Figs. 6(a)–6(c), the vertical dashed line that goes
through the maximum value of the Wigner function indicates
the horizonal component of its central position. Since the
displacement operator between Figs. 6(a) and 6(b) is D(ηm/2),
the amount of the translation is ηm/2 = 0.555. When including
the environment and unwanted terms, Fig. 6(c) shows how
the Wigner function becomes different from Fig. 6(b). We
can determine that the displacements of Figs. 6(b) and 6(c)
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FIG. 6. (Color online) Wigner functions (a) WI
c (β,β∗), (b) WD

c

(β,β∗), (c) WA
c (β,β∗) for ρI

c , ρD
c , and ρA

c , respectively. Here
x = Re(β), and y = Im(β). In the above figures, the parameters
are chosen as ωz/2π = 19.5 GHz, ωx = 1.6 GHz, ω/2π = 2 GHz,
γ21/2π = κ/2π = 1 MHz, γ11 = 0, γ22/2π = 0.1 MHz, η = ηm =
1.11, and xd = xm

d = 1.305. We have used a vertical dashed lines
to highlight the displacement of the central point, which is also the
maximum point, of the Wigner functions. As shown in (a), the central
point of WI

c (β,β∗) is the origin. Since ρD
c = D(ηm/2)ρI

c D†(ηm/2),
the Wigner function for ρD

c , WD
c (β,β∗) and that for ρI

c , WI
c (β,β∗)

have the relation WD
c (β,β∗) = WI

c (β − ηm/2,β∗ − ηm/2). This is
the reason why (a) and (b) exhibit the same profile as well as
a horizonal translation. The exact value of this translation length
is, of course, ηm/2 = 0.555. Compared to the ideal target state in
the original picture, i.e., WD

c (β,β∗) in (b), the actual target state
WA

c (β,β∗) in (c) possesses nearly the same central point. But due to
the effects of environment and unwanted terms, in (c), a new feature
of small local twists and a global rotation appears.

are basically the same. But a careful comparison shows that
the horizonal central position of Fig. 6(c) is 0.4745, which is
0.0805 less than that of Fig. 6(b), which is ηm/2 = 0.555. We
think this small difference can be attributed mainly to the effect
of the environment and unwanted terms. Figure 6(c) also shows
local twists as well as a global rotation compared with Fig. 6(b).
The global rotation represents the average phase noise, while
the local twists represent the corresponding fluctuations.
Although both the environment and unwanted terms affect
the fidelity of the states prepared, our calculations show that
under the specified parameters, the role of the unwanted terms
is dominant when the imperfect pulses are applied to state
preparation since the generation time Tm = 1.82 ns is far

from inducing serious decoherence at the specified decay
rates, which is well manifested by the poor fidelity reduction
Fm − F ′

m = 0.0085. Recall that Fm is the fidelity obtained
using the optimal parameters in Table II when only the effects
of the unwanted terms are included, while F ′

m is the fidelity
obtained using the same parameters but with the effects of both
the environment and unwanted terms considered.

VI. DISCUSSION

Let us now discuss the feasibility of the experiments for
the generation of nonclassical microwave states using super-
conducting qubits interacting with a single-mode microwave
field. The frequency of the qubit cannot be extremely large.
Thus, the maximum photon number in multiphoton processes
is limited by the ratio ωz/ω between the frequency ωz of
the qubit and that of the cavity field ω. This means that the
qubits should be far away from the optimal point for the flux
and charge qubits when the microwave states are generated
using our proposed methods. This might be a problem for the
preparation of arbitrary superpositions because the coherence
time becomes short when the flux or charge qubit deviates
from the optimal point. However, for the particular number
state |n〉, there is no requirement for the coherence, and thus,
it should be more efficient because we need to prepare only
the qubit in the excited state, and then the state |n〉 can be
prepared via an n-photon red-sideband excitation. We know
that the phase [58,59] and Xmon [75] qubits are not very
sensitive to the optimal point. Thus, the proposal might be
more efficient for these qubits coupled to a microwave cavity.
It should be noted that the imperfect pulse can significantly
affect the fidelity. We thus suggest that enough optimization
be implemented to reach an acceptable fidelity.

VII. CONCLUSIONS

We have proposed a method to prepare nonclassical mi-
crowave states via longitudinal-coupling-induced multiphoton
processes when a driven symmetry-broken superconducting
qubit is coupled to a single-mode microwave field. With con-
trollable k-photon processes in a SQ with a symmetry-broken
potential energy, only nmax + 1 steps are needed to synthesize
the superposition of Fock states with the largest photon number
nmax. However, in contrast to the method used in Refs. [56,59],
with one-photon processes in the SQ inside the cavity, 2nmax

steps are needed to synthesize the same state. Moreover, using
k-photon processes, a k-photon Fock state |k〉 can be generated
with just two steps, while with one-photon processes, 2k steps
are required to produce the same state. Thus, the time to
generate the same state using multiphoton processes is shorter
than that using only a single-photon process. Therefore, the
fidelity should also be improved. In this sense, our method is
more efficient than the one in Refs. [56,59]. In addition, we
have provided an analytical solution for the total time needed
to generate a target state |ψnmax〉.

We have made a detailed analysis of the ground state when
the system is sufficiently cooled. We find that in the highly
symmetry-broken and strong-coupling case, the ground state
can still be regarded as the vacuum state in the displacement
picture. The displacement effect on both the initial state and the
target state has also been studied. Generally, the displacement
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will induce a variation of the photon-number distribution. But
in the representation of the Wigner function, its influence is just
a shift of the center of the Wigner function by the Lamb-Dicke
parameter η = 2g/ω between the coupling strength g of the
cavity field to the qubit and the frequency ω of the cavity
field. We note that the Fock state produced in the displacement
picture is a displaced number state in the original picture.
Thus, a circuit QED system with broken symmetry in the qubit
potential energy can be used to easily generate a displaced
number state. This can be used to study the boundary between
the classical and quantum worlds [76–79].

In summary, although we find that the nonclassical photon
state can be more easily produced when the symmetry of the
potential energy of the SQ is broken, this method can be applied
to any device with longitudinal and transverse couplings to
two-level systems. Although the Fock state can be produced in
any symmetry-broken qubit, the superposition of Fock states
might be easily realizable in a circuit QED system formed by
a phase qubit and a cavity field. This is because phase qubits
have no optimal point and thus are not sensitive to the working
point of the external parameter. Our proposal is experimentally
realizable with current technology.
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APPENDIX: DETAILED STEPS FOR GENERATING THE
NONCLASSICAL STATE

If we substitute Eqs. (24), (26), and (32) into Eq. (31), the
following relations can be obtained, e.g., for the generation of
|ψ0〉, i.e., for the step n = 0:

C
(0)
0g = exp

(
iα

(0)
0g

)
cos

(∣∣�0,0
N,c

∣∣t0)C(−1)
0g , (A1)

C
(0)
0e = exp

(
iα

(0)
0e

)
sin

(∣∣�0,0
N,c

∣∣t0)C(−1)
0g , (A2)

with |C(−1)
0g | = 1, which is determined by the initial condition.

However, for the generation of |ψn〉 with n � 1 from state
|ψn−1〉, we can obtain the following relations for their
coefficients:

C
(n)
kg = exp

(
iαn

kg

)
C

(n−1)
kg , (A3)

C(n)
ng = exp

(
iαn

ng

)
sin

(∣∣�n,0
N,r

∣∣tn)C(n−1)
0e , (A4)

C
(n)
0e = exp

(
iαn

0e

)
cos

(∣∣�n,0
N,r

∣∣tn)C(n−1)
0e , (A5)

with k � n − 1. Here the phases α
(0)
0g and α

(0)
0e for n = 0 are

determined by

α
(0)
0g = xd

2
sin

(
ω

(0)
d t0 + φ

(0)
d

) − xd

2
sin

(
φ

(0)
d

) + ωzt0

2
, (A6)

α
(0)
0e = −xd

2
sin

(
ω

(0)
d t0 + φ

(0)
d

) − xd

2
sin

(
φ

(0)
d

) − ωzt0

2

+φ0 − π

2
. (A7)

The other phases for n � 1 are given by

α
(n)
kg = xd

2
sin

(
ω

(n)
d tn + φ

(n)
d

) − xd

2
sin

(
φ

(n)
d

) + ωztn

2

− kωtn, (A8)

α(n)
ng = xd

2
sin

(
ω

(n)
d tn + φ

(n)
d

) + xd

2
sin

(
φ

(n)
d

) + ωztn

2

− nωtn − φn − π

2
, (A9)

α
(n)
0e = −xd

2
sin

(
ω

(n)
d tn + φ

(n)
d

) + xd

2
sin

(
φ

(n)
d

) − ωztn

2
,

(A10)

where k � n − 1. In Eqs. (A1)–(A5),

φn =
{

arg
(
�

0,0
N,c

) = Nφ
(n)
d − π, n = 0,

arg
(
�

n,0
N,r

) = Nφ
(n)
d − (n + 1)π, n � 1,

(A11)

if we select an N and xd such that JN (xd ) < 0, and

φn =
{

arg
(
�

0,0
N,c

) = Nφ
(n)
d , n = 0,

arg
(
�

n,0
N,r

) = Nφ
(n)
d − nπ, n � 1,

(A12)

if we select an N and xd such that JN (xd ) > 0. Here ω
(n)
d , φ

(n)
d ,

and tn are, respectively, the driving frequency, driving phase,
and time duration for each generation step. From Eq. (A3), we
know that ∣∣C(n)

k0

∣∣ = ∣∣C(nmax)
k0

∣∣ = |Ck|, k � n, (A13)

and hence,

∣∣C(n−1)
0e

∣∣ =
(

1 −
n−1∑
k=0

∣∣C(n−1)
kg

∣∣2)1/2

=
(

nmax∑
k=n

|Ck|2
)1/2

.

(A14)

Then, from Eqs. (A1) and (A2) and Eqs. (A4) and (A5), we
have, respectively,

∣∣�0,0
N,c

∣∣t0 = arccos

∣∣∣∣∣ C
(0)
0g

C
(−1)
0g

∣∣∣∣∣ + 2lπ

= arccos
∣∣C(0)

0g

∣∣ + 2lπ, (A15)

∣∣�n,0
N,r

∣∣tn = arcsin

⎛⎝ ∣∣C(n)
ng

∣∣∣∣∣C(n−1)
0e

∣∣∣
⎞⎠ + 2lπ

= arcsin

[
|Cn|(∑nmax

k=n |Ck|2
)1/2

]
+ 2lπ, (A16)

where l is an arbitrary integer. Using Eqs. (A1) and (A2) and
Eqs. (A4) and (A5), we derive

arg
(
C

(0)
0g

) − arg
(
C

(0)
0e

) = α
(0)
0g − α

(0)
0e + 2lπ, (A17)
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arg
(
C(n)

ng

) − arg
(
C

(n)
0e

) = α(n)
ng − α

(n)
0e + 2lπ. (A18)

If n = nmax in Eq. (A18), then C
(n)
0e = 0, with no definition

of the phase angle. Thus, we can assume that arg(C(n)
0e ) = 0,

without affecting the final result. Here C(n)
ng and C

(n)
0e can be

obtained through the following recursion relations:

C
(n−1)
0e =

⎧⎪⎪⎨⎪⎪⎩
C

(n)
0e

exp(iα(n)
0e ) cos(|�n,0

N,r |tn)
, 1 � n < nmax,

C
(n)
ng

exp(iα(n)
ng )sin(|�n,0

N,r |tn)
, n = nmax,

(A19)

C
(n−1)
kg = C

(n)
kg

exp
(
iα

(n)
kg

) , k � n − 1, (A20)

C
(−1)
0g = C

(0)
0e

exp
(
iα

(0)
0e

)
sin

(∣∣�0,0
N,c

∣∣t0) . (A21)

In Eq. (A19), distinguishing the case when n = nmax from the
other ones is needed to avoid the appearance of 0/0. Although
Eq. (A21) implies that C

(−1)
0g may have a definite phase, such a

phase could only add a global phase factor to the target state.
So it is convenient to directly specify C

(−1)
0g = 1.

We define the reduced Rabi frequency as

∣∣�̄n,0
N,β

∣∣ = 2
∣∣�n,0

N,β

∣∣
|ωxJN | = exp

(
−1

2
η2

)
ηn

√
n!

(A22)

in order to study its dependence on η. From Eq. (A22), we can
obtain the optimal Lamb-Dicke parameter

ηn,o = √
n, (A23)

which achieves the largest reduced Rabi frequency∣∣�̄n,0
N,β,o

∣∣ = exp

(
− n

2

)
nn/2

√
n!

, (A24)

which is also the point that makes |�̄n,0
N,β | = |�̄n−1,0

N,β |, as
illustrated in Fig. 7. We can also verify

lim
n→∞

∣∣�̄n+1,0
N,β,o

∣∣∣∣�̄n,0
N,β,o

∣∣ = lim
n→∞

√
1

e

(
n + 1

n

)n

= 1, (A25)

with limn→∞{ηn+1,o/ηn,o} = 1. This means that when the
photon number n increases, the optimal points for the Rabi
frequencies between the zero-photon state and different n-
photon states tend to approach each other infinitesimally.
But for low photon numbers the optimal points are still
distinguishable from each other.

Let us calculate the total time T for generating the target
state:

T =
nmax∑
n=0

tn = 2

|ωxJN | arccos (|C0|) exp

(
η2

2

)

+
nmax∑
n=1

2
√

n!

|ωxJN | ηn
arcsin

⎛⎝ |Cn|√∑nmax
k=n |Ck|2

⎞⎠ exp

(
η2

2

)
,

(A26)
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FIG. 7. (Color online) Reduced Rabi frequency
∣∣�̄n,0

N,β

∣∣, from
Eq. (A22), as a function of η, for n = 0,1,2,3,4, and 5. The square on
each curve denotes the point that achieves the largest

∣∣�̄n,0
N,β

∣∣. Recall
that η = 2g/ω, where g is the qubit-cavity coupling constant and
ω is the frequency of the single-mode cavity field. Thus, η is the
normalized coupling.

where η = 2g/ω is the Lamb-Dicke parameter and we have
omitted excessive cycle periods for each step. By taking the
derivative of T with respect to η, we can find all the extreme
points of η, which satisfy the following equation:

nmax+1∑
n=−1

Anη
nmax+1−n = 0. (A27)

The coefficient An has been given in Eqs. (A31)–(A34).
Further selection among these extreme points and the experi-
mentally constrained boundaries of η can yield the optimal
Lamb-Dicke parameter ηopt, which will lead to the least
generation time Topt. Once Topt is reached, in principle, the
influence of the environment on the target state fidelity will be
minimized.

Like for |�̄0,n
N,β |, we define

T̃ (η) = T |ωxJN | /2. (A28)

The curves of log[T̃ (η)] for particular states have been plotted
in Fig. 8 with a star on each curve to label the point where the
generation time reaches its least value.

The normalized time needed to generate a target state is

T̃ =
nmax∑
n=0

t̃n = arccos(|C0|) exp(η2/2)

+
nmax∑
n=1

√
n! arcsin

⎛⎝ |Cn|√∑nmax
k=n |Ck|2

⎞⎠ eη2/2

ηn
, (A29)

whose extreme points still satisfy

nmax+1∑
n=−1

An ηnmax+1−n = 0 (A30)
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FIG. 8. (Color online) Plot of log(T̃ ) as a function
of the Lamb-Dicke parameter η = 2g/ω for

∣∣ψnmax

〉 =∑nmax
n=0 |n〉⊗ |0〉 /

√
nmax + 1, with different maximum photon

numbers nmax. Recall that T̃ = T |ωJN | /2 is a normalized time and
T is the total time to generate the desired target state. The star on
each curve shows the optimal point where the normalized generation
time reaches its minimum.

for unbound η, where, if nmax = 0,

An =
{

arccos (|C0|) , n = −1,

0, otherwise,
(A31)

if nmax = 1,

An =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
arccos (|C0|) , n = −1,

Pn+1, n = 0,

−(n − 1)Pn−1, n = 2,

0, otherwise,

(A32)

if nmax = 2,

An =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
arccos (|C0|) , n = −1,

Pn+1, 0 � n � 1,

−(n − 1)Pn−1, 2 � n � 3,

0, otherwise,

(A33)

and for other cases, we have

An =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

arccos (|C0|) , n = −1,

Pn+1, 0 � n � 1,

Pn+1 − (n − 1)Pn−1, 2 � n � nmax − 1,

−(n − 1)Pn−1, nmax � n � nmax + 1,

0, otherwise.

(A34)

Here we have used the abbreviation

Pn =
√

n! arcsin

⎛⎝ |Cn|√∑nmax
k=n |Ck|2

⎞⎠ . (A35)
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