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Photon Devil’s staircase: photon 
long-range repulsive interaction in 
lattices of coupled resonators with 
Rydberg atoms
Yuanwei Zhang1,2, Jingtao Fan1, J.-Q. Liang2, Jie Ma1, Gang Chen1, Suotang Jia1 & 
Franco Nori3,4

The realization of strong coherent interactions between individual photons is a long-standing goal 
in science and engineering. In this report, based on recent experimental setups, we derive a strong 
photon long-range repulsive interaction, by controlling the van der Waals repulsive force between 
Cesium Rydberg atoms located inside different cavities in extended Jaynes-Cummings-Hubbard 
lattices. We also find novel quantum phases induced by this photon long-range repulsive interaction. 
For example, without photon hopping, a photon Devil’s staircase, induced by the breaking of long-
range translation symmetry, can emerge. If photon hopping occurs, we predict a photon-floating 
solid phase, due to the motion of particle- and hole-like defects. More importantly, for a large 
chemical potential in the resonant case, the photon hopping can be frozen even if the hopping term 
exists. We call this new phase the photon-frozen solid phase. In experiments, these predicted phases 
could be detected by measuring the number of polaritons via resonance fluorescence.

Strong interactions between individual photons play an essential role in achieving photon quantum 
information processing1–4 as well as in exploring exotic many-body phenomena of light5–7. In contrast 
to electrons, interacting directly via Coulomb repulsion, the photon-photon interactions must be medi-
ated by matter8. Being an important challenge, the realization of such matter-mediated interactions has 
become a long-standing goal in science and engineering. During the past decades, much theoretical9–12 
and experiental13,14 effort has been made to enhance the nonlinear interaction to a strong regime at 
the single-photon level. Moreover, photon-photon interactions can lead to an on-site photon-blockade 
effect15,16, when each cavity mode interacts with a two-level atom. By further considering the novel com-
petition between the on-site photon-blockade effect and the photon hopping in an array of coupled cav-
ities17, quantum simulations6,7, based on the Jaynes-Cummings-Hubbard model17, have studied complex 
many-body phenomena in condensed-matter and atomic physics, such as the superfluid-Mott-insulator 
transition18–21, quantum magnetic dynamics22, glassy phases23, solid24,25 and supersolid26 phases, and the 
fractional quantum Hall effect27,28.

In this report, based on recent experimental setups, we derive a strong photon long-range repulsive 
interaction (PLRRI) by controlling the van der Waals force between Rydberg atoms located inside differ-
ent cavities in extended Jaynes-Cummings-Hubbard lattices. We also find novel quantum phases induced 
by this PLRRI. For example, without photon hopping, the breaking of long-range translation symmetry 
induces a complex solid structure, i.e., a photon Devil’s staircase. In a “ Devil’s staircase”, any two different 
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rational states are separated by many states. If photon hopping exists, we predict a photon-floating solid 
phase, due to the motion of particle- and hole-like defects. More importantly, for a large chemical poten-
tial in the resonant case, photon hopping can be frozen even if the hopping term exists. We denote this 
new phase the photon-frozen solid phase. In experiments, these predicted phases could be detected by 
measuring the number of polaritons via resonance fluorescence29.

Results
Extended Jaynes-Cummings-Hubbard model.  We first propose a possible way to realize an 
extended Jaynes-Cummings-Hubbard model with long-range atom-atom interactions in different cavi-
ties, based on recent experimental setups30–34. As shown in Fig. 1, a series of SiO2 nanofibers are arranged 
in the same direction of a specific plane, and an ensemble of Cesium (Cs) Rydberg atoms are trapped 
close to each nanofiber. Each nanofiber, with radius b =  0.25 μm, acts as a 1D photonic crystal cavity, due 
to its fabricated fiber Bragg-grating (FBG) structure31,32 [see Fig. 2(a)]. A guided field, whose evanescent 
field acts as the quantum cavity mode, propagates along the cavity y axis. The cavity decay rate is char-
acterized by the parameter κ, which induces the photon hopping in the cavity array35, and the distance 
between nearest-neighbor cavities is about xi+1 −  xi ≈  2.4 μm. Since the evanescent field strength is suffi-
ciently weak at the radial distance of about b–4b away from the surface of the nanofiber36,37, each adjacent 
nanofiber pairs located at such a distance will not lead to an efficient overlap of different cavity modes, 
which guarantees that the ith ensemble of Cs Rydberg atoms can interact only with the ith cavity33,36.

By using the red- and blue-detuned evanescent light fields around the optical nanofiber, a two-color 
optical dipole trap can be formed. This optical dipole trap should allow an ensemble of Cs Rydberg atoms 
to be prepared at a few hundred nanometers from the nanofiber surface30,38. For Cs Rydberg atoms, we 
can choose the fine-structure states | , = 〉/S F6 41 2  and | , ′ = 〉/P F6 53 2  as the ground state g  and the 
intermediate state p , respectively, while the Rydberg state is assumed as 70S1/2. As shown in Fig. 2(b), 
the photon induced by the evanescent field, with wavelength 852 nm, governs the transition between the 
ground state g  and the intermediate state p , whereas the other transition between the intermediate state 
p  and the Rydberg state r  is controlled by a classical driving laser, with wavelength 510 nm, as shown 
in Fig. 1.

Formally, the total Hamiltonian of the system considered in Fig. 1 is

μ= + + − . ( )H H H H N 1JC HOP V

In the Hamiltonian (1), HJC describes the interaction between the photons and the ensemble of Cs 
Rydberg atoms for all nanofiber photonic crystal cavities. We first consider the interaction between the 
photon and a single three-level Cs Rydberg atom at one cavity. In the current experimental setups30–34, 

Figure 1.  Schematic diagram of the system studied. A 1D nanofiber photonic crystal cavity array, with 
an ensemble of Cs Rydberg atoms (red disks) placed near each nanofiber. Photons can hop between two 
adjacent cavities, indicated by green double-arrows. FBG denotes the fiber Bragg grating.
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the interaction between photons and the single Cs Rydberg atom is of the order of MHz (the detailed 
estimation will be shown in the next subsection). Therefore, in the framework of the rotating-wave 
approximation, the corresponding Hamiltonian is

( ) ω ω= + + + . . + + Ω (− ) + . . , ( )
† † [ ]H E p p E r r g a g p a a i t r pH c exp H c 2p r c l1 0

where Ep and Er are the energies of the intermediate state p  and the Rydberg state r , respectively, †a  
and a are the creation and annihilation operators of photons with frequency ωc, while Ω  and ωl are the 
Rabi and driving frequencies of the classical laser, respectively. When the detuning is large, we can adi-
abatically eliminate the intermediate state p , and rewrite the Hamiltonian (2) via a unitary transforma-
tion as

( )ω λ= + + + . . + , ( )ϵ† † †H a a r r g a g r a a g gH c 32 1

where ω =  ωc−ωl is the effective photon frequency, ε =  Er − Eg −  ωl +   Ω 2/Δ p is the effective transition 
frequency of the two-level Rydberg atom, g1 =  g0Ω /Δ p is the effective interaction strength, and λ  =   /Δg p0

2 . 
For large detuning, λ  is very small and we thus can omit the interaction term †a a g g .

In addition, for large detuning, g1 is also weak. In order to enhance the effective atom-photon inter-
action strength, here we consider an ensemble of Cs Rydberg atoms in the center of each cavity. For 
simplicity, we also assume that the number of Cs Rydberg atoms in each cavity is a constant NR. The 
strong van der Waals repulsive interaction between Cs Rydberg atoms in the same cavity generates a 
Rydberg-blocked effect, which excites only one Cs Rydberg atom39. In such case, we should introduce the 
collective ground state = | , …, 〉G g gi N i1 R

, and the collective excitation state 

= ∑ | 〈 ⊗ /R r g G Ni f
N

f f i RR .
Thus, the first term of the Hamiltonian (1) becomes

( )∑ ω= 


+ + + . . 

.

( )
† †H a a R R g a G R H c

4i
i i i i i iJC

The second term in the Hamiltonian (1) governs the photon hopping between two adjacent cavities, 
and is

∑= − ( + ),
( )+ +

† †H t a a a a
5i

i i i iHOP 1 1

where κ= / πt F 2  is the photon hopping rate and F is the cavity finesse. The third term in the 
Hamiltonian (1) governs the long-range van der Waals interaction between Cs Rydberg atoms in differ-
ent cavities, and is

Figure 2.  (a) The sectional plot of the ith atom-cavity interaction system, and (b) energy levels of a 
single three-level Cs Rydberg atom and their transition. In (a), the yellow and green solid curves 
schematically show the intensity distributions of the intracavity and evanescent fields, respectively. b denotes 
the radius of the nanofiber, which is about 0.25 μm, and L is the length of cavity. In general, the radius b is 
smaller than the distance of the nearest-neighbor cavities, which is chosen here as xi+1 −  xi ≈  2.4 μm. In 
addition, FBG denotes the fiber Bragg grating. In (b), the green-arrowed line shows the photon-induced 
transition, whereas the red-arrowed line labels the other transition governed by the classical driving laser. 
The detunings are given by ωΔ = ( − ) −E Ep p g c and ωΔ = − ( − )E Er l r p , respectively.
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∑= ( − ) ⊗ ,
( )

H V i j R R R R1
2 6ij

i i j jV

where ( − ) = /( − )V i j C x xi j6
6 with C6 being the van der Waals coefficient, and xi being the position 

of the ith cavity40. The long-range van der Waals interaction can induce a strong correlation between Cs 
Rydberg atoms in different cavities. Hereafter, we use the nearest-neighbor interaction to represent the 
entire van der Waals interaction, i.e., ≡V V1, because V2 =  V1/26, and V3 =  V1/36, . In the last term of 
the Hamiltonian (1), the chemical potential μ is the Lagrange multiplier, and the total number of polar-
itons is ( )= ∑ = ∑ +†N n a a R Ri i i i i i i

.
It should be noted that a dielectric medium placed near dipoles will alter the spatial distribution of 

the electromagnetic field. However, for the parameters of the nanofiber and Cs Rydberg atoms consid-
ered here, this alteration can be regarded as a higher-order small quantity, compared with the direct 
atom-atom interaction41–43. This allows us to safely treat the interaction between Cs Rydberg atoms in 
different cavities as the standard long-range van der Waals force.

Typical parameters.  Before proceeding, we estimate the relevant parameters of the Hamiltonian (1) 
in terms of the above proposal.

•	 The effective photon frequency ω =  ωc − ωl and the effective atom transition frequency ε =  Er −  Eg −  ωl +   
Ω 2/Δ p. These two parameters can be well controlled by the driving frequency ωl of the classical laser. 
Thus, these can have suitable values as required experimentally.

•	 The collective atom-photon interaction strength = Ω/Δg N gR p0 . In our considered nanofiber 
photonic crystal cavity, η γ= /g c Lc0 , where  ηc is the channeling efficiency, c is the light velocity, 
L is the cavity length44,45. It should be noted that since the Cs Rydberg atoms considered here are 
tightly trapped, the decay γ of the Rydberg superatom is enhanced46 by γ =  NRΓ , where Γ  is the decay 
of an isolated Cs Rydberg atom in the state 70S1/2, due to the supperradiant effect47. The Rabi fre-
quency and the detuning are chosen here as Ω /2π  ~ 100 MHz and Δ p/2π  ~ 1 GHz, respectively, which 
fulfill the adiabatic elimination condition, Δ , Ω g{ }p 0 . In addition, for the two-color optical dipole 
trap, with wavelengths33 1064 nm and 780 nm, respectively, the number of Cs Rydberg atoms of each 
ensemble can be of the order of 104. Therefore, the collective atom-photon interaction strength 
reaches π/ .g 2 2 03 GHz, when ηc/2π  =  0.01 (see Ref. 33), γ =  27.5 MHz (Γ /2π  =  0.55 kHz), 
L =  10 mm, and NR =  5 ×  104. If the atomic number density is increased, this collective atom-photon 
interaction strength g can increase rapidly, because it is proportional to N R .

•	 The van der Waals interaction strength V(i −  j) =  C6/(xi −  xj)6. Based on the aforementioned 
energy level structures48,49, the van der Waals coefficient is C6 ≈  610 GHz·μm6. For the distance 
xi+1 −  xi ≈  2.4 μm, the interaction strength between the nearest-neighbor sites is V1/2π  ≈  500 MHz, 
i.e., V/2π  =  V1/2π  ≈  500 MHz. This interaction strength can be modified by changing the distance of 
the nearest-neighbor cavities.

•	 The cavity decay rate  κ and the photon hopping rate t. In the nanofiber photonic crystal cavity con-
sidered in Fig. 2(a)44,45, κ =  πc/FL. In current experimental setups34, F ≈  500. Thus, κ/2π  =  30 MHz 
and t/2π  =  628 MHz, when L =  10 mm. Both the cavity decay rate and the photon hopping rate can 
be controlled by changing the cavity length.

The above parameters show two basic features: κ γ,  g{ }  and V =  V1 ~ g. The condition κ γ,  g{ }   
implies that we may safely neglect the influence of the decay of both cavity and atom, because these only 
change slightly the phase boundaries50,51. In addition, using the above parameters, we also estimate that 
the atomic number density of each cavity is of the order of 1012 cm−3. For such a typical density, the 
dephasing time of the collective states G i

 and R i
 which are induced by the atomic collision, can, at 

least, reach the order of microseconds. This is much larger than the time scales of κ−1 and g−1, and can 
thus be neglected48,52. This guarantees the validity of our effective two-level model in Eq. (4)39,52.

Photon long-range repulsive interaction.  We now construct a strong PLRRI in terms of the 
Hamiltonian HV. We begin to address the simplest case, κ =  V =  0, in which the Hamiltonian (2) reduces 
to

μ= − . ( )H H N 7S JC

The eigenstates of the Hamiltonian HS are given by

− ≡ , ( )G0 0 8i i

for n =  0, and
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θ θ

θ θ








+ = , + − ,

− = , − − , ( )

n n G n R

n n G n R

sin cos 1

cos sin 1 9
i n i n i

i n i n i

for n ≥  1, where θ δ= ( / )/g narctan 2 2n  and δ =   ω −  ε is the detuning. The corresponding eigenvalues 
are E0 =  0 and

ω μ
δ δ

= ( − ) + ±





+





( ≥ ).
( )

μ
±E n ng n

2 4
1

10n

2
2

1
2

Since here we investigate the lower-energy behavior, only the lower polariton branch −n  is consid-
ered17. Thus, the Hamiltonian HS is rewritten as

∑∑ ∑∑ω μ
δ δ

=






( − ) +






−





+





,
( )

   H n n n ng n n
2 4 11i n

i i
i n

i iS

2
2

1
2

where = −n ni i
. The second term of the Hamiltonian HS leads to an even distribution of polaritons, 

which provides an effective on-site repulsive interaction between photons17. When 
t g  the rotating-wave 

approximation is reasonable, and thus the hopping term becomes

( )∑∑β= − ⊗ + . . ,
( )

∼ ∼
, + +

 H t m n n m H c
12n i

n m i i i iHOP 1 1

where β θ θ θ θ= ( + ), m ncos cos sin sinn m n m n m
2 and = −∼m mi i

, with m =  n +  1. In addi-
tion, since the upper polariton branch +n  has the higher probability of Rydberg excitation (stronger 
repulsive interaction), we also only consider the projection of the van der Waals interaction into the 
lower polariton branch −n . Thus, the corresponding Hamiltonian becomes

∑ ∑= ( − ) ⊗ ′ ′ ,
( )

∼ ∼, ′

, ′>
, ′  H J i j n n n n1

2 13
n n

ij n n
n n i i j jV

0

where

( ) θ θ( − ) = ( − ) ′ ⊗ ′ = ( − ) ( ), ′ ′   J i j V i j n n R R R R n n V i j sin sin 14n n j j i i j j j i n n
2 2

is the effective interaction strength. Since V(i −  j) >  0, and moreover, V =  V1 ~ g, Eq. (13) demonstrates 
explicitly that the van der Waals interaction generates a strong PLRRI. As will be shown below, this 
strong PLRRI leads to non-trivial quantum phases exhibiting photon solid states.

Quantum phases.  We investigate quantum phases and phase diagrams by perturbation theory 
and a mapping into an effective Hamiltonian. For instance, when the chemical potential μ is weak, 
the high-occupancy-photon states (n >  1) of the Hamiltonian (2) are not considered. In such case, we 
rewrite the Hamiltonian (2) in a reduced Hilbert space, with n =  0, 1, as

( )∑ ∑

∑

= − ⊗ + . . + ( − ) ⊗

+ ,
( )

μ

⊥ + +

−

˜ ˜ ˜ ˜ ˜ ˜

˜ ˜

H J J i j

E

1 0 0 1 H c 1
2

1 1 1 1

1 1
15

i
i i i i

ij
i i j j

i
i i

eff 1 1

1

where ⊥J  =  tcos2θ1, ( − ) = ( − ),J i j J i j1 1  and ω μ δ δ= − + / − ( / ) +μ
−E g2 21

2 2  is the 
single-particle energy of the 1̃  state. This effective photon hopping rate ⊥J  can be easily tuned by the 
detuning δ, since θ1 =  arctan(2g/δ)/2. In addition, for the low-energy effective Hamiltonian (15), it is 
convenient to introduce a renormalized nearest-neighbor van der Waals interaction θ=

∼V V sin4
1 to 

simplify the discussions about phase diagrams, as shown below.
We first consider the case without photon hopping ( ⊥J  =  0). At the initial time, we assume that every 

cavity is in its vacuum state, as shown in Fig. 3(a). When increasing the chemical potential μ, photons 
in some cavities can be excited, due to the existence of the PLRRI (without the PLRRI, all cavities are 
excited identically17), and some 1̃  states emerges, as shown in Fig. 3(b). The corresponding critical point 
is
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μ ω δ δ−
= −






+





,
( )g g g2

1
4 16

c0
2

2

1
2

derived from μ( ) =μ
−E 0c1 0 . Since the 1̃  states are generated one by one and deviate from each other, 

the system exhibits photon solid states, which are mainly governed by different filling factors

ρ = (≤ ),
( )

p
q

1
17

with p and q being both integers. In order to quantitatively determine the filling factor  ρ, we introduce 
Xi

0 and Xi
l, where Xi

0 is the position of the ith 1̃  state and Xi
l is the distance to the lth next 1̃  state, 

satisfying = −+X X Xi
l

i l i
0 0. When the ground-state energy is minimized for all sites, we have

= + , ( )X r ror 1 18i
l

l l

where rl <  l/ρ <  rl +  1, and satisfy the relation53,54

∑ = .
( )

X lN
19i

i
l

0

In Eq. (19), N0 is the total number of cavities. For a given filling state, the repulsive interaction energy 
of the 1̃  states can be estimated by applying the relations in Eqs. (18)–(19) to the Hamiltonian (15). 
Moreover, the corresponding phases are stable if it costs energy to add or remove a particle and rearrange 
the structure.

Photon solid phase.  We define the photon solid phase, with the filling factor ρ, as c q
. If we add one 

1̃  state, c q
 becomes p q

 and the 1̃  states are crowded. To minimize the repulsive energy, the summa-
tion of distances between the 1̃  states must be a minimum. Thus, the most likely rearrangement struc-
ture is that some pairs of the adjacent 1̃  states are shortened by one site53,55. By considering the periodic 
boundary condition and relations in Eqs. (18)–(19), rl 1̃  state pairs with = ( + )X r 1i

l
l  must be replaced 

Figure 3.  Photon distributions of each cavity for different effective strengths V of the van der Waals 
interaction, when increasing the chemical potential μ. (a–b) t =  0 with a weak V, (c) t ≠ 0 with a weak V, 
and (d) t ≠ 0 with a large μ and a strong V. The vacuum state 0  is denoted by light blue disks, and the 
photon excitation state 1̃  is shown in orange. (a) In the initial state, every cavity is in its vacuum state. 
When increasing μ, cavities can be excited. Due to existence of the PLRRI, the 1̃  states are generated one 
by one and deviated from each other. Thus, the ground states of system are a series of photon solid phases, 
with different fraction filling factors (from low to high). We call it photon Devil’s stair case. As an example, 
(b) shows a photon solid phase with a period of 3 sites ( ) 

˜ ˜0 0 1 0 0 1 . (c) Melting of this photon 
solid phase. A particle-like defect with the unit cell ˜0 1  is shown inside the blue solid elliptic curve in (c). 
When a photon on the edge of the defect hops one site, this defect will move three sites (the new possible 
positions are labeled by dashed ellipses). (d) Plot of a photon-frozen solid phase, which is composed of the 
0 and 2  (red color) states.
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by (rl +  1) 1̃  state pairs with =X ri
l

l. In addition, at the phase-transition point, there is no energy gap55 
between c q

and p q
, i.e., ( ) = ( )E c E pq q

, and the critical point is thus obtained by

∑

∑

μ ω
δ δ

( ) = + −





+





+ 
 ( + ) ( ) − ( + )



+ 
 ( − ) − ( − ) ( ) 

, ( )

ρ
= , ≠

=

p g r J r r J r

kqJ kq kq J kq

2 4
1 1

1 1
20

k k fp
k k k k

k

0
2

2

1
2

1

1

where f is any integer (see Methods section). Similarly, if we remove one 1̃  state, c q
 turns into h q

, and 
the corresponding critical point is given by (see Methods section)

∑

∑

μ ω
δ δ

( ) = + −





+





+ 
 ( + ) ( ) − ( + )



+ 
 ( + ) ( ) − ( + )

. ( )

ρ
= , ≠

=

h g r J r r J r

kq J kq kqJ kq

2 4
1 1

1 1
21

k k fp
k k k k

k

0
2

2

1
2

1

1

In terms of the obtained μ ( )ρ p0  and μ ( )ρ h0 , the stability interval, μ μ μΔ = ( ) − ( )ρ ρ ρp h0 0 , is evaluated 
as

∑μΔ = ( + ) + ( − ) − ( ).
( )ρ

=

kqJ kq kqJ kq kqJ kq1 1 2
22k 1

The expression for Δ μρ shows that the stability interval is only dependent on q, and moreover, 
decreases rapidly when increasing q. This means that the photon solid phases with p =  1, i.e., ρ =  1/q =  1/2, 
1/3, 1/4,…, are more likely to be observed. Below, we mainly address these phases.

Photon Devil’s staircase.  In Fig. 4(a), we plot the filling factor ρ as a function of the chemical poten-
tial μ and the renormalized effective strength θ=

∼V V sin4
1 of the van der Waals interaction, in terms 

of the obtained μ ( )ρ p0  and μ ( )ρ h0  in Eqs. (20) and (21). For =
∼V 0, ρ =  1, as expected [see the red solid 

line in Fig. 4(a)]. However, the results for finite ∼V  [for example, = .∼V 0 025 g; see the black dashed line 
in Fig. 4(a)] are very interesting. When increasing μ, ρ is not a constant, but varies “jumpily” from 1/6, 
1/5, 1/2, 1/4, 1/3, 2/5, to 1/2. The reason is that when increasing μ, μ

−E1  decreases, and excitation of the 
cavities is thus favorable. This behavior clearly shows a Devil’s staircase55,56. Moreover, this Devil’s 

Figure 4.  The filling factor  ρ = p/q as a function of the chemical potential μ and the renormalized 
effective strength θ=

∼V V sin4
1 of the van der Waals interaction, when (a) J⊥/g =  0 and (b) J⊥/g =  0.001. 

In (a), the ground states of system are the photon solid phases. For finite ∼V , when increasing μ, excitation of 
the cavities is favorable, and ρ varies “jumpily” from 1/6, 1/5, 1/2, 1/4, 1/3, 2/5, to 1/2. This behavior clearly 
shows a devil’s staircase. On the contrary, when increasing ∼V  for a finite μ, the PLRRI prevents excitation of 
the cavities, and ρ decreases “jumpily” from 1/2 to 1/6. In (b), when the photon hopping exists, the photon 
solid phases melt, attributed to the motion of particle- and hole-like defects. Thus, the photon-floating solid 
phase (PF) emerges.
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staircase could be detected experimentally by measuring the mean-photon number /†a a L, since 
ρ/ = /†a a L 2, and thus here called the photon Devil’s staircase. However, when increasing ∼V , ρ varies 

jumpily from high to low because the PLRRI prevents the photon excitation.
Recently, the photon nearest-neighbor interaction was studied and a photon solid state was pre-

dicted24. In that case, the Z2 symmetry, translated by one site, has been broken. Here the PLRRL gener-
ates a long-range translation symmetry, whose breaking induces the photon Devil’s staircase. Moreover, 
it leads to other non-trivial phases when the photon hopping exists.

Notice that between the adjacent photon solid phases, with ρ =  1/q and ρ = /( )q1 1 , respectively, 
there are many transition states which have different numbers of defects. Here we define the pairs of the 
1̃  states with shorter (longer) distance as a particle- (hole-) like defect structure. Since these states have 
very small stability intervals, they should be hard to observe when ⊥J  =  0, and thus not plotted in 
Fig. 3(b). However, when ⊥J  ≠ 0, they play an important role for the ground-state properties, because of 
the motion of the defects, as shown in Fig.  3(c). Especially, when the hopping energy is negative, the 
states with defects may be more stable than the adjacent photon solid states. Thus, the photon solid 
phases melt and a photon-floating solid phase57 can emerge. In general, it is difficult to fully characterize 
this process. However, in the region close to the phase-transition point, the repulsive interaction between 
the defects only allow one defect. Thus, the phase boundary can be estimated by comparing the energy 
of the photon solid state c q

 with that of the state with one defect. Using a perturbative method, we 
obtain the following phase boundaries (see Methods section):

μ μ μ μ= ( ) − , = ( ) + . ( )ρ ρ ρ ρ⊥ ⊥p qJ h qJ2 2 23
up 0 down 0

Equation (23) shows that the hopping energies of the defects reduce the regions where the photon 
solid phases exist, because μ μ μ− = Δ −ρ ρ ρ ⊥qJ4up down . In particular, when μ≥ Δ /( )ρ ⊥q J4 , 
μ μ≤ρ ρ

up down , and thus the energy bands of the particle- and hole-like defect states cross and the photon 
solid phases cannot exist. This is the reason why only the photon solid phases, with ρ =  1/2 and ρ =  1/3, 
can emerge in Fig. 4(b). From Fig. 4(b), we also see that the regions where the photon solid phases exist 
are very small, and are melted for a smaller ⊥J  ( ⊥J /g =  0.001). This implies that the hopping term can be 
treated as a perturbation. So the results from the phase boundaries in Eq. (23) are reasonable. Strictly 
speaking, in the photon-floating solid phase, the total number of the 1̃  states is sensitive to the fluctu-
ation of the parameters, and also ρ and /†a a L are hard to calculate in that phase. Recently, the quantum 
Monte Carlo method has been used to solve this problem58. When =

∼V 0, the photon-floating solid 
phase disappears [see the blue line in Fig. 4(b)].

Photon-frozen solid phase.  Finally, we address the case of a strong chemical potential μ, in which 
the higher-photon-occupancy states in some cavities can occur, and moreover, the single-particle energy 
of the 2  state, μ

−E2 , is close to that of the 1̃  state, μ
−E1 , (here we omit the case n >  2). In this case, there 

are three kinds of repulsive interactions: between the 1̃  and 1̃  states, between the 2  and 2  states, and 
between the 1̃  and 2  states. Moreover, the photon hopping has two channels, from the 0  to 1̃  states 
and from the 1̃  to 2  states. These two channels are very complex. However, in the resonant case (δ =  0), 
sin2θn =  1/2, and , ′H n n

V  is thus independent of n. This indicates that the photon numbers of the excited 
cavities are only determined by μ

−E1  and μ
−E2 . When the PLRRI is not sufficiently strong, the lattice can 

be fully filled in the weak-μ region. In this region, >μ μ
− −E E2 1 , and the ground state, still governed by 

the Hamiltonian (15), is thus composed of the 0  and 1̃  states. By increasing μ, ρ increases from 0 and 
reaches 1. Further increasing μ, all cavities can be excited with uniform photon numbers, which is sim-
ilar to that of the standard Jaynes-Cummings-Hubbard model, as shown in Fig. 5(a).

However, there is a non-trivial case for a strong PLRRI, as shown in Fig. 5(b). In such case, the photon 
solid phases can exist in the strong-μ region. But we cannot ensure that the lattice is fully filled by  
the 1̃  states, due to inversion of μ

−E1  and μ
−E2 . This process can be determined by comparing 

μc1 ≈  ω  −  g +  1.0175 V, obtained by making ρ =  1 in μ ( )ρ h0 , with the other critical point μc2 ≈  ω  +  0.414 g  
(the degenerate point of μ

−E1
c2 and μ

−E2
c2). When V >  0.576 g, μc1 >  μc2, and there is a transition from the 1̃  

to 2  states in the excited cavities. Thus, this transition induces a new crystalline configuration, which is 
composed of the 0  and 2  states. The corresponding low-energy behavior is governed by a new effective 
Hamiltonian

∑ ∑′ = ( − ) ⊗ + ,
( )

μ
−

     H J i j E1
2

2 2 2 2 2 2
24ij

i i j j
i

i ieff 2

where ( − ) = ( − ) = ( − ), ,J i j J i j J i j2 2 1 1 , and ω μ= ( − ) −μ
−E g2 22 . Since

( ) = , ( )+ + +


†a a0 2 0 2 0 25i i i i i i1 1 1
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the photon hopping is always frozen even if t exists. We denote the corresponding phase as the 
photon-frozen solid phase. In this phase, the fractional filling structure of the 2  states is robust, i.e., it is 
not easily destroyed by the photon hopping. In terms of the Hamiltonian (24), when further increasing 
μ; to satisfy μ μ ω> ≈ ( − + . )/g V2 2 1 0175 2c3 , the lattice can be fully filled by the 2  states, as 
shown in Fig. 5(b)

Discussion
In summary, we have achieved a strong PLRRI by controlling the van der Waals interaction of Rydberg 
atoms located in different cavities in extended Jaynes-Cummings-Hubbard lattices, and then predicted 
novel quantum phases. Since the atom-cavity polariton can be easily controlled experimentally59,60, our 
proposal offers a new way to control the interaction between individual photons. In addition, our pro-
posal might help to explore rich many-body phenomena of light and quantum nonlinear optics, as well 
as potential applications to quantum information and computing.

Methods
Derivation of Eqs. (20) and (21).  We have described the low-energy behavior of the Hamiltonian (1) 
by an effective Hamiltonian (15). Moreover, we have also pointed out that when ⊥J  =  0, there is a suc-
cession of photon crystal states with different filling factors, denoted as a photon Devil’s staircase struc-
ture, and the energy gap of the photon crystal states can be calculated in terms of Eqs. (18) and (19), i.e., 

=X ri
l

l or rl +  1, and ∑ =X lNi i
l

0. For example, we define the crystalline ground state, with the filling 
factor ρ =  p/q, as c q

. By adding one 1̃  state, the crystalline ground state c q
 becomes p q

. After rear-
ranging the 1̃  states, the distance rl between the 1̃  states is changed. Using Eqs. (18) and (19), rl 1̃  
state pairs with = ( + )X r 1i

l
l  must be replaced by (rl +  1) 1̃  state pairs with =X ri

l
l. So the corre-

sponding energy shift,  Δ = ( ) − ( )+E E p E cq q
, is calculated as

Δ = + ( + ) ( ) − ( + ) + ( + ) ( ) − ( + ) +

+ ( − ) − ( − ) ( ) + + ( − ) − ( − ) ( ) + , ( )

μ+
− 

 

E E r J r r J r r J r r J r

qJ q q J q qJ q q J q

1 1 1 1

1 1 2 2 1 2 1 2 26
1 1 1 1 1 2 2 2 2

where rp =  q, r2p =  2q,…, have been inserted55. Similarly, by removing one 1̃  state from c q
, we obtain a 

new state h q
. The corresponding energy shift, , Δ = ( ) − ( )−E E h E cq q

is calculated as

Figure 5.  Schematics of the ground-state phase diagrams as functions of the chemical potential μ and 
the photon hopping rate t, when δ = 0. In (a) the PLRRI is weak and all cavities are excited to the 1̃  states 
before the higher-photon-occupancy states emerge. This can be determined by considering μc1 <  μc2. In (b), 
the PLRRI is strong and the photon-frozen solid phase occurs. This can be determined by considering 
μc1 >  μc2. When μ >  μc1 and μ >  μc3, all cavities in (a) and (b) are excited identically, respectively. Here, SF, 
PS, PF, and FS denote the following phases: superfluid, photon solid, photon-floating solid, and photon-
frozen solid, respectively. JCH stands for Jaynes-Cummings-Hubbard. This figure is not to scale.
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Δ = − − ( + ) ( ) + ( + ) − ( + ) ( ) + ( + ) +

− ( + ) ( ) + ( + ) − − ( + ) ( ) + ( + ) + . ( )

μ−
− 

 

E E r J r r J r r J r r J r

q J q qJ q q J q qJ q

1 1 1 1

1 1 2 1 2 2 2 1 27
1 1 1 1 1 2 2 2 2

These equations govern the energy gap of the photon crystal state c q
. Obviously, at the phase-transition 

point, the energy gap is closed, i.e.,  Δ E± =  0. Using the expression ω μ δ δ= ( − ) + / − / +μ
−E g2 41

2 2 , 
we can derive the critical point of the chemical potential. The critical point between c q

 and p q
 is

∑ ∑

μ ω
δ δ

( ) = + −





+





+ 
 ( + ) ( ) − ( + )

 + 
 ( − ) − ( − ) ( ) 

, ( )

ρ

= , ≠ =

p g

r J r r J r kqJ kq kq J kq

2 4

1 1 1 1
28k k fp

k k k k
k

0
2

2

1
2

1 1

where f is any integer. Similarly, the critical point between c q
 and h q

 is given by

∑ ∑

μ ω
δ δ

( ) = + −





+





+ 
 ( + ) ( ) − ( + )

 + 
 ( + ) ( ) − ( + )

. ( )

ρ

= , ≠ =

h g

r J r r J r kq J kq kqJ kq

2 4

1 1 1 1
29k k fp

k k k k
k

0
2

2

1
2

1 1

Derivation of Eq. (5).  We define

∑=
( )=

/
p C p

30q
i

L q

i q
i

1

as a state with a one particle-like defect, where the index i denotes the position of the defect and Ci is its 
coefficient. For simplicity, we only consider the lowest order of the photon hopping: the motion of the 
defect. Inserting p q

 into equation ( ) =  E p p H pq q qeff , we obtain

( ) ( )= − ( ), ( )⊥


 E p E p qJ kq2 cos 31q q
0

where ( )E p q
0  is the summation of the on-site and repulsive energies, − ( )⊥

qJ kq2 cos  is the hopping 
energy band of a defect with wave number k. The phase boundary is determined by the lowest energy of 
p q

, i.e., =k 0 and ( ) = ( ) − ⊥E c E p qJ2q q
0 . Thus, the upper bounds of the photon solid phases are 

given by

μ μ= ( ) − . ( )ρ ρ ⊥p qJ2 32
up 0

Similar to the above discussions, the lower bounds of the photon solid phases are obtained by

μ μ= ( ) + . ( )ρ ρ ⊥h qJ2 33
down 0
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