
Sergey Savel’ev, A. L. Rakhmanov, and Franco Nori
(Received 5 May 2007; published 25 June 2007)

We have recently realized that the derivation of the effective potential Eq. (5) had an error. However, this does not qualitatively change the main conclusions and results of our Letter, including comparison with the experiment. Below, we present the correct derivation of the escape rate $\Gamma$.

The potential energy $V$ in the effective Lagrangian $L = \int_{-d}^{d} \dot{\psi}^2 dx/2 - V$, for $\psi$ in the central junction and with current defined by Eq. (4), is

$$V = \frac{1}{2} \int_{-d}^{d} dx \left( 1 - j^2 \psi^2 - \frac{j \psi^3}{3} + \int_{-d}^{d} dx' Y(L_1, x - x') \frac{\partial \psi(x)}{\partial x} \frac{\partial \psi(x')}{\partial x'} \right),$$

where $Y(L_1, x - x') = (\lambda_3^2/2d\lambda_c) \sum_{m=0}^{\infty} G_m \cos k_m(x - x')$ and $G_m = \cosh(q_mL_1) \cosh(q_m(L - L_1))/q_m \sinh(q_mL)$. Note that the difference between the $G_m$ presented here and $G_m$ in our Letter arises due to correct boundary condition $d\psi/dy = 0$, which gives a proper limit in the one-junction case. Following a standard procedure to map the theory of field tunnelling into particle tunnelling (see, e.g., [1]), we factorize $\psi = \dot{\psi}(t)f(x)$, where $\dot{\psi}(t)$ is a coordinate of the effective particle and $f(x)$ is the lowest normal mode of the field. Using the normalization condition $\int_{-d}^{d} dx f(x)^2 = 1$, we obtain the expression for the kinetic energy $T = \dot{\psi}^2/2$. Using a steplike approximation for $f = 1/\sqrt{x_0}$ for $d - x_0 < x < d$ and $f = 0$ otherwise, we derive $V = \sqrt{1 - j^2 \dot{\psi}^2}/2 - j \dot{\psi}^3/6x_0^{1/2} + Y(L_1, 0)\dot{\psi}^2/2x_0$. Now the tunnelling exponent $B$ is determined by

$$B(L_1) = \frac{24}{5} x_0 \left\{ \sqrt{1 - j^2} + \frac{Y(L_1, 0)}{x_0} \right\}^{5/2}.

To find $x_0$, we have to minimize $B(L_1, x_0)$, that is, to maximize the tunnelling probability. In doing so, we obtain $x_0(L_1) = 3Y(L_1, 0)/(2\sqrt{1 - j^2})$ for $x_0(L_1) < x_0^*(L_1)$, where $B(L_1, x_0^*) = B^* = (48/5)d(1 - j^2)^{5/4}$. For $x_0 > x_0^*$, $B = B^*$. Thus, instead of Eq. (7) in Ref. [2], we derive

$$\frac{\Gamma(j)}{\Gamma_0(j)} = \sum_{n=0}^{N} \frac{B_n}{B^*} \exp \left[ -\frac{36U_0}{5h\omega_p} \left( \frac{B_n}{B^*} - 1 \right) \right]

where $B_n = (20\sqrt{5}/\sqrt{3})Y(L_1, 0)(1 - j^2)^{3/4}$ and $n = L_1\lambda_{ab}/s$.

We are very grateful to Professor Joachim Keller for very useful correspondence and comments.