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This document consists of three parts: (I) amplifica-
tion factor with varying the optical tunnelling rate J ;
(II) supermode splitting and linewidth; and (III) stabil-
ity analysis with the tunable gain-loss ratio δ.

I. Amplification factor with varying J

Figure 2 in the main text shows the steady-state popu-
lations of intracavity photons in the passive resonator, by
numerically solving Eq. (5). A notable feature of the PT -
symmetric COM system is the emerging resonance peaks
of the optical amplification factor η around the gain-loss
balance δ = 1 (see Fig. 2b), where we choose to change
the values of gain-loss ratio δ but with fixed optical tun-
nelling rate (J/γ = 1). Here we show in Fig. S1 that for
fixed δ, similar features can be observed by changing the
optical tunnelling rate J/γ.
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FIG. S1: (Color online) Optomechanical amplification factor
η versus the tunable optical tunnelling rate J/γ, for the fixed
value of gain-loss ratio δ = 1. Here the amplification factor η
is by the Eq. (7) of the main text (having the PT -symmetric
result divided by the result for the passive COM case).

Even when comparing with a passive COM system
with threshold power Pth,p = 7 µW, the PT -symmetric
COM system performs better for significantly lower input

(c)

FIG. S2: (Color online) Relative amplification factor ξ versus
tunable gain-loss ratio δ ≡ κ/γ and the input power Pin. The
vertical color bar refers to the values of ξ.

power, i.e.

ξ ≡ xs(δ, Pin)
xs,p(Pin = Pth,p)

≥ 1,

which, for δ = 1, can be realized for Pin ≥ 3× 10−4 µW.
For instance, ξ ∼ 15.9 or 29.5 for Pin = 1 µW or
7 µW. Figure S2 plots ξ(δ, Pin), by comparing the PT -
symmetric system working below the threshold 7 µW and
the passive COM system working with 7 µW. For δ → 1,
Pin > 0.1 µW, the enhancement effect is significant even
in this situation.

II. Supermode splitting and linewidth

The non-Hermitian Hamiltonian of the system (com-
prising the optical gain, the optical supermodes, and the
phonon mode) can be written at the simplest level as

Htot = (ω+ − iγ+) a†+a+ + (ω− − iγ−) a†−a−

+ωmb†b +
gx0

2

(
ba†+a− + a†−a+b†

)
. (S1)

The weak driving terms are not explicitly shown here.
The specific expressions of ω± and γ± are different
in two distinct regimes (see the main text): (i) the
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FIG. S3: (Color online) Mode-splitting (a) and linewidth (b)
of the supermodes in the PT -symmetric COM system (black
curves) or the passive COM system (red lines), as a function
of J/γ (see also Ref. [2]). The PT -symmetry holds in (ii) and
not in (i).

regime which was identified as the broken-PT -symmetry
phase for a purely optical structure [1], characterized by
(κ + γ) /2 > J ; (ii) the regime with strong inter-cavity
coupling (κ + γ) /2 ≤ J , which for a purely optical sys-
tem, was identified experimentally as the unbroken-PT -
symmetry phase [1]. We note that only the supermodes
with unbroken PT -symmetry can be distributed evenly
across the coupled resonators, hence enabling the com-
pensation of loss with gain. In contrast to this, the PT -
broken supermodes become spontaneously localized in ei-

ther the amplifying or lossy resonator, hence experiencing
either net gain or loss (see Ref. [2] for more details).

As Fig. S3 shows, the phonon lasing action can exist
only in the PT -symmetric regime where the optical su-
permodes are non-degenerate and thus can exchange en-
ergy through the phonon mode. Figure S3 is similar to
that as was shown in all PT -symmetric systems, e.g. in
Ref. [1]; nevertheless, here we show for the first time that
the ultralow-threshold phonon lasing can exist only in the
unbroken-symmetry regime, not in the broken-symmetry
regime.

We stress that, by increasing the optical coupling rate
J , one can realize the transition from the broken to the
unbroken PT -symmetric regimes. That is, realizing not
only the exchange of two subsystems (micro-resonators),
but also changing the gain to loss and vice versa. By
tuning the gain-loss ratio, one can realize the transition
from linear to nonlinear regimes, i.e. the giant enhance-
ment of the intracavity field intensity and then the me-
chanical gain. Both of these two conditions (strong J
and δ = 1) are required to observe the unidirectional
wave propagation in a purely optical system [1] and now
the ultralow-threshold phonon laser in a COM system.
It is the presence of active gain which makes it possible
to realize these two conditions simultaneously.

III. Stability analysis with tunable δ

Finally, we mention that in the vicinity of the gain-
loss balance, the stability properties of the COM sys-
tem can also be significantly modified. To see this we
need to study the role of thermal noise on the mechani-
cal response. This is accomplished by linearizing Eqs. (1-
3) and then studying the fluctuations of the operators.
With the equations of motion as Eqs. (1-3) in the main
text, including also the optical detunings ∆i = ωc,i − ωL

(i = 1, 2) between the two resonators and the input sig-
nal laser, the mean values of the optical and mechanical
modes then satisfy the following equation

(κ− i∆1) a1,s − iJa2,s −
√

2κΩd = 0, (S2)
(−γ − i∆2) a2,s − iga2,sx− iJa1,s = 0, (S3)

−mω2
mxs − g |a2,s|2 = 0, (S4)

with Ωd =
√

Pin/~ωc. From these equations we can ob-
tain the following polynomial for the input power Pin,

Pin =
ωc,1

2κJ2

[
g4

m2ω4
m

(
∆2

1 + κ2
)
N3 + g2

mω2
m

(
2γ∆1κ + 2J2∆1 −∆2

1∆2 − 2γκ∆1 − 2κ2∆2

)
N2

+
(
γ2κ2 + J4 − 2γκJ2 + ∆2

1∆
2
2 + 2γκ∆1∆2 − 2J2∆1∆2 + γ2∆2

1 + κ2∆2
2 − 2γ∆1κ∆2

)
N

]
, (S5)

where N denotes the photon number inside the passive
resonator. For a passive COM system, increasing the in-

put power can lead to unstable evolutions of the system.
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For our present active system, however, a bistability-free
regime is accessible by tuning δ, which is reminiscent of
that in a PT -symmetric electronics system [3].
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FIG. S4: (Color online) Mean population of photons in the
passive resonator containing the mechanical mode. The bista-
bility feature seen for δ = 1.5, which is confirmed to be similar
to the passive COM situation, can be removed at the gain-
loss balance. Dotted and dashed curves denote different types
of instability (see Ref. [5]). All relevant parameter values are
given in the main text, including here also the optical detun-
ings ∆1/ωm = 0.03 and ∆2/ωm = 0.15.

Let us now linearize Eqs. (1-3), i.e. expanding every op-
erator as its steady-state value plus a small fluctuation
around this value

a1 = a1,s + δa1, a2 = a2,s + δa2, x = xs + δx,

it is straightforward to obtain the linear equations

dδa1

dt
= κδa1 − iJδa2 +

√
2κδain,

dδa2

dt
= −γδa2 − iJδa1 − iga2,sδx− igxsδa2, (S6)

d2δx

dt2
+ Γm

dδx

dt
+ ω2

mδx =
g

m

(
a∗2,sδa2 + a2,sδa

∗
2

)
+

δεin

m
,

for these fluctuations. The resulting solutions can be
compactly written as

δx[ω] = χ[ω] δεin, (S7)

where

χ−1[ω] = m

(
ω2

m − ω2 − iωΓm +
2g2

m
|a2,s|2ReY[ω]

)
,

Y−1[ω] = −ω − iγ + gxs +
J2

ω − iκ
, (S8)

for a thermally-driven system. Hence, by tuning the gain-
loss ratio, COM properties (such as the mechanical sus-
ceptibility [4] and the bistability features) can be signifi-
cantly modified. As a specific example, Fig. S4 shows the
stable and unstable parameter regimes, by applying the
Routh-Hurwitz criterion [5].

By applying this criterion to the coefficient matrix of
these linear equations, we obtain in the following two
stability conditions

S1 =
(

ω2
m +

Γ2
m

4

)(
42

2 +
γ2

4

)
− 4ωmG242 > 0, (S9)

S2 = γΓm

[(42
2 − ω2

m

)2
+

1
2

(42
2 + ω2

m

)
(γ + Γm)2 +

1
16

(γ + Γm)4
]

+ 4G242ωm (γ + Γm)2 > 0, (S10)

where G = gx0 |a2,s|. For 42 ≥ 0, the second inequality
is always satisfied. With the help of these conditions, the
bistability lines can then be plotted by numerically eval-
uating the polynomial in Eq. (S5). The resulting figure is
shown in Fig. S4, with the corresponding stable regimes
of parameters. Here, to compare with passive COM sys-

tems, we include also optical detunings, ignored previ-
ously in order to focus on the role of optical gain. We see
that, in general, for stronger input power, bistability ap-
pears for higher gain-loss imbalance, as in passive COM
systems. In contrast, this effect can now be completely
removed at the gain-loss balance (see also Ref. [3]).
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