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This document consists of three parts: (I) amplifica-
tion factor with varying the optical tunnelling rate J;
(IT) supermode splitting and linewidth; and (IIT) stabil-
ity analysis with the tunable gain-loss ratio 9.

I. Amplification factor with varying J

Figure 2 in the main text shows the steady-state popu-
lations of intracavity photons in the passive resonator, by
numerically solving Eq. (5). A notable feature of the P7-
symmetric COM system is the emerging resonance peaks
of the optical amplification factor 1 around the gain-loss
balance § = 1 (see Fig.2b), where we choose to change
the values of gain-loss ratio § but with fixed optical tun-
nelling rate (J/v = 1). Here we show in Fig. S1 that for
fixed ¢, similar features can be observed by changing the
optical tunnelling rate J/7.
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FIG. S1: (Color online) Optomechanical amplification factor
71 versus the tunable optical tunnelling rate J/+, for the fixed
value of gain-loss ratio 6 = 1. Here the amplification factor n
is by the Eq. (7) of the main text (having the P7T-symmetric
result divided by the result for the passive COM case).

Even when comparing with a passive COM system
with threshold power Py, , = 7uW, the PT-symmetric
COM system performs better for significantly lower input
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FIG. S2: (Color online) Relative amplification factor £ versus
tunable gain-loss ratio § = k/+ and the input power P;,. The
vertical color bar refers to the values of .

power, i.e.
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which, for § = 1, can be realized for P, > 3 x 1074 uW.
For instance, & ~ 15.9 or 29.5 for P, = 1uW or
7TuW. FigureS2 plots £(6, Py,), by comparing the P7T-
symmetric system working below the threshold 7 uW and
the passive COM system working with 7 yW. For § — 1,
Py, > 0.1 uW, the enhancement effect is significant even
in this situation.

§

II. Supermode splitting and linewidth

The non-Hermitian Hamiltonian of the system (com-
prising the optical gain, the optical supermodes, and the
phonon mode) can be written at the simplest level as

Hiot = (wq —ivy) aiaJr + (w- —iy-) ala_
Fmblh + % (baia_ + aT_a+bT) . (S1)
The weak driving terms are not explicitly shown here.

The specific expressions of wy and vy are different
in two distinct regimes (see the main text): (i) the



4 =
(a)
= =
< -
o 2 selant ]
= -
s .
o /"
3= e
= ; f
2 AR
) S~
9 ~~~
o
-2 \\\ ]
(i) (i)
—4 s ‘ ‘ 2
0 1 2 3 4
optical tunnelling rate Jly
(b)
1-___\ 4
1) N
o 0.5 ks ]
= ‘
2 i
g 0 .
2 ]
o ‘
£ '
—0.5
ST ) () ’

optical tunnelling rate J/y

FIG. S3: (Color online) Mode-splitting (a) and linewidth (b)
of the supermodes in the P7-symmetric COM system (black
curves) or the passive COM system (red lines), as a function
of J/~ (see also Ref. |2]). The PT-symmetry holds in (ii) and
not in (i).

regime which was identified as the broken-P7 -symmetry
phase for a purely optical structure [1], characterized by
(k4+7)/2 > J; (ii) the regime with strong inter-cavity
coupling (k + ) /2 < J, which for a purely optical sys-
tem, was identified experimentally as the unbroken-P7 -
symmetry phase [1]. We note that only the supermodes
with unbroken P7-symmetry can be distributed evenly
across the coupled resonators, hence enabling the com-
pensation of loss with gain. In contrast to this, the P7-
broken supermodes become spontaneously localized in ei-
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where N denotes the photon number inside the passive
resonator. For a passive COM system, increasing the in-
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ther the amplifying or lossy resonator, hence experiencing
either net gain or loss (see Ref. [2] for more details).

As Fig.S3 shows, the phonon lasing action can exist
only in the P7-symmetric regime where the optical su-
permodes are non-degenerate and thus can exchange en-
ergy through the phonon mode. Figure S3 is similar to
that as was shown in all P7-symmetric systems, e.g. in
Ref. [1]; nevertheless, here we show for the first time that
the ultralow-threshold phonon lasing can exist only in the
unbroken-symmetry regime, not in the broken-symmetry
regime.

We stress that, by increasing the optical coupling rate
J, one can realize the transition from the broken to the
unbroken P7 -symmetric regimes. That is, realizing not
only the exchange of two subsystems (micro-resonators),
but also changing the gain to loss and vice versa. By
tuning the gain-loss ratio, one can realize the transition
from linear to nonlinear regimes, i.e.the giant enhance-
ment of the intracavity field intensity and then the me-
chanical gain. Both of these two conditions (strong J
and 0 = 1) are required to observe the unidirectional
wave propagation in a purely optical system [I] and now
the ultralow-threshold phonon laser in a COM system.
It is the presence of active gain which makes it possible
to realize these two conditions simultaneously.

III. Stability analysis with tunable ¢

Finally, we mention that in the vicinity of the gain-
loss balance, the stability properties of the COM sys-
tem can also be significantly modified. To see this we
need to study the role of thermal noise on the mechani-
cal response. This is accomplished by linearizing Eqgs. (1-
3) and then studying the fluctuations of the operators.
With the equations of motion as Egs. (1-3) in the main
text, including also the optical detunings A; = w.; —wp,
(i = 1,2) between the two resonators and the input sig-
nal laser, the mean values of the optical and mechanical
modes then satisfy the following equation

(k—iAy)ayrs —iJas,s — V26Qq = 0, (S2)
(—y —iA9) as s —igas sz —iJar s = 0, (S3)

fmwngzzs fg|a27s|2 = 0, (S4)

with Q4 = /Pin/hw.. From these equations we can ob-
tain the following polynomial for the input power Py,

o (59)

(

put power can lead to unstable evolutions of the system.



For our present active system, however, a bistability-free
regime is accessible by tuning §, which is reminiscent of
that in a P7T-symmetric electronics system [3].
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FIG. S4: (Color online) Mean population of photons in the
passive resonator containing the mechanical mode. The bista-
bility feature seen for 6 = 1.5, which is confirmed to be similar
to the passive COM situation, can be removed at the gain-
loss balance. Dotted and dashed curves denote different types
of instability (see Ref. [5]). All relevant parameter values are
given in the main text, including here also the optical detun-
ings A1 /wnm = 0.03 and Az /wy, = 0.15.

Let us now linearize Egs. (1-3), i.e. expanding every op-
erator as its steady-state value plus a small fluctuation
around this value

ay = ay s +d0ay, ax=az,+day, T =x,+0x,

]_'\2
5= (s T2) (0243

1
Sy = A, [(A% - wfn)2 +3 (A3 +w2) (v +Tm)

where G = gzg |as,s|. For Ay > 0, the second inequality
is always satisfied. With the help of these conditions, the
bistability lines can then be plotted by numerically eval-
uating the polynomial in Eq. (S5). The resulting figure is
shown in Fig. S4, with the corresponding stable regimes
of parameters. Here, to compare with passive COM sys-
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it is straightforward to obtain the linear equations

df;tll = kbay — iJdas + V2kda™,
d6a2 . . .

i —vdag —iJdar — igas s0x — igrsdag, (S6)
d?6x déx 9 g/ . . deln
W + Fmﬁ + Cl)m(sx = E(G‘Q,SCSQQ + a2735a2) + m 5

for these fluctuations.
compactly written as

The resulting solutions can be

dzlw] = x[w] 6™, (S7)

where

2 2
x Yw] =m <w$n — w? —iwly, + ga275|2ReY[w]) :
m

J2

Y w) = —w — iy + gzs + (S8)

w—iKk’

for a thermally-driven system. Hence, by tuning the gain-
loss ratio, COM properties (such as the mechanical sus-
ceptibility [4] and the bistability features) can be signifi-
cantly modified. As a specific example, Fig. S4 shows the
stable and unstable parameter regimes, by applying the
Routh-Hurwitz criterion [5].

By applying this criterion to the coefficient matrix of
these linear equations, we obtain in the following two
stability conditions

1
P4 15 (74 D) | + 4G22 (74 D) > 0,

(

tems, we include also optical detunings, ignored previ-
ously in order to focus on the role of optical gain. We see
that, in general, for stronger input power, bistability ap-
pears for higher gain-loss imbalance, as in passive COM
systems. In contrast, this effect can now be completely
removed at the gain-loss balance (see also Ref. [3]).
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