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Supplementary Figure 1: Modulating the effective length of the
line. As a basic characterization, we can measure the phase shift of a mi-
crowave probe signal reflected from the SQUID as we change Φext. This
illustrates how the SQUID changes the boundary condition at the end of
the line. The data is for sample 1, measured with a 5 GHz probe. The fit
includes the SQUID capacitance which is important near Φext = ±0.5Φ0.
From the fit, we extract a plasma (self-resonance) frequency of 85 GHz, al-
though there is a systematic uncertainty in this value due to the unknown
SQUID asymmetry.
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Supplementary Figure 2: Photons generated by the dynamical
Casimir effect. Here we show the output power of the transmission line
while driving the SQUID. On the left (right), are the results for sample 1 (2).
We scan the pump power and frequency and look at the power emitted into
the CPW. The analysis frequency tracks the drive at fd/2, which we expect
to be the center frequency of the DCE radiation. We clearly see photon gen-
eration for essentially all drive frequencies spanning the 8-12 GHz band set
by the filtering of the line. This corresponds to an analysis band of 4-6 GHz.
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Supplementary Figure 3: Parasitic cross correlation of the amplifier
noise. The cross-correlation function measured with the pump off, showing
the parasitic correlation of the amplifier, measured under the same conditions
as Fig. 3a. Note that the vertical scale is expanded by a factor of 100
compared to Fig. 3a. We see that any parasitic correlation of the amplifier
is negligible.
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Supplementary Figure 4: The effects of phase rotations on the cor-
relations. In a two-mode squeezed state, we expect that the various quadra-
ture cross-correlation functions are related to each other by phase rotations.
To explore this predicted symmetry, we can compute the complex correla-
tion function Ψ (defined in the supplementary methods) from the measured
correlation functions and study its rotation properties. The color scale is
the real part of Ψ. The x-axis corresponds to a change in the drive phase.
The y-axis corresponds to a digital rotation of the measured value of Ψ. As
expected for TMS, we see that Ψ is symmetric under phase rotations, that
is, the rotation of one phase cancels a rotation of the other.
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Supplementary Discussion

We can consider if some spurious effect unrelated to the DCE is the source of the
observed photon flux. Simple heating or mixing down of high frequency noise is
strongly ruled out by the symmetry of the spectrum and the observed TMS which
singles out fd/2 as a special frequency and strongly indicate a two-photon process.
A nonlinearity in the dielectric response of the substrate could also conceivably
lead to parametric downconversion. However, the nominal pump powers used
correspond to electric fields of less than 10 V/m, many orders of magnitude below
the levels where nonlinear effects would be expected. We can also consider spurious
effects related to the SQUID. For an ideal SQUID, the circulating current mode,
which we pump, and the linear current mode, which is coupled to the output line,
are not coupled. However, an asymmetry in the junction areas will produce a cross
coupling. The first order effect of this is simply to inject a coherent current into the
output line at the drive frequency.16 We could imagine that if this injected current
is large, then it could lead to parametric downconversion due to the electronic
nonlinearity of the SQUID. We have directly measured the parasitic cross-coupling
between the pump and output lines, and find that the isolation is better than 50
dB, implying that the power injected into the output line is less than 1 fW. Again,
this is many orders of magnitude below the level of power needed for parametric
downconversion, and, in fact, more than an order of magnitude smaller than the
total observed output power. Furthermore, a current injected in the SQUID at fd

will actually modulate the SQUID inductance at 2fd, leading to downconversion
symmetric around fd and not fd/2 as we observe.

Supplementary Methods

Theoretically, we treat the problem as a scattering problem in the context of quan-
tum network theory.26 For superconducting circuits, it is convenient to describe
the EM field in the transmission line in terms of the phase field operator φ(x, t) =∫ t
−∞ E(x, t′)dt′, where E(x, t) is the electric field operator. In the transmission line,

φ(x, t) is described by the massless, scalar Klein-Gordon equation in one dimen-
sion, the solution of which can be written as φ(x, t) = φin(x− c0t) + φout(x + c0t),
where φin(out) is the field propagating inward to (outward from) the SQUID and
c0 ∼ 0.4c is the speed of light in the transmission line. We solve the scattering
problem in Fourier space defining

φin(out) =

√
h̄Z0

4π

∫ ∞

0

dω√
ω

(
ain(out)(ω)e−i(∓kωx+ωt) + h.c.

)
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where a(ω) and its hermitian conjugate a†(ω) and are the standard annihilation
and creation operators and kω = ω/c0 is the wavenumber of the radiation. Solving
the scattering problem then amounts to finding expressions for a†out(ω) and aout(ω)
as a function of a†in(ω) and ain(ω). The boundary condition imposed by the SQUID
determines the connection between these operators. With the output operators, we
can then calculate the properties of the measurable output field assuming the in-
put field is in a definite state, such as a thermal state or vacuum state. For a static
magnetic flux, Φext, we obtain the simple expressions aout(ω) = R(ω)ain(ω) where
R(ω) is the reflection coefficient from the SQUID. R(ω) = − exp[2ikω`e(Φext)]
has the simple form16 of a phase shift due to a transmission line of fixed length
`e(Φext) = LJ(Φext)/L0. Here c0 = 1/

√
L0C0, L0 (C0) is the inductance (capaci-

tance) per unit length of the line, LJ(Φext) = (Φ0/2π)2/EJ(Φext) is the Josephson
inductance of the SQUID, EJ is its Josephson energy, and Φ0 = h/2e is the super-
conducting flux quantum.

In order to generate DCE radiation, `e must change with a nonuniform accel-
eration. A simple example of this type of motion is a sinusoidal drive with an
amplitude of δ`e. If it is driven at ωd with a small amplitude, we then find the
simple expression17 for aout(ω) in the region ω < ωd:

aout(ω) = R(ω)ain(ω) + S(ω)a†in(ωd − ω)

where S(ω) = −i(δ`e/c0)
√

ω(ωd − ω)A(ω)A∗(ωd − ω) and A(ω) is the spectral
amplitude of the transmission line. Crucially, the time-dependent boundary leads
to mixing of the input field’s creation and annihilation operators. With this ex-
pression we can calculate the output photon flux density for an input thermal
state

nout(ω) = 〈a†out(ω)aout(ω)〉 = nin(ω) + |S(ω)|2nin(ωd − ω) + |S(ω)|2.

The first two terms, proportional to nin(ω), represent the purely classical effects
of reflection and upconversion of the input field to the drive frequency. They are
zero at zero temperature. The last term is due to vacuum fluctuations and is, in
fact, the DCE radiation.

Theory17 also predicts that the output should exhibit voltage-voltage cor-
relations at different frequencies with a particular structure commonly known
as two-mode squeezing (TMS). Following Ref. 25, we can describe a two-photon
state, as we expect the DCE to generate, in terms of a modulation of the cen-
ter frequency of the state. We can then define the modulation operators as
α1(ε) = [λ+a(ω+) + λ−a†(ω−)]/

√
2 and α2(ε) = [−iλ+a(ω+) + iλ−a†(ω−)]/

√
2,

where ω± = ωd(1± ε)/2 and λ± = (1± ε)1/2. The factors λ± rescale the operators
from quanta at ω± to quanta at the center frequency ωd/2. We see that these
operators mix excitations at the upper and lower sidebands of the field with a
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definite phase. The TMS of the field then appears as an imbalance of the noise in
one of these modes compared to the other. We define the normalized TMS

σ2 =
Σ11 − Σ22

Σ11 + Σ22

where Σmn = 〈αmα†n + α†nαm〉/2 is the symmetrized spectral density matrix. We
can then calculate the TMS of the output field to be

σ2 =
D(ε)ve

2c0

(1− ε2)

1 + (D(ε)ve/2c0)2(1− ε2)
.

This predicts a maximum squeezing of 50%.
Experimentally, we measure the four quadrature voltages of the upper and

lower sidebands I± and Q±. The observable (hermitian) quadrature operators can
be related to creation and annihilation operators as

I± =

√
h̄ω±Z0

8π
[a(ω±) + a(ω±)†] ; Q± = −i

√
h̄ω±Z0

8π
[a(ω±)− a(ω±)†].

We can write σ2 in terms of the quadratures as

σ2 =
1

Pavg

(〈I+I−〉 − 〈Q+Q−〉)

where Pavg = (〈I2
+〉 + 〈Q2

+〉 + 〈I2
−〉 + 〈Q2

−〉)/2 is the average noise power in the
sidebands. We also expect a special structure for the correlations, in particular
that 〈I+I−〉 = −〈Q+Q−〉 and that 〈I+Q−〉 = 〈I−Q+〉. Finally, we comment that
by the proper choice of analysis phase, we can specify 〈I+Q−〉 = 〈I−Q+〉 = 0
without loss of generality, which has been done in writing the above equation.

We can also predict how the correlations transform under rotations of the
phase of the EM field by an angle θ. In particular, if we define the appropriate
combination of correlation functions

Ψ = (〈I+I−〉 − 〈Q+Q−〉) + i(〈I+Q−〉+ 〈I−Q+〉)

we expect Ψ to transform such that Ψ′ = e−2iθΨ. To explore this predicted sym-
metry, we can compute the complex quantity Ψ from the experimental correlation
functions and look at the rotation properties (see Sup. Fig. 4).

Two-mode squeezing is often discussed in terms of the unitary squeezing op-
erator Θ(r) = exp[ra(ω+)a(ω−) − ra†(ω+)a†(ω−)] where r is called the squeezing
parameter. To connect to this language, one can show that σ2 = −λ+λ− tanh(2r).
This then gives r = (δ`e/c0)

√
ω+ω−.
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In Fig. 3a and Sup. Fig. 3, we have displayed time correlation functions (TCF)
which are the Fourier transforms of the frequency correlation functions (FCF)
defined above. In particular, the value of the TCF at zero delay is the integral of the
FCF in the measurement bandwidth. If we assume that the FCF is approximately
constant in the measurement bandwidth, the integral reduces to multiplying the
FCF by a constant factor. This is the same for all the TCF, and therefore cancels
out of the normalized quantities displayed.
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