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common for 1-periodic quasicrystals, which makes this classification particularly
interesting. We have tried to express everything in a geometrically natural basis,
in order to facilitate the determination of an experimentally observed space group
by means of the extinction pattern, and we hope that the tables given in this paper
will prove useful for the determination of experimentally observed space groups.

Acknowledgement: It is a pleasure to thank T. Janssen for fruitful discussions
and correspondence, which led to the elimination of some errors in an earlier
version of the space group tables.
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ABSTRACT: We use a modified version of the usual
“strip” projection method in order to obtain a sim-
ple and short derivation of the diffraction pattern for
a three dimensional quasicrystal. We obtain the loca-
tion and amplitude of the diffraction peaks using exact
expressions in terms of elementary functions.

Three-dimensional icosahedral quasilattices can be obtained by inter-
secting a three-dimensional hyperplane with a six-dimensional cubic lattice. !l
By appropriate atomic decorations, i.e. by placing atoms at and around the
quasilattice sites, one can obtain a quasicrystal. de Bruijnzi first proposed
this projection method in the context of two dimensional Penrose lattices.
He intersected a five-dimensional simple cubic lattice with a two-dimensional

plane and then projected the centers of the intersected cubes onto the plane.
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Diffraction patterns of icosahedral quasilattices have been studied by several
authors.3~® The most widely used method is the so-called “strip” or “corri-
dor” method which invokes a sharp cutoff. This method projects the points
of Z® (Z%) which are located inside a strip surrounding a 3(2)-dimensional
plane. Here, Z denotes the set of integers. The usual choice for the particle
density is given by a superposition of delta functions,3‘7’ each one located

at the vertices of an hypercube.

Here we use a finite Gaussian strip as a replacement of the usual finite
strip method in order to obtain a very brief and simple derivation of the
diffraction pattern. The peak locations and amplitudes are exactly express-
ible as elementary functions. This derivation is made for an arbitrary number
of dimensions. To choose a Gaussian window with a delta function-type den-

sity is related to using Gaussian densities and taking a sharp cutoff.!

We denote :y R an r-dimensional simple cubic lattice and by 7 =
(ny,ng,...,n.), where each n, is equal to an integer, an element of R. Let S
be an s-dimensional subspace of R spanned by the orthonormal basis t'i(i),i =
1,...,s. We assume that the subspace S passes through a given point 4 in
R (See Fig. 1).

The distance d from a point £ in R to its projection u on S is given by
3
2 1= =2 2
d=1E -4 - u] (1)
1=1

with
w(@) = dgy - (- ) (2
where u; describes the coordinates on S defined by the unit vector ag)-
Instead of the usual strip-type projection methods, we now associate

with each lattice point 7 in R a projection site u; on S with an appropriate

amplitude
p(R) = exp {—ﬂ [(ﬁ =)= 3 (a7 - 7))2} } (3)
1=1

where 871/2 is a measure of the effective width of the gaussian corridor. The

overall distribution is given by the sum of p(7) over i with their locations at
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{u;}. Unlike the usual projection methods, we now have an infinite number
of projection sites {u;} in any finite region. Out of these infinite number of
points, only a small number of them are of significant amplitude. Indeed, if
we choose 3 appropriately, and ignore points with sufficiently small ampli-
tude, we obtain a projected distribution very similar to those generated by
the strip method.

The structure factor of the lattice points is obtained by taking the
Fourier transform of p = ) p(r1), i.e.

A({k}) = o) etk (4)

n

=Y exp {-ﬁ {(ri ~ )%=y (d(l) (7 - i))z} } etomtm (71)

n 1=1

where repeated indices indicate a sum, u,(n) is the coordinate of the projec-

tion of 7i, and k is the wave vector. Using Poisson’s summation formula,
) ~ @ 2 Sy -
IPUED ) B ] )
i moT T
we can rewrite A({k;}) as
oo . —
Z/ 4 eV d
i -~ 00
2 , 2 -
exp {—ﬂ [(¢ —qE =Y (@@ - ) } + k() - (6 «7)} . (6)
1=1

Replacing ¢ — v by a new variable ¢, we have

Ak =S e [ g

exp {_-5 [52 - > _(ag, "5)2] + ik - = i2nri ¢‘} (7

1=1
To carry out (7), we introduce additional unit vectors (i(]) 7

s+ 1,...,r, which, together with G(i),i = 1,2,...,s, form a complete set of

orthonormal basis in R. In the following, we denote 5(1) ¢ by ¢,, {i(]v) qg by
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#;, etc., where index ¢ always runs from 1 to s and j from s+ 1 to r. Then,

we have

$2w2(d(,-)-$)2:$2—Z¢?:Z¢§,
Mg = Zm¢,+2m ¢>],
¢ = Hd¢.Hd¢]

The integration over ¢; leads to a set of 6-functions, and the integration

over ¢, leads to a gaussian in m, givin
2

AR = Y e [Teec],

exp 4 —f Z ¢;’- + kg — 2mi(mygy + m;é;)
r

r—s

m\ 2 —idmA 22 )
B (E> Z;e tmﬁnhé(ki‘zﬂml)exp ”WB‘Z,NH
m 1 ;
(™ 3t Ze-i’lmﬁ ¥ H 27r5(k~ Y - ﬁi)
S\ || 2mb Uk = 2
m 1

7(2 - N -
ﬂp{—ﬁ~%ﬁ+ in'mVJ}~ (8)

The location of the diffraction pattern spots is determined by the delta-
functions, and the amplitude is a superposition of gaussians whose intensity
depends on the distances from the mi’s to the projection space. Note that
the diffraction pattern is, of course, independent of the initial 4. The width
of the dual (Fourier space) lattice corridor is inversely proportional to the
width of the original lattice corridor. In Fig. 2, we have plotted a typical

difraction pattern.
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Figure 1: Schematic representation of the space R and its subspace S

spanned by the orthonormal basis E(i)- The contribution of the point n
. 2 . .

to the intensity in S is proportional to exp (—~Bd*), where d is the distance

of 71 to the plane.
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Figure 2: Diffraction pattern obtained from equation (8). The peaks above

a given threshold are represented by circles with radii proportional to their

amplitudes.
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The Vertices of the Ideal 3-D Icosahedral
Quasicrystal
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and M. Schlottmann'!

A bstract
The 24 possible vertex types of the ideal 3-1 icosahedral quasicrystal are derived
frony the 6-D hypercubic lattice by dualization and klotz construction.
complete list of the vertices in an algebraic way as well as in the f
diagrams.

We give a
o of Schlegel

Since the work of Shechtman et al. [15] tl
well been established. Therefore, it is of phecal interest to study possible

methods for the genceration of quasiperiodic patterns.

12 existence of quasicrystals has

In contrast to the situation iu lattices or periodic packings. the local ge-
ometric structures of quasiperiodic patterus cannot be

etertmmned by just
analyzing a fundamental domain. However. the more

complex situation in
a quasicrystal, if it is derived from a higher-dimensional lattice, can still he
diseussed completely.

One method for the generation of (uasiperiodic pattems from higher di

lensions is the procedure of dualization and klotz constiuction [13,12]. This
method seemws to be quite general i order to achicve o conmmon framework
i which one can hope to describe all relevant quasiperiodic scenarios. Fur
thermore, the dualization method provides the mmformation enco
perpendicular space, especially the statistics for all objects in t}
odic pattern.
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