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Abstract

We study the transport of vortices in superconductors with square arrays of asymmetric pinning wells when applying

an alternating electrical current. This system can induce a net rectifying or diode effect for the vortex motion, including

collective stepmotor-type dynamics, where many vortices move forward a controlled and exact number of pin-lattice-

spacings at each cycle of the AC driving force. This system exhibits a remarkable net DC response with striking

sawtooth-type oscillations, which we have studied as a function of several parameters (e.g., field H , Amplitude of drive).

We analytically derive the main numerical features obtained here.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The control of the motion of vortices using

asymmetric pinning [1–4] can be useful for appli-

cations in superconducting samples, including the

removal of unwanted trapped flux in devices [5].
The control of flux motion can be used for flux

pumps, rectifiers or diodes [1–4], as well as for the

focusing and lensing of flux quanta in designated

target regions within a superconducting device.

Recently, several groups [1–4,6–12] have made

proposals for quite distinct ways of using potential

energy ratchets in superconductors. Most early
* Corresponding author. Tel.: +81484679707; fax: +8148-

4679650.

E-mail address: fnori@riken.jp (F. Nori).

0921-4534/$ - see front matter � 2004 Elsevier B.V. All rights reserv

doi:10.1016/j.physc.2003.11.041
studies on ratchet-type systems focused on a single

particle moving on a 1D asymmetric potential, as

opposed to collective motion in 2D potentials (e.g.,

Refs. [1,3,4]).

Using analytical methods and molecular

dynamics simulations, we study the stochastic
rectification of AC-driven vortices due to the

‘‘ratchet effect’’ of asymmetric pinning sites. For

instance, in contrast to the disordered case in Ref.

[3], the regular structure studied here produces a

DC Voltage from AC driven vortices for any value

of H=H1, not just for H=H1 > 1. Here H1 is the

field at which the total number of vortices Nv is

equal to the number of strong (or weak) pinning
sites N s

pð¼ Nw
p Þ. More importantly, using two

interpenetrating square pinning sublattices, it is

possible to easily and precisely control the collective

motion of the vortices. We obtain the crucial figure
ed.
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of merit q characterizing the performance of this

type of devices. This asymmetry factor is propor-

tional to the difference between the critical depin-

ning forces, FM � Fm. Here, Fm is the stopping force

for vortex depinning when the driving force is di-

rected from a strong pinning site to a weak one,
and FM in the opposite direction.
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Fig. 1. (a) Net average DC velocity VDC versus the half period P

of the AC driving force for different amplitudes, FL ¼ 0:3, 0.4,

0.6 for H=H1 ¼ 1:05. Notice the non-monotonic behavior of

VDCðP Þ, with the maximum VDC obtained for FL � 0:4. This

unusual VDC has a remarkable sequence of jumps. (b) VDC versus

P for FL ¼ 0:3 for the first matching field, H=H1 ¼ 1. Analyti-

cally, we derive the horizontal dotted line VM , and the open

circles VmðnÞ, for any n; only n ¼ 1 through 5 are shown in (b).

The inset shows the displacement y versus time (·103s0) of any
vortex for P=s0 ¼ 600 (A), 800 (B) and 1500 (C) corresponding

to the arrows in panel (b). A subset of the pinning array is also

shown in (b).
2. Model

The strong and the weak pinning sites are placed

on two square sublattices with spacing a0 (¼ 1 here)

and separated a distance d. All pinning centers
are modelled here by Gaussian potential wells

(the model and notation are explained in detail

in [13,14]) with a decay length Rp. The intensity

of the individual pinning force is denoted by

f0F
s;w
p0 (s ¼ strong, w ¼ weak, Fp0 ¼ pinning force

strength, measured in units of f0). The AC square-

wave driving Lorentz force is FL ¼ F y
L ðtÞŷ and the

repulsive vortex–vortex force is

FvvðriÞ ¼ Fvv0 f0
XNv

j 6¼i

k r̂ij=jri � rjj; ð1Þ

where

r̂ij ¼ ðri � rjÞ=jri � rjj:
The overdamped equation of motion [13–15] for

vortex i is given by

gvi ¼ FL þ FvvðriÞ þ FpðriÞ: ð2Þ
The initial vortex positions are obtained from

annealing. Parameters used in the simulations are

Rp ¼ 0:13a0, k ¼ 2:6a0. Fvv0 ¼ 0:1, F s
p0 ¼ 0:5, d ¼

0:2a0 and F s
p0F

w
p0 ¼ 2, time step s0 ¼ 1=150, and

viscosity g ¼ 1. Our results are insensitive to the

sample size, typically 10a0 � 10a0 (i.e., Nw
p ¼ N s

p ¼
100), provided that the density of vortices and pins

remains unchanged.
3. Net DC voltage VDC versus AC drive period

Fig. 1(a) shows

VDC ¼
XNv

i

vi=Nv
for different amplitudes FL of the driving force.

Each plotted point is obtained by averaging over

200 periods, each with about 104–106 time steps.

Interestingly, when increasing the half period of the

driving force (from P ¼ 0 to 5000s0 with small step

DP ¼ 10s0), sharp jumps in the rectified voltage

VDCðP Þ curves appear, mainly in the range Fm <
FL < FM . When P is sufficiently small, the driven

vortices travel a distance smaller than the minimum

interpin distance a0 � d � 2Rp during the first half-

period P and, afterwards, the vortices will be driven

back to the original pins during the second half-

period, in the opposite direction of FL. This results

in a trivial zero DC response of the vortices, as seen

in Fig. 1(a). When the period of the driving force
exceeds a threshold value Pc, which depends on FL,
the vortices move from one pinning site to a nearby
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one during a half period and the system acts as a

vortex rectifier. Moreover, it acts as a controllable

collective ‘‘stepmotor’’ of flux quanta, where many

vortices move forward in unison.

In the absence of both thermal noise and pin-
ning force, a single vortex would alternate travel-

ling a distance FL � P in one direction y and then a

distance FL � P in the other �y direction. Thus, the

minimum half-period Pc of the driving force FL
should be

Pc � a0=FL:

This is the reason why we obtain a threshold

forcing period which clearly depends on FL. The
very unusual sawtooth-type oscillation of VDCðP Þ,
beyond the threshold Pc value, is a remarkable

feature of this system. The very sharp peaks in VDC

indicate the location of the optimal forcing periods

to achieve the maximum VDC. The period eP of the

oscillation peaks in each curve is also dependent
on FL. Since the minimal spacing eP � FL should also

be �a0, this means that the half period eP of the

VDCðPÞ oscillation is almost the same as the critical

threshold value Pc (see below for a more detailed

discussion of why Pc � eP ).
4. Amplitude dependence of the net DC voltage

The net velocity VDC depends non-monotoni-

cally (as in some other rectifiers [16]) on the

amplitude FL of the driving force (see Figs. 1(a) and
2). As seen in Fig. 2, For H=H1 ¼ 1:05, when FL is
larger than Fm � 0:23, the vortices can depin when
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Fig. 2. Net velocity VDC versus FL for H=H1 ¼ 0:83 (squares); 1

(circles); and 1.05 (triangles), with fixed half-period P ¼ 1600s0.
FL is parallel to the +y-axis. Of course, if the driving

force is sufficiently large, all the vortices can move

back and forth collectively regardless of the

asymmetric pinning effect in the system, which re-

sults in the very weak DC response at FL ’ 0:6 seen
in Figs. 1(a) and 2. If the amplitude of the driving
force is quite weak (i.e., FL < Fm), the trapped

vortices cannot be depinned in a period, which re-

sults in a highly suppressed DC response (i.e.,

VDC � 0). In Fig. 1(b), we show VDC for the first

matching magnetic field, H=H1 ¼ 1, versus P for

FL ¼ 0:3. The inset of Fig. 1(b) shows the dis-

placement of any vortex versus time for the points

A, B, and C indicated by the arrows in (b).
As seen in Fig. 2, with the increase of the

amplitude FL of the square-wave AC driving force,

we find optimal FL values for the DC response for

H=H1 ¼ 0:83, 1.0 and 1.05 with P ¼ 1600s0. Here,

one can clearly note that when FL is smaller than a

critical value Fm, none of the trapped vortices can

be depinned and no DC response can be measured.

The amplitudes of the AC driving force that max-
imize the DC response are dependent on the ratio

of the vortex density to the pins in the system.

When H=H1 ¼ 1, the critical depinning force for

the vortex motion is maximum and the rectifying or

ratchet effect is most efficient for all the vortices,

which reach their highest net DC velocities, as seen

in Fig. 2. Each successive plateau corresponds to an

additional pinning site explored by an increasing
FL. These turn into mild oscillations when the

driving force FL is strong enough.

For H=H1 ¼ 1, VDCðFLÞ has very flat plateaus

corresponding to commensurate lock-in transitions

where the amplitude of the back-and-forth motion

of the vortices matches the distance between pins.

These lock-in plateaus are analogous to the ‘‘Ar-

nold�s tongues’’ described in [15]. Away from the
main lock-in plateaus, VDC has a sharp drop. When

H=H1 > 1, due to the interstitial vortices which

only cause a zero DC response, the pinning and the

maximum VDC are weaker.
5. Comparison between AC and DC drives

It is instructive to compare the DC response

between the AC drive and the difference between
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two DC drives in two opposite directions along the

y-axis. In Fig. 3(a), we show the stationary average

vortex velocities VRðFLÞ and VLðFL), as a function of

the DC drive for FLky and FLk � y at H=H1 ¼
1:05, respectively (R ¼ Right or +y and L ¼ left or

�y). One can clearly see the asymmetric pinning
effect for the vortex motion which depends on the

orientation of the applied driving force in such

composite strong and weak pinning arrays. In-

deed, it is easier to depin vortices when driven in

the positive direction (Fky) since the weaker pins

are easier to overcome.

In Fig. 3(b), we show both the subtraction

½VRðFLÞ � VLðFLÞ�=2 from Fig. 3(a), which exhibits a
sharp peak, and the net average DC response
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Fig. 3. Net average DC velocity VDC versus FL for: (a) DC

current drive along y (curve 1) and �y (curve 2), and (b) AC

drive along y (thin curves) for P=s0 ¼ 1600, 1700, and half the

difference between the two DC-driven curves in (a) (thick

curve). Here, H=H1 ¼ 1:05. Our one-particle predictions for uR;L
are plotted in (a) for comparison (dotted curves); the approxi-

mate adiabatic VDCðFLÞ is drawn in (b) as a dotted curve. The

inset shows asymmetry factor q ¼ ðFM � FmÞ=ðFM þ FmÞ versus

the ratio F w
p0=F

s
p0 (bottom axis) at F s

p0 ¼ 0:5 and d ¼ 0:2a0 (open
circles), and of the sublattice distance d (upper axis) for

F s
p0=F

w
p0 ¼ 2 (solid circles). The asymmetry factor is proportional

to the difference between the critical depinning forces. It is the

figure of merit characterizing the performance of these devices.
VDCðFLÞ for the AC driven case as a function of the

amplitude FL at fixed half periods P ¼ 1600s0, and
1700s0. Interestingly, the values of VDC are always

close to the value of ½VR � VL�=2. This phenomenon

has been revealed in some other ratchet systems

[18,19].
6. Analytical analysis

A full analytical interpretation of the vortex

ratchet flows simulated above lies beyond the reach

of today�s non-equilibrium statistical mechanics.

Nevertheless, at H=H1 ¼ 1 there are no interstitial
vortices and therefore the overall vortex dynamics

can be accurately analyzed through a simplified

one-particle approach [16–19]. For H=H1 ¼ 1 the

effects of the vortex–vortex interaction cancel out

for geometrical reasons, so we can just ignore them.

The net potential UpðyÞ, felt by a non-interacting

vortex moving in the y-direction, results from the

linear superposition of all pinning potentials along
one lattice column. Thus, UpðyÞ is a periodic

asymmetric potential capable of sustaining a

ratchet current [16–18]; in the absence of thermal

fluctuations its rectifying power is mostly limited to

the amplitude window ½Fm; FM �, with Fm < FM . The
two limiting values Fm and FM (the maximum

stopping forces along opposite directions) can be

obtained from the expression of the pinning po-
tential energy. We obtain Fm � 0:236ð�0:25 ¼ F w

p0Þ
and FM � 0:436ð� 0:5 ¼ F s

p0Þ (see Fig. 3(a)). The

inset in Fig. 3 shows the ratio of the difference be-

tween the stopping forces, FM � Fm, over twice their
average FM þ Fm as a function of both d and also

F w
p0=F

s
p0. This asymmetry factor is very clearly

peaked at d � 0:21 and F w
p0=F

s
p0 � 0:48.

The VDC versus P curve for H=H1 ¼ 1 in Fig.
1(b) can be reproduced fairly closely. First we need

to determine the activation half-period Pc, when
the rectification mechanism suddenly starts: Pc
must be long enough for a single vortex to drift

from one pinning well to the adjacent one along a

y-column, by climbing the less steep side of the

UpðyÞ well it occupies. The net vortex velocity hui
over such a distance is a nonlinear function of FL.
A rough estimate of hui can be given by assuming

that the vortex velocity inside a pinning well tilted
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in the positive direction, when FL > Fm, is FL � Fm,
while in the flat region between pins is just FL
(recall that here g ¼ 1). The longitudinal size of the

double pinning-well structure is about

dp ¼ 2Rp þ d ð¼ 0:46a0 hereÞ;

hence

huðFLÞi ¼ jðFLÞFL ¼ FLð1� dpFm=FLÞ: ð3Þ

For the sake of comparison with our simulation

data, the explicit value of the correcting factor is
jðFL ¼ 0:3Þ ’ 0:64. Our estimate for the half per-

iod Pc becomes

Pc ¼ a0=hui ¼ a0=jðFLÞFL: ð4Þ

In Fig. 1(b), a0 ¼ 150s0, therefore our analytical

prediction for Pc yields Pc ¼ 780s0, within 2% of

our simulation value.
The curve VDC versus P in Fig. 1(b) shows a

sequence of peaks of the same height VDC ¼ VM .
These peaks correspond to P ¼ nPc þ e, where e is
very small, i.e., to the driving condition when a

single vortex can advance by n lattice constants a0
in the y direction during half a forcing cycle (get-

ting immediately trapped as FL reverses its sign).

The peak velocity is therefore

VM ¼ na0=2nPc ¼ jðFLÞFL=2: ð5Þ

The minima VmðnÞ of the curve VDC versus P at

H=H1 ¼ 1 occur at

P ¼ nPc � e;

as the vortex drifts a distance na0 in a half period

of duration ðnþ 1ÞPc; accordingly,

VmðnÞ ¼ VMn=ðnþ 1Þ; with n ¼ 1; 2; 3; . . . ð6Þ

Both predictions for VM and VmðnÞ are displayed

in Fig. 1(b) as compelling evidence for the one-
particle approach when H=H1 � 1.

In Fig. 2, for H=H1 ¼ 1, the first three hori-

zontal steps of VDCðFLÞ have roughly similar widths

DFL � 0:07 and are equally spaced with DVDC ’
0:047. Both features are well reproduced by the

heuristic argument in the equations for huðFLÞi and
Pc. Periodic jumps in the VDCðFLÞ curve occur for
the discrete solutions FL ¼ Fn of the equation

F jðF ÞPc ¼ na0, namely

Fn ¼ nF0 þ dpFm; ð7Þ

with

F0 ¼ a0=P ¼ a0=1600s0 ¼ 0:09375:

Only two jump amplitudes Fn fall within the recti-

fication window ½Fm; FM �, i.e. F2 ¼ 0:30 and F3 ¼
0:36 (F1 � 0:2 is shifted to 0.24, because VDC is zero

below Fm � 0:24). As a consequence, the rising

branch of VDCðFLÞ exhibits only three steps

VDCðnÞ ¼ nDVDC;

with n ¼ 1; 2; 3 and DVDC ’ 0:047. For P=s0 ¼
3200 (4800) we obtain six (nine) jumps within the

rectification window (these plots will be shown

elsewhere). The favorable comparison thus

achieved establishes the validity of the Ansatz in

our equation for huðFLÞi over the rectification
window.

Finally, Fig. 3 also deserves closer inspection.

The upper panel shows the stationary velocities

V R
DC ¼ VDCðþFLÞ and V L

DC ¼ VDCð�FLÞ of a single

vortex driven to opposite directions by a DC signal

of intensity FL. Ignoring the role of the unpinned

vortices (here fewer than 5% since H=H1 ¼ 1:05),
we can try to extend the one-particle approach to
this problem as well. The uðFLÞ plot for a particle

moving on a noiseless one-dimensional periodic

substrate is reasonably well approximated by the

formula

uRðFLÞ ¼ ðF 2
L � F 2

mÞ
1=2

with ðFL > FmÞ;

uLðFLÞ ¼ ðF 2
L � F 2

MÞ
1=2

with ðFL > FMÞ; ð8Þ

which is exact in the case of a sinusoidal potential

UpðyÞ [18,19]. Here, one uses Fm if the vortex is being
driven against the stopping force Fm (i.e., to the

right) and vice versa. In Fig. 3(a) the agreement

between V R
DC and uR is by far much closer than be-

tween V L
DC and uL. The reason for this discrepancy is

twofold: (i) the pinning potential wells are too steep

to be fitted by a sinusoidal function with appro-

priate amplitude and wavelength. Apparently, such

an approximation works better for the lower slopes
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encountered by a vortex being pulled in the oppo-

site direction. (ii) Interstitial tails are easily detected

in both curves V R
DC and V L

DC, with the interstitial

effect looking more pronounced in the negative

direction, i.e., for V L
DC [13]. In Fig. 3(b) we compare

the net velocity VDC of the vortices subjected to a

square wave periodic signal FLðtÞ with the most

obvious adiabatic approximation ½V R
DC � V L

DC�=2. As

shown in [18,19], the adiabatic curve (for P ! 1)

embeds all the VDC curves for finite P . Our formulae

for uR;LðFLÞ can be used to reproduce the adiabatic

curve from simulations, provided that one first adds

an adequate interstitial tail to uLðFLÞ. For simplicity
we fitted the interstitial tail of V L

DC by means of a

straight line uiLðFLÞ for 06 FL 6 FM and a constant

offset uiLðFMÞ ¼ 0:028 for F > FM ; the resulting adi-

abatic curve ½uRðFLÞ � uLðFLÞ�uiLðFLÞ�=2 is plotted

in Fig. 3(b) for the sake of a comparison.

Both adiabatic VDC curves have a small negative

current peak that, at low forcing amplitudes (from

the simulation 0:11 < FL < 0:19), drift in the �y
direction. This reverse current is due to the inter-

action of the interstitial vortices with the pinned

vortices. Note that the profile of the negative peak

in the simulated adiabatic VDC curve resembles the

larger positive one. Indeed, we observed that in

this forcing regime all interstitial vortices get

trapped along pin lattice rows parallel to the y
axis, thus forming soliton-like objects subject to an
effective potential with lower stopping forces, but

with a reversed asymmetry with respect to UpðyÞ.
When the bound vortices spend more time in the

deeper wells, the asymmetry of the vortex-inter-

action-based ‘‘interstitial pinning’’ is reversed,

since the interstitial vortices are ‘‘repelled’’ from

the deeper (occupied) wells.

We have also studied [4,20] thermal effects (not
shown here), but their only effect is to suppress the

rectification at sufficiently large temperatures.
7. Summary

Finally, we emphasize that our results apply

mutatis mutandis to arrays of Josephson junc-
tions, colloidal systems, Wigner crystals and any

system with repelling moveable objects that can be

pinned by asymmetric traps.
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