H Available online at www.sciencedirect.com

%? SGIENGE@DIHEGT‘B

2t

ELSEVIER

Physica C 388-389 (2003) 661-662

PHYSICA (&

www.elsevier.com/locate/physc

Controlling the collective motion of interacting
particles: analytical study via the nonlinear
Fokker—Planck equation

S. Savel’ev **, F. Marchesoni °, Franco Nori ¢

& Frontier Research System, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-0198, Japan
Y INFM and Physics Department, Universita’ di Camerino, 1-62032 Camerino, Italy
¢ Center for Theoretical Physics, Department of Physics, Michigan, Ann Arbor, MI 48109-1120, USA

Abstract

We propose a nonlinear Fokker—Planck equation for the description of stochastic transport in systems of short-
range interacting particles. We develop a perturbation scheme, valid for high frequencies, for particles on an asym-
metric potential driven by a time-oscillating temperature. For a particular type of asymmetric potential, the net DC
current shows two current inversions when increasing either the particle density or the interaction strength.
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Stochastic transport on spatially asymmetric periodic
(“ratchet”) potentials has been intensively studied in
systems far from equilibrium, and mostly in the context
of molecular motors (see e.g., the reviews [1]). In such
Brownian motors, a net motion of particles may occur
even in the absence of any DC driving force, due to the
rectification of nonequilibrium thermal fluctuations.

Analytical studies of ratchets are usually performed
using the /inear Fokker-Planck equation, which is valid
for an assembly of noninteracting particles. Thus, it is
important to study the physically relevant case of how
particle—particle interactions influence the stochastic
transport in Brownian motors. In this paper, we derive
and analyze the nonlinear equation describing stochas-
tically moving particles with short-range interaction.
Here we consider the so-called temperature ratchet [2],
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where the time oscillations of the temperature drive the
motion of particles.

Our starting point is the overdamped equation of
motion for pairwise-interacting particles in an asym-
metric periodical potential %,
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with temperature 7, Boltzmann constant kg, and pair
potential . The Gaussian white noise ¢ satisfies the
relation (éii)(t)g’},f) (t+ 1)) = 0(1)0sp0:;. Applying the
Bogolyubov method, an infinite set of many-particle
distribution functions can be constructed. Such a hier-
archy can be truncated in the “mean-field” approxima-
tion by replacing the binary distribution function with
the product of two one-particle distribution functions
Fi(t,x); hence we obtain the nonlinear integro-differen-
tial equation:
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with the mean-field potential
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W = U(x) + / dx' W (x — X' )F (8, %), (3)

which is periodic and has the same spatial period / as the
substrate potential %. The distribution function £ (z, x)
can be normalized, for instance, by the total number of
particles in the system. In this case the spatial average of
the function Fi(¢,x) coincides with the density of parti-
cles n. If the interaction range of the particles is the
smallest distance in the problem, the interaction poten-
tial can be taken in the local limit # (x) = gd(x). This
simplifies considerably the nonlinear Fokker—Planck
equation under study:
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Now the temperature 7" is chosen to be a periodic time-
dependent function [2], say 7(¢) =T (1 +acos(wt)), a< 1.
In the high frequency limit, [max,(%)—min,(%)]/
()< 1, kgT/(wlP) <1, and gii/(wi?)< 1, the solu-
tion of Eq. (4) can be expanded with respect to the re-
ciprocal of the frequency 1/w:
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where 7 = wt is a dimensionless time. The following
periodic and normalizing conditions can be taken:
<j)(r+2nx) ¢i(t,x) = ¢;(t,x + 1), jodx¢>l#0 x) =0,
and fo dx ¢y (x)/! = . Omitting the detailed description
of the iterative procedure, here we concentrate on the
physical results. Instead of the usual Boltzmann distri-
bution, the equilibrium distribution function ¢(x) of
the very short-range interacting particles is described by
the transcendental equation:
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with a constant C(7) defined by the normalization con-
dition. By solving Eq. (4) up to the third approximation
with respect to 1/w, we obtain the equation for the DC
net current related to the nonequilibrium state induced
by the time oscillating temperature (Fig. 1):
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with / = 0/0x. This expression can be simplified in the
limit of zero interaction, giving the known result [1]:
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Fig. 1. The DC probability current versus particle density for
the potential % /kyT = aysin(2nx/l) + a; sin(4nx/l — B;) +
ay sin(6nx/l — B,). Two sets of parameters are shown here:
ay=1,a, =0.2,a, = —0.06, f, = 0.45, , = 0.45 for the solid
curve with two current inversions; and ay = 1,a; = 0.01,a, =
0,8, = 0.45 for the dashed curve with no current inversions.
These two examples illustrate two types of allowed J(n)’s for
interacting particles driven by a time-oscillating temperature
T(¢) and moving on a spatially asymmetric periodic potential.
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and can also provide the current in the strong interac-
tion limit, max(kgT; max, % — min, %) < gh < wl?,
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It is clear from the last two equations, that the sign of
the current is the same in the case of weak and strong
interactions for any asymmetric potential. This means
that ‘either there is no current inversion or that the
current inverts an even number of times when increasing
either the strength g of interaction or the particle density
7’. Numerical calculations of the integral in expression
(7) show examples of these two scenarios (Fig. 1).

In conclusion, we have derived the nonlinear Fok-
ker-Planck equation for systems of locally interacting
particles and obtained the expression for the net DC
current for temperature ratchet in high frequency limit.
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