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Abstract

We propose a nonlinear Fokker–Planck equation for the description of stochastic transport in systems of short-

range interacting particles. We develop a perturbation scheme, valid for high frequencies, for particles on an asym-

metric potential driven by a time-oscillating temperature. For a particular type of asymmetric potential, the net DC

current shows two current inversions when increasing either the particle density or the interaction strength.
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Stochastic transport on spatially asymmetric periodic

(‘‘ratchet’’) potentials has been intensively studied in

systems far from equilibrium, and mostly in the context

of molecular motors (see e.g., the reviews [1]). In such

Brownian motors, a net motion of particles may occur

even in the absence of any DC driving force, due to the

rectification of nonequilibrium thermal fluctuations.

Analytical studies of ratchets are usually performed

using the linear Fokker–Planck equation, which is valid

for an assembly of noninteracting particles. Thus, it is

important to study the physically relevant case of how

particle–particle interactions influence the stochastic

transport in Brownian motors. In this paper, we derive

and analyze the nonlinear equation describing stochas-

tically moving particles with short-range interaction.

Here we consider the so-called temperature ratchet [2],

where the time oscillations of the temperature drive the

motion of particles.

Our starting point is the overdamped equation of

motion for pairwise-interacting particles in an asym-

metric periodical potential U,
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oxi
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with temperature T , Boltzmann constant kB, and pair

potential W. The Gaussian white noise nðiÞ satisfies the

relation hnðiÞ
a ðtÞnðjÞ

b ðt þ sÞi ¼ dðsÞdabdi;j. Applying the

Bogolyubov method, an infinite set of many-particle

distribution functions can be constructed. Such a hier-

archy can be truncated in the ‘‘mean-field’’ approxima-

tion by replacing the binary distribution function with

the product of two one-particle distribution functions

F1ðt; xÞ; hence we obtain the nonlinear integro-differen-

tial equation:
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with the mean-field potential
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Ueff ¼ UðxÞ þ
Z

dx0Wðx� x0ÞF1ðt; x0Þ; ð3Þ

which is periodic and has the same spatial period l as the
substrate potential U. The distribution function F1ðt; xÞ
can be normalized, for instance, by the total number of

particles in the system. In this case the spatial average of

the function F1ðt; xÞ coincides with the density of parti-

cles �nn. If the interaction range of the particles is the

smallest distance in the problem, the interaction poten-

tial can be taken in the local limit WðxÞ ¼ gdðxÞ. This
simplifies considerably the nonlinear Fokker–Planck

equation under study:
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Now the temperature T is chosen to be a periodic time-

dependent function [2], say T ðtÞ¼T ð1þacosðxtÞÞ; a<1.

In the high frequency limit, ½maxxðUÞ�minxðUÞ�=
ðxl2Þ�1, kBT=ðxl2Þ�1, and g�nn=ðxl2Þ�1, the solu-

tion of Eq. (4) can be expanded with respect to the re-

ciprocal of the frequency 1=x:

F1ðs; xÞ ¼
X1
i¼0

1

xi
/iðs; xÞ; ð5Þ

where s ¼ xt is a dimensionless time. The following

periodic and normalizing conditions can be taken:

/iðs þ 2p; xÞ ¼ /iðs; xÞ ¼ /iðs; xþ lÞ,
R l
0
dx/i 6¼0ðxÞ ¼ 0,

and
R l
0
dx/0ðxÞ=l ¼ �nn. Omitting the detailed description

of the iterative procedure, here we concentrate on the

physical results. Instead of the usual Boltzmann distri-

bution, the equilibrium distribution function /0ðxÞ of

the very short-range interacting particles is described by

the transcendental equation:

/0ðxÞ ¼ Cð�nnÞ exp
�
�UðxÞ þ g/0ðxÞ

kBT

	
ð6Þ

with a constant Cð�nnÞ defined by the normalization con-

dition. By solving Eq. (4) up to the third approximation

with respect to 1=x, we obtain the equation for the DC

net current related to the nonequilibrium state induced

by the time oscillating temperature (Fig. 1):
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with 0 � o=ox. This expression can be simplified in the

limit of zero interaction, giving the known result [1]:
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2a2l�nn

R l
0
dxU0ðU00Þ2

x2
R l
0
dx exp U

kBT

� � R l
0
dx exp � U

kBT

� � ð8Þ

and can also provide the current in the strong interac-

tion limit, maxðkBT ;maxx U�minx UÞ � g�nn � xl2,

J ¼ 5k2BT
2a2

2x2g2l2�nn

Z l

0

dxU0ðU00Þ2: ð9Þ

It is clear from the last two equations, that the sign of

the current is the same in the case of weak and strong

interactions for any asymmetric potential. This means

that �either there is no current inversion or that the

current inverts an even number of times when increasing

either the strength g of interaction or the particle density
�nn�. Numerical calculations of the integral in expression

(7) show examples of these two scenarios (Fig. 1).

In conclusion, we have derived the nonlinear Fok-

ker–Planck equation for systems of locally interacting

particles and obtained the expression for the net DC

current for temperature ratchet in high frequency limit.
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Fig. 1. The DC probability current versus particle density for

the potential U=kBT ¼ a0 sinð2px=lÞ þ a1 sinð4px=l� b1Þþ
a2 sinð6px=l� b2Þ. Two sets of parameters are shown here:

a0 ¼ 1; a1 ¼ 0:2; a2 ¼ �0:06; b1 ¼ 0:45;b2 ¼ 0:45 for the solid

curve with two current inversions; and a0 ¼ 1; a1 ¼ 0:01; a2 ¼
0; b1 ¼ 0:45 for the dashed curve with no current inversions.

These two examples illustrate two types of allowed JðnÞ�s for
interacting particles driven by a time-oscillating temperature

T ðtÞ and moving on a spatially asymmetric periodic potential.
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