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Abstract

This article discusses quantum fluctuation properties of a crystal lattice, and in particular, phonon squeezed states.
Squeezed states of phonons allow a reduction in the quantum fluctuations of the atomic displacements to below the
zero-point quantum noise level of coherent phonon states. Here we discuss our studies of both continuous-wave and
impulsive second-order Raman scattering mechanisms. The later approach was used to experimentally suppress (by one
part in a million) fluctuations in phonons. We calculate the expectation values and fluctuations of both the atomic
displacement and the lattice amplitude operators, as well as the effects of the phonon squeezed states on macroscopically
measurable quantities, such as changes in the dielectric constant. These results are compared with recent experiments.
Further information, including preprints and animations, are available in http://www-personal.engin.umich.edu/
&nori/squeezed.html. ( 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Classical phonon optics [1,24—33] has succeeded
in producing many acoustic analogs of classical
optics, such as phonon mirrors, phonon lenses,
phonon filters, and even ‘phonon microscopes’ that
can generate acoustic pictures with a resolution com-
parable to that of visible light microscopy. Most
phonon optics experiments use heat pulses or
superconducting transducers to generate incoherent
phonons, which propagate ballistically in the crys-
tal. These ballistic incoherent phonons can then be
manipulated by the above-mentioned devices, just
like in geometric optics.

Phonons can also be excited phase-coherently.
For instance, coherent acoustic waves with fre-
quencies of up to 1010 Hz can be generated by
piezoelectric oscillators. Lasers have also been used
to generate coherent acoustic and optical phonons
through stimulated Brillouin and Raman scattering
experiments. Furthermore, in recent years, it has
been possible to track the phases of coherent op-
tical phonons (for excellent reviews on coherent
phonons, see, e.g., Refs. [2,34]) due to the availabil-
ity of femtosecond-pulse ultrafast lasers (with a
pulse duration shorter than a phonon period), and
techniques that can measure optical reflectivity
with accuracy of one part in 106.

In most situations involving phonons, a classical
description is adequate. However, at low enough tem-
peratures, quantum fluctuations become dominant.
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For example, a recent study [3] shows that quan-
tum fluctuations in the atomic positions can indeed
influence observable quantities (e.g., the Raman
line shape) even when temperatures are not very
low. With these facts in mind, and prompted by the
many exciting developments in classical pho-
non optics, coherent phonon experiments, and (on
the other hand) squeezed states of light (see, e.g., the
special issue on squeezed states in Ref. [4]), we
would like to explore phonon analogs of quantum
optics. In particular, we study the dynamical and
quantum fluctuation properties of the atomic dis-
placements, in analogy with the modulation of
quantum noise in light. Specifically, we study single-
mode and two-mode phonon coherent and squeezed
states, and then focus on a second-order-Raman-
scattering-based approach to achieve smaller quan-
tum noise than the zero-point fluctuations of the
atomic lattice.

The concepts of coherent and squeezed states
were both originally proposed in the context of quan-
tum optics. A coherent state is a phase-coherent
sum of a number of states. In this state, the quan-
tum fluctuations in any pair of conjugate variables
are at the lower limit of the Heisenberg uncertainty
principle. In other words, a coherent state is as
‘quiet’ as the vacuum state. Squeezed states [4] are
interesting because they can have smaller quantum
noise than the vacuum state in one of the conjugate
variables, thus having a promising future in differ-
ent applications ranging from gravitational wave
detection to optical communications. In addition,
squeezed states form an exciting group of states and
can provide unique insight into quantum mechan-
ical fluctuations.

In recent years, squeezed states are also being
explored in a variety of non-quantum-optics sys-
tems, including ion-motion and classical squeezing
[5,35,36] molecular vibrations [6,37,38], polaritons
[7,8,39], and phonons in crystals [9—13,40,41].
Refs. [10—12,41] propose a second-order Raman
scattering (SORS) process for phonon squeezing: if
the two incident light beams are in coherent states,
the phonons generated by the SORS are in a two-
mode squeezed state.

Here we first present an introduction to the sub-
ject of coherent and squeezed phonons, and later
on consider both the continuous wave case studied

in Refs. [10,12,41] and the impulsive case studied in
Refs. [12,14].

Squeezed phonons could be detected by meas-
uring the intensity of the reflected or transmitted
probe light [10—12,14,41]. This method has been
used to detect coherent phonon amplitudes, since
reflectivity and transmission are closely related to
the atomic displacements in a crystal. Measuring
a transmitted probe light pulse, Garett et al. [14]
tried to observe squeezed phonons produced by an
impulsive SORS. Stronger evidence might be avail-
able in the future. The intensity of the CW SORS
signal for many materials might be too weak to be
detected with current techniques, but might be ac-
cessible in the future.

2. Analogies and differences between phonons
and photons

Coherent and squeezed states were initially in-
troduced to describe photons. Here we are inter-
ested in applying these concepts to phonons.
Although both photons and phonons are bosons,
they do have significant differences, and the physics
of squeezed states of light cannot be straightfor-
wardly extended to phonons. Table 1 is a chart
presenting a schematic comparison between pho-
nons and photons. Below, we briefly mention a few
important similarities and differences that are rel-
evant to our study.

Photons are elementary particles with no inter-
nal structure, thus are sometimes called simple
bosons. On the other hand, phonons describe the
collective displacements of very many atoms in
a crystal, and are thus sometimes described as com-
posite bosons [15]. Phonons are bosons because of
the commutation relation between the coordinate
and momentum operators. Kohn and Sherring-
ton [15] pioneered the research on composite bo-
sons like phonons, excitons, etc., and classified
them into two categories, with type-I referring to
those bosons composed of an even number of fer-
mions (such as 4He atoms), and type-II referring to
those that are collective excitations — such as
phonons, excitons, magnons, etc. In this sense it is
also possible to consider photons to be type-II
composite bosons [15], because they are the energy
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Table 1
Comparison of several physical properties of phonons and photons

Phonon Photon

Type of boson type-II composite simple
Propagating media discrete continuous
Interactive ? yes yes in nonlinear media,

not in linear media
Massive ? yes no
Macroscopic description wave eq. for elastic continuum Maxwell equations
Microscopic description Schrödinger eq. Quantum Electrodynamics
Number of normal modes per allowed k 3p modes for each k 2 modes for each k
Dispersive ? always: u"u

s
(k) not in vacuum: u"ck

Restriction on wave vector k confined to 1st Brillouin zone arbitrary
Linear momentum ? vanishes non-zero
Spin not defined s"1

quanta of electromagnetic field modes. Their
commutation relation originates from the simple
harmonic oscillators that are used to quantize the
electromagnetic field. Essentially, both photons
and phonons are field quanta: photons are quanta
of a continuous field, while phonons are quanta of
a discrete field.

Non-interacting phonons are used to describe
harmonic crystal potentials. However, anharmoni-
city, which leads to phonon—phonon interactions,
is always present. Some properties of solids, such as
lattice heat conductivity and thermal expansion,
solely depend on the anharmonic terms in the crys-
tal potential. In other words, phonons in general
interact with each other. For photons, the situation
is somewhat different. In vacuum and at low inten-
sity, photon interactions are so weak that the rule
of linear superposition holds. However, in nonlin-
ear media, photons are effectively interactive, with
their interaction mediated by the atoms.

As mentioned above, phonons exist in discrete
media. Therefore, phonons have cut-off frequencies,
which put an upper-limit to their energy spectra.
For a diatomic lattice, this limit is of the order of
0.1 eV, which is in the infrared region. Photons, on
the other hand, do not have such an upper bound
for their energy. In addition, the discrete atomic
lattice and the massive atoms lead to a finite zero-
point fluctuation in the phonon field, while the con-
tinuous photon modes and the massless photons
contribute to a divergent zero-point fluctuation in
the photon field.

The dispersion relations for photons and pho-
nons are qualitatively different. Photons in free
space have a linear dispersion relation. On the
other hand, phonons have complicated nonlinear
dispersion relations which generally have several
acoustic and optical branches. The acoustic
branches are linear around the center of the first
Brillouin zone, i.e., the k"0 point, which is at the
continuum limit. When the quasi-wave-vector k is
close to the first Brillouin zone boundary, u satu-
rates. The optical branches of the phonons have
a different profile. Their dispersion relations are flat
near k"0, where u"u

0
. Furthermore, as k in-

creases, u decreases; indeed, the optical phonon
dispersion relation can be even more complicated
depending on the lattice structure. Compared to
photons, which generally have relatively simple dis-
persion relations, phonons have nonlinear disper-
sion relations that make it more difficult to satisfy
both energy and momentum (in fact, quasi-momen-
tum) conservation laws simultaneously.

The order of magnitude of the crystal cohesion
energy determines that phonons have very low
energies. In addition, phonons can easily couple
to many other excitations which are in a similar
energy range, and be perturbed by thermal fluctu-
ations even at low temperatures. All these coup-
lings make phonon dynamics very dissipative. Due
to its strong damping, coherent phonons have very
short lifetimes (&50 ps for optical phonons, while
larger for acoustic phonons) [2,34]. On the other
hand, there exist many materials in which photons
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can propagate with little dissipation, and further-
more very long photon coherent times can be pro-
duced by lasers.

To summarize this brief comparison, we notice
that the differences between phonons and photons
can often hinder our effort to apply ideas origin-
ating in quantum optics to phonons. For example,
good phonon cavities at the moment does not exist,
so it is very difficult to select phonon modes. For
phonons, we have to almost always deal with a
continuum of phonon modes. In addition, short
phonon lifetimes and the strongly dissipative envi-
ronment of phonons also complicate the problems.
These will be taken into consideration when we
work on the theory.

3. Phonon operators and the phonon vacuum
and number states

A phonon with quasimomentum p"+q and
branch subscript j has energy eqj"+uqj; the corre-
sponding creation and annihilation operators sat-
isfy the boson commutation relations

[bq{j{, bsqj]"dqq{
djj{, [bqj, bq{j{]"0. (1)

The atomic displacements u
ia of a crystal lattice are

given by

u
ia"

1

JNm

N
+
qj

ºjqaQjqe*q >R
i. (2)

Here R
i
refers to the equilibrium lattice positions,

a to a particular direction, and Qjq is the phonon
normal-mode operator

Qjq"S
+

2uqj
(bqj#bs

~qj). (3)

For simplicity, hereafter we will drop the branch
subscript j, assume that ºqa is real, and define
a q-mode dimensionless lattice amplitude operator:

u($q)"bq#bs
~q#b

~q#bsq . (4)

This operator contains essential information on the
lattice dynamics, including quantum fluctuations.
It is the phonon analog of the electric field in the
photon case.

When no phonon is excited, the crystal lattice is
in the phonon vacuum state D0T. The expectation
values of the atomic displacement and the lattice
amplitude are zero, but the fluctuations will be
finite:

S(*u
ia)2T7!#

,S(u
ia)2T7!#

!Su
iaT2

7!#
(5)

"

N
+
q

+DºqaD2
2Nmuqa

, (6)

S(*u($q))2T
7!#

"2. (7)

The eigenstates of the harmonic phonon Hamil-
tonian are number states which satisfy bqDnqT"
JnqDnq!1T. The phonon number and the phase of
atomic vibrations are conjugate variables. Thus,
due to the uncertainty principle, the phase is arbit-
rary when the phonon number is certain, as it is the
case with any number state DnqT. Thus, in a number
state, the expectation values of the atomic displace-
ment SnqDuiaDnqT and q-mode lattice amplitude
SnqDu($q)DnqT vanish due to the randomness in the
phase of the atomic displacements. The fluctuations
in a number state DnqT are

S(*u
ia)2T/6.

"

+DºqaD2nq

Nmuqa
#

N
+

q{Eq

+Dºq{aD2
2Nmuq{a

, (8)

S(*u($q))2T
/6.

"2#2nq. (9)

4. Phonon coherent states

A single-mode (q) phonon coherent state is an
eigenstate of a phonon annihilation operator:

bqDbqT"bqDbqT. (10)

It can also be generated by applying a phonon
displacement operator Dq(bq) to the phonon vac-
uum state

DbqT"Dq(bq)D0T"exp(bqbsq!bHq bq)D0T (11)

"expA!
DbqD2
2 B

=
+

nq/0

bnq
q

Jnq!
DnqT. (12)

As is shown above, a phonon coherent state is a
phase-coherent superposition of number states.
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Moreover, coherent states are a set of minimum-
uncertainty states which are as noiseless as the
vacuum state. Coherent states are also the set of
quantum states that best describe the classical har-
monic oscillators [16].

A single-mode phonon coherent state can be
generated by the Hamiltonian

H"+uq(bsqbq#1
2
)#jHq (t)bq#jq(t)bsq (13)

and an appropriate initial state. Here jq(t) repres-
ents the interaction strength between phonons and
the external source. More specifically, if the initial
state is a vacuum state, Dt(0)T"D0T, then the state
vector becomes a single-mode coherent state there-
after

Dt(t)T"DKq(t)e~*uqtT, (14)

where

Kq(t)"!

i

+P
t

~=

jq(q)e*uqq dq (15)

is the coherent amplitude of mode q. If the initial
state is a single-mode coherent state Dt(0)T"DaqT,
then the state vector at time t takes the form

Dt(t)T"DMKq(t)#aqNe~*uqtT, (16)

which is still a coherent state.
In a single-mode (q) coherent state

DKq(t)e~*uqtT, Su
*a(t)T#0)

and Su($q)T
#0)

are
sinusoidal functions of time. The fluctuation in the
atomic displacements is

S(*u
ia)2T#0)

"

N
+
q

+DºqaD2
2Nmuqa

. (17)

The unexcited modes are in the vacuum state and
thus all contribute to the noise in the form of zero
point fluctuations. Furthermore,

S(*u($q))2T
#0)

"2. (18)

From the expressions of the noise S(*u
ia)2T#0)

and
S(*u[$q)]2T

#0)
, it is impossible to know which

state (if any) has been excited, while this informa-
tion is clearly present in the expression of the expec-
tation value of the lattice amplitude Su($q)T

#0)
.

These results can be straightforwardly generalized
to multi-mode coherent states.

Coherent phonons have been the subject of con-
siderable interest in recent years. Typically, the
dynamics of coherent phonons are described by
using classical equations of motion. Here we pres-
ent a quantum description and show that it is con-
sistent with the classical one and, as an additional
bonus, contains information on quantum fluctu-
ations.

Coherent phonons can be generated by a femto-
second short pulse laser [10,41]. A femtosecond
pulse duration is much shorter than any phonon
period and therefore acts as a delta-function driving
force. It can produce coherent longitudinal optical
(LO) phonons [2,10,34,41]. We can make a very
simplified calculation by replacing the coupling
strength jq(t) with Ad(t!t

0
) in Eq. (13), so that

H
#0)

"+uqbsqbq#Ad(t!t
0
)bq

#AHd(t!t
0
)bsq . (19)

Here A"DADe*(A is a time-independent complex am-
plitude containing the information of the photon—
phonon interaction and the coherent amplitude of
the relevant modes in the incident optical pulse. We
assume that the crystal is in the phonon vacuum
state before it is hit by the laser pulse at t"t

0
.

The time-evolution operator º(t, t
0
) for the

phonon mode can be written as

º(t, t
0
)"exp(!iuqtbsqbq)

]expA!
iA

2+
bqe~*uqt0!

iAH
2+

bsqe*uqt0B. (20)

In other words, for t't
0
, the crystal is in a coher-

ent state DKqe~*uqtT. The coherent phonon ampli-
tude Kq is

Kq"!

iAH
2+

e*uqt0, (21)

which is a constant complex number. Thus, a very
short laser pulse conveniently provides a time-inde-
pendent amplitude and a coherent phase to the
active phonon mode(s). For t't

0
, the average of

the atomic displacement operator in the state
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Fig. 1. Schematic diagram of the uncertainty areas (shaded) in
the generalized coordinate and momentum (X(q,!q), P(q,!q))
phase space of (a) the phonon vacuum state, (b) a phonon
number state, (c) a phonon coherent state, and (d) a phonon
squeezed state. Here X(q,!q) and P(q,!q) are the two-mode
($q) coordinate and momentum operators, which are the direct
generalizations of their corresponding single-mode operators.
Notice that the phonon coherent state has the same uncertainty
area as the vacuum state, and that both areas are circular, while
the squeezed state has an elliptical uncertainty area. Therefore,
in the direction parallel to the h/2 line, the squeezed state has
a smaller noise than both the vacuum and coherent states.

DKqe~*uqtT?D0
~qT becomes

Su
iaT"S

+
2Nmuq

(ºqaKqe~*uqte*q >R
i

#º
~qaKHq e*uqte~*q >R

i)

"!S
2+

Nmuq

DºqaKqD

]sin[(u
q
(t!t

0
)!q )R

i
!/

A
!/

U
]. (22)

These longitudinal optical phonons can have a
coherence time of about 50 ps at 10 K, and even
longer at lower temperatures [2,34].

In the classical sense, ‘coherent’ means a wave
with a well-defined phase, or waves that can inter-
fere with each other when superimposed. Here we
have shown that a single-mode coherent state of
phonons generated by a short laser pulse is indeed
a plane wave with a well-defined phase. Thus, these
phonons in a quantum coherent state are also coher-
ent in a classical manner. Furthermore, they are in
a minimum-uncertainty state.

5. Phonon squeezed states

In order to reduce quantum noise to a level
below the zero-point fluctuation level, we need
to consider phonon squeezed states. Quadrature
squeezed states are generalized coherent states
[14,42]. Here ‘quadrature’ refers to the dimension-
less coordinate and momentum. Compared to co-
herent states, squeezed ones can achieve smaller
variances for one of the quadratures during certain
time intervals and are therefore helpful for decreas-
ing quantum noise. Figs. 1 and 2 schematically
illustrate several types of phonon states, including
vacuum, number, coherent, and squeezed states.
These figures are the phonon analogs of the illu-
minating schematic diagrams used for photons
[17,42].

A single-mode quadrature phonon squeezed
state is generated from a vacuum state as

Daq, mT"Dq(aq)Sq(m)D0T; (23)

a two-mode quadrature phonon squeezed state is
generated as

Daq
1
, aq

2
, mT"Dq

1
(aq

1
)Dq

2
(aq

2
)Sq

1,q2
(m)D0T. (24)

Here Dq(aq) is the coherent state displacement oper-
ator with aq"DaqDe*(,

Sq(m)"expA
mH
2

b2q!
m
2
bs2q B, (25)

Sq
1,q2

(m)"exp(mHbq
1
bq

2
!mbsq

1
bsq

2
) (26)

are the single- and two-mode squeezing operator,
and m"re*h is the complex squeezing factor with
r*0 and 0)h(2p. The squeezing operator
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Fig. 2. Schematic diagram of the time evolution of the expecta-
tion value and the fluctuation of the lattice amplitude operator
u($q) in different states. Dashed lines represent Su($q)T, while
the solid lines represent the envelopes Su($q)T$
JS[*u($q)]2T. (a) The phonon vacuum state D0T, where
Su($q)T"0 and S[*u($q)]2T"2. (b) A phonon number
state Dnq, n~qT, where Su($q)T"0 and S[*u($q)]2T"
2(nq#n

~q)#2. (c) A single-mode phonon coherent state DaqT,
where Su($q)T"2DaqDcosuqt (i.e., aq is real), and
S(*u[$q)]2T"2. (d) A single-mode phonon squeezed state
Daqe~*uqt, m(t)T, with the squeezing factor m(t)"re~2*uqt and
r"1. Here, Su($q)T"2DaqDcosuqt, and S[*u($q)]2T"
2(e~2r cos2uqt#e2r sin2uqt). (e) A single-mode phonon
squeezed state, as in (d); now the expectation value of u is
Su($q)T"2DaqDsinuqt, (i.e. aq is purely imaginary), and the
fluctuation S[*u($q)]2T has the same time-dependence as in
(d). Notice that the squeezing effect now appears at the times
when the lattice amplitude Su($q)T reaches its maxima, while
in (d) the squeezing effect is present at the times when Su($q)T
is close to zero.

Sq
1,q2

(m) can be produced by the following Hamil-
tonian:

Hq
1,q2

"+uq
1
bsq

1
bq

1
#+uq

2
bsq

2
bq

2

#f(t)bsq
1
bsq

2
#fH(t)bq

1
bq

2
. (27)

The time-evolution operator (to first order in m) for
such a Hamiltonian has the form

º(t)"expA!
i

+
H

0
tB

]exp[mH(t)bq
1
bq

2
!m(t)bsq

1
bsq

2
], (28)

where

H
0
"+uq

1
bsq

1
bq

1
#+uq

2
bsq

2
bq

2
, (29)

m(t)"
i

+P
t

~=

f(q)e*(uq1`uq2)qdq. (30)

Here m(t) is the squeezing factor and f(t) is the
strength of the interaction between the phonon sys-
tem and the external source; this interaction allows
the generation and absorption of two phonons at
a time. The two-mode phonon quadrature oper-
ators have the form

X(q,!q)"2~3@2(bq#bsq#b
~q#bs

~q)

"2~3@2u($q), (31)

P(q,!q)"!i2~3@2(bq!bsq#b
~q!bs

~q). (32)

We have considered two cases where squeezed
states were involved in modes $q. In the first case,
the system is in a two-mode ($q) squeezed state
Daq , a~q , mT, (m"re*h), and its fluctuation is

S[*u($q)]2T"2Ae~2r cos2
h
2
#e2r sin2

h
2B. (33)

In the second case, the system is in a single-mode
squeezed state Daq , mT(aq"DaqDe*() in the first mode
and an arbitrary coherent state Db

~qT in the second
mode. The fluctuation is now

S[*u($q)]2T"1#e2r sin2A/#

h
2B

#e~2r cos2A/#

h
2B. (34)

In both of these cases, S[*u($q)]2T can be smaller
than in coherent states (see Fig. 2).

6. Second-order Raman scattering (SORS)

So far we have focused on concepts and the
actual quantum mechanical states relevant to
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coherent and squeezed phonons. Now we will
focus on one particular approach to generate
squeezed phonon states via second-order Raman
scattering.

The SORS process originates from the quadratic
term in the polarizability change dPab of a crystal.
The photon—phonon interaction » that leads to the
SORS process is [18] »"!1

4
+ab+Nq +

jj{
Pqj,~qj{ab Qqj

Q
~qj{

E
1aE2b. Here, E

1a and E
2b are elec-

tric field amplitudes along a and b directions with
frequencies u

1
and u

2
. The second-order polariza-

bility tensor Pqj,~qj{ab satisfies Pqj,~qj{ab "P~qj{,qjab "

P~qj,qj{ab . Recall that the complex phonon normal
mode operator Qqj

of the phonons is related to
the phonon creation bs

~qj
and annihilation bqj

oper-
ators by Qqj

"bqj
#bs

~qj
. If the incident photon

fields are not attenuated we can treat the optical
fields as classical waves, and also consider the
different pairs of $q modes as independent,
and treat them separately. Thus, for one par-
ticular pair of $q modes, the complete
Hamiltonian for the two phonon modes in-
volved in the SORS process has the form [18]:
Hq"Hq!M4~1+abP

q,~q

ab E
1aE2bNQqQ~q, where

Hq"+uqMbsqbq#bs
~qb~qN is the free phonon

Hamiltonian for the modes q and !q, uq"

(u
1
!u

2
)/2, and the branch labels j and j@ have

been dropped.
Here we consider two different cases. The first is

when the incident photons are in two monochro-
matic beams [10,12,41]; i.e., with electric fields
E
j
"E

j
cos(u

j
t#/

j
), j"1, 2. In the second case

the incident photons are in an ultrashort pulse
whose duration is much shorter than the phonon
period [12,14].

7. Squeezed phonons via continuous wave SORS

Let us now first consider the continuous wave
(CW) case. Because the photons are monochro-
matic, we can take a rotating wave approximation
[19] and keep only the on-resonance terms in the
Hamiltonian. The off-resonance terms only con-
tribute to virtual processes [20] at higher orders.
This approximation is appropriate for times much
longer than the phonon period. The simplified

Hamiltonian has the form

H(#8)q "Hq!jqMbqb~qe2*uqt`*(12#c.c.N,

jq"
1

16K+ab Pq,~q

ab E
1aE2bK, (35)

where /
12

and jq refer to the overall phase and
amplitude, respectively, of the product of the sec-
ond-order polarizability and the incident electric
fields. Recall that Pq,~q

ab is real, therefore the phase
/
12

has no q-dependence. It originates solely from
the two photon modes. The Schrödinger equation
for the $q-mode phonons is i+­

t
Dtq(t)T"

H(#8)q (t)Dtq(t)T, and its time-evolution operator can
be solved by a transformation into the interaction
picture. The result can be expressed as [10,12,41]

Dtq(t)T"eMHqt@*+NeMfHqbqb~q~fqbsqbs~qNDtq(0)T, (36)

where fq"!ijqte~*(12/+. Notice that the second
factor in the time-evolution operator is a two-mode
quadrature squeezing operator [21].

In the CW case considered here, the amplitude
of the squeezing factor fq grows linearly with time.
However, this initial linear growth will be eventu-
ally curbed by subsequent phonon—phonon scat-
tering and optical pump depletion. In other words,
the expression for the squeezing factor fq is valid for
times much larger than one phonon period, but
much smaller than phonon lifetimes (because this
treatment considers non-decaying phonons). By
solving the phonon Langevin equation, we have
shown that the squeezing factor in the CW SORS
will eventually saturate at a constant value deter-
mined by the strength of SORS and the phonon
decay constant [22]. In addition, the phase of the
squeezing factor is determined by the phase differ-
ence of the two incoming light waves. If the $q
phonon modes are initially in a vacuum state or in
a coherent state, the SORS will drive them into a
two-mode quadrature squeezed state [10,12,41].

The time evolution operator of all the phonon
mode pairs (instead of just one pair of $q modes)
that are involved in this SORS process has the
form º(t)"<qºq(t). Therefore, as long as the pho-
ton depletion is negligible, all the phonon modes
that are involved in a SORS process are driven into
two-mode quadrature squeezed states. In other
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words, squeezing can be achieved in a continuum of
phonon modes by a CW stimulated SORS process.

8. Squeezed phonons via impulsive SORS

Recently, an impulsive SORS process has been
used to experimentally generate phonon squeezing
[14]. Here we treat the problem expressing the time
evolution operator of the system in terms of a prod-
uct of the two-mode quadrature squeezing operator
and the free rotation operators [23]. Since the incid-
ent photons are now in an ultrashort pulse, the com-
plete Hamiltonian can be solved in the limit when
the optical field can be represented by a d-function.
Such an approximation is usually considered when
the optical pulse duration is much shorter than the
optical phonon period, which is experimentally
feasible with femtosecond laser pulses. The Hamil-
tonian for the SORS can now be written as
H@"+qMHq!j@qd(t)QqQ~qN, where j@q carries the
information on the amplitudes of the incoming
optical fields and the electronic polarizability. No-
tice that the light-phonon coupling strength jq in
the CW case has units of energy, while j@q here has
units of +. To further simplify the problem, we
assume that only $q modes are involved in the
process. Such a simplification is possible when the
photon depletion and the phonon anharmonic in-
teraction are negligible, so that different pairs of
phonon modes are independent from each other.
The Hamiltonian is now

H@q"Hq!j@qd(t)QqQ~q , (37)

and the Schrödinger equation for these two-pho-
non modes is i+­

t
Dtq(t)T"H@qDtq(t)T. This equation

can be solved by separating the free oscillator terms
and the two-phonon creation and annihilation
terms. The resulting time-dependent wave function
is

Dtq(t)T"expG
tHq

i+ HexpG
ij@qHq

+2uqH
]expMf{Hq bqb~q!f@qbsqbs

~qNDtq(0~)T. (38)

Here f@q"!ij@qe~*j@q+/+. Hence the effect of the
optical pulse is clear: it first applies a two-mode
quadrature squeezing operator on the initial state,

then rotates the state by changing its phase [23].
The state will then freely evolve after t"0`. This
result is consistent with Ref. [14] where the time-
evolution operator is expressed in terms of real
phonon normal mode operators [18], instead of
the complex ones used in this paper. Notice that, in
contrast to the CW SORS, the phase of the squeez-
ing factor f@ for the impulsive case is fixed by the
intensity of the light pulse.

9. Macroscopic implications and time-dependence
of the dielectric constant

Now that we have obtained the phonon states for
both the CW and pulsed SORS cases, let us con-
sider the macroscopic implications of these states.
More generally, let us first discuss the implications
of the phonon squeezed states disregarding how
they are generated. An experimentally observable
quantity O which is related to the atomic displace-
ments in the crystal can generally be expressed in
terms of Qq: O"O(0)#+q(­O/­Qq)Qq#2"

O
0
#O

1
#O

2
#2 where the first term O

0
"O(0)

is the operator O when all Qq’s vanish. An example
of an experimentally observable quantity O is the
change in the crystal dielectric constant de due to
the atomic displacement produced by the incident
electric fields. To first order in Qq ,

de"de
1
" +

qx;0
K
­(de)
­Qq KS

+
2uq

(bq#bs
~q)e*

Wq

#(b
~q#bsq)e~*Wq].

Here Wq is the phase of ­O/­Qq"­(de)/­Qq. Indeed,
a widely used method to track the phases of coher-
ent phonons in the time domain [2] is based on the
observation of the reflectivity (or transmission)
modulation dR (d¹) of the sample, which is linearly
related to de — the change in the dielectric constant
due to lattice vibrations. The above equation for de
indicates that we can define a generalized [10,41]
lattice amplitude operator [8,11]: u

g
($q)"

(bq#bs
~q)e*

Wq
#(b

~q#bsq)e~*Wq. This generalized
lattice amplitude u

g
($q)"2ReMQqe*

WqN is the un-
derlying microscopic quantity related to an ob-
served reflectivity or transmission modulation
when the linear term in Qq , de

1
, exists.
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Even if Sde
1
T vanishes, SD(de

1
)2T does not. Since

different pairs of $q phonon modes are uncor-
related to one another, the fluctuation of de

1
can be

expressed as S(*de
1
)2T"+

qx;0
(+/2uq)D­(de)/­QqD2

S*u2
g
($q)T. Here the state is Dt(t)T"

º(t)Dt(0)T"<qºq(t)Dtq(0)T in either the CW or the
impulsive case. We can again focus on a single pair
of $q modes. In the CW case, using Eq. (36), the
fluctuation is

S*u2
g
($q)T(#8)"2Me~2rq cos2(Xq(t)#/

12
/2)

#e2rq sin2(Xq(t)#/
12

/2)N, (39)

where rq"DfqD"jqt/+, Xq(t)"uqt#p/4, and here-
after S2T denotes an expectation value on
squeezed states, unless stated otherwise. Therefore,
at certain times, the fluctuation S*u2

g
($q)T(#8) can

be smaller than 2, which is the vacuum fluctuation
level. Furthermore, all the pairs of phonon modes
that are driven by the stimulated SORS process
share the same frequency: uq"(u

1
!u

2
)/2. There-

fore, all the fluctuations S*u2
g
($q)T(#8) evolve with

the same uq. Notice that there is no dependence on
Wq in the final expression of S*u2

g
($q)T(#8), and the

squeezing factor phase /
12

/2 has no q-dependence,
all the pairs of modes involved through the SORS
share the same phase in their fluctuations. There-
fore there can be squeezing in the overall fluctu-
ation S(*de

1
)2T(#8). Furthermore, the phase of this

overall fluctuation can be adjusted by tuning the
phase difference of the two incoming light beams.

In the impulsive case [14,2,34], if the $q-mode
phonons are driven into a squeezed vacuum state,
the fluctuation in u

g
($q) is

S*u2
g
($q)T@"2Me~2r@q cos2X@q(t)

#e2r@q sin2X@q(t)N, (40)

where r@q"Df@qD"j@q/+, and X@q(t)"Xq(t)!r@q. Again,
the squeezing will reveal itself through oscillations
in S[*(de

1
)]2(q)T@ which is proportional to

S*u2
g
($q)T@. Note that these oscillations are essen-

tially the same as the ones obtained in the CW case.
However, now the squeezing factor is time-inde-
pendent. Also, the t"0 phase p/4!r@q in Eq. (40)
is q-dependent. Eq. (40) can be rewritten as
S*u2

g
($q)T@"2Mcosh 2r@q#sinh 2r@q sin(2uqt!r@q)N.

For small r@q, this becomes S*u2
g
($q)T@"

2M1#2r{2q #2r@q sin(2uqt!r@q)N. This expression

has essentially the same form as the one obtained
in Ref. [14]: SQ2q (t)T"SQ2q (0)TM1#2m2q#
2mq sin(2uqt#uq)N. The small phase term uq is ne-
glected in [14] when computing transmission cha-
nges. The difference in phases, r@q versus uq , is
negligible in the limit of very small squeezing factor,
and originates from the different interaction Hamil-
tonians used here and in Ref. [14]. The interaction
term in Ref. [14] is proportional to u2

g
($q) with

Wq"0 (notice that their Qq is real and based on
standing wave quantization [18]). Therefore, the
interaction Hamiltonian in Ref. [14] is (in our nota-
tion) »Ju2

g
($q)J2QqQ~q#Q2q#Q2

~q. How-
ever, the last two terms in this expression do not
satisfy momentum conservation, we thus did not
include them and kept only QqQ~q in our interac-
tion term (this form is also used by Ref. [18]).

When the linear perturbation de
1
due to phonons

vanishes, such as in Ref. [14], the second order
correction O

2
("de

2
) must be considered. When the

phonon states are modulated by a SORS, so that
the $q modes are the only ones which are corre-
lated, de

2
"+q(­2(de)/­Qq­Q

~q)QqQ~q. Let us first
focus on one pair of $q modes in the CW case. In
a vacuum state, S0DQqQ~qD0T"1, while in
a squeezed vacuum state D0T

42
,
42
S0DQqQ~qD0T

42
"

S*u2
g
($q)T(#8)/2, with the right-hand side given in

Eq. (39). Therefore, the expectation value of QqQ~q

in a squeezed vacuum state is periodically smaller
than its vacuum state value. Let us now include all
the phonon modes that contribute to de

2
. In a vac-

uum state, S0Dde
2
D0T"+q­2de/(­Qq­Q

~q). On the
other hand, in a squeezed vacuum state,

Sde
2
T"

1

2
+
q

­2(de)
­Qq­Q

~q

S*u2
g
($q)T(#8). (41)

Since the phase /
12

/2 has no q-dependence, contri-
butions from the phonon modes sharing the same
frequency add up constructively. It is thus possible
that Sde

2
T is periodically smaller than its vacuum

state value. Similarly, in the impulsive case, Sde
2
T@"

2~1+q(­2(de)/­Qq­Q
~q)S*u2

g
($q)T@; however, the

phase factor in Sde
2
T@ has a q-dependence through

r@q , so that all the phonon modes with the same
uq do not contribute to Sde

2
T@ synchronously. In

the CW SORS and in the very-small-r@q limit impul-
sive SORS the phase of the expectation value
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SQqQ~qT does not depend on q; this is crucial to the
experimental observation of modulations in the di-
electric constant, because this q-insensitivity leads
to constructive summations of all the q pairs in-
volved. Also, at a van Hove singularity a large
number of modes contribute to de

2
with the same

frequency and phase, thus their effect is larger and
easier to observe [14].

10. Squeezed phonons via a finite-width SORS

Real light pulses are not d-functions. Therefore,
we have also considered a SORS pumped by a light
pulse with a finite width (smaller than the phonon
period ¹) instead of a d-function. For a fixed peak
height I, we find [22] that the optimal pulse width
¹015

1
that maximizes the squeezing effect satisfies

¹015
1

+¹/4.4. This calculation indicates that the ex-
periments [14] used a pulse width which is near the
optimal value (¹/4.4+300/4.4 fs+68 fs +¹

1
).

The calculation [22] can be summarized as follows.
First, in the impulsive Hamiltonian we replace the
d-function by a Gaussian with its width ¹

1
as

a variational parameter. Since now the Hamil-
tonian is time-dependent in the interaction picture,
we cannot directly integrate the Schrödinger equa-
tion. Instead, we use the Magnus method to obtain
the time evolution operator and keep only the
dominant first term. This approximation is valid
when the pulse duration is shorter than the phonon
period. We then calculate the width ¹015

1
of the

Gaussian that maximizes the squeezing factor. For
a constant peak intensity, a pulse that is too narrow
does not contain enough photons; while it can be
proven that a pulse which is too long (i.e., with
a width comparable to ¹), attenuates the squeezing
effect.

11. Phonon squeezing mechanism

What is the mechanism of phonon squeezing in
the SORS processes? For the CW case, the Hamil-
tonian is the same as an optical two-mode paramet-
ric process [19], with the low frequency interference
of the combined photon modes as the pump, the
two phonon modes as the signal and idler. The

frequencies of these modes satisfy uq#u
~q"

u
1
!u

2
. The impulsive case is slightly different.

Although the Hamiltonian is similar to a paramet-
ric process, the energy transfer from the photons to
the two phonon modes is instantaneous. The result-
ing phonon state is a two-mode quadrature
squeezed vacuum state. Indeed, a regular paramet-
ric process pumps energy into the signal and idler
modes gradually, while the impulsive SORS does it
suddenly. The correlation between the two phonon
modes, and thus the squeezing effect, is also intro-
duced instantaneously. Notice that this mechanism
is reminiscent of the frequency-jump mechanism
proposed in [6,37,38]. In the impulsive SORS, the
frequency of the phonon modes has an ‘infinite’
d-peak change at t"0, while the frequency-jump
mechanism has finite frequency changes, and
squeezing there can be intensified by repeated fre-
quency jumps at appropriate times. However, as it
has been pointed out in [6,37,38], a finite frequency
jump up immediately followed by an equal jump
down results in no squeezing at all.

12. Experimental search for squeezed phonons

One group [14] has claimed to detect squeezed
phonons. However, no other group has succeeded
in reproducing their results. Recent calculations
indicate that these initial experiments [14] do not
prove that phonon squeezing has been achieved
experimentally. Here we discuss several important
points to be considered for the eventual future ex-
perimental observation of a phonon squeezed state.

First of all, squeezing must refer to a phonon
mode with a variance that falls below the standard
quantum limit. This crucial comparison has not
been produced yet. Thus, a reliable determination
of the vacuum noise level is necessary in order to
establish if a squeezing of the vacuum noise has
indeed occurred. Experiments in quantum optics
have an independent way to reliably obtain the
noise level of the vacuum: by using an independent
light beam as a local oscillator. Currently, there is
no such phase-sensitive detection scheme for pho-
nons. However, as we point out later, a pump-
probe experiment may be able to establish such
a criterion, but discretion has to be applied.
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Second, for phonons, with relatively low energy
compared to photons, thermal noise should always
be considered in an experiment. This is especially
important when the noise modulation factor is
small, such as the case in the reported experiment
[14], where the noise modulation factor is only
0.0001%. Achieving total noise modulation, as can
be done through CW and impulsive SORS, is not
equivalent to the squeezing of the vacuum noise.
Only when the noise modulation factor is big
enough to overcome the thermal noise, then the
quantum noise is suppressed.

Third, in that experiment, the squeezing factor
is obtained from the modulation of the light trans-
mission through a crystal. However, this change in
light transmission describes the modulation of the
total fluctuations (both quantum and thermal) of
the atomic displacements. Thus, by itself this
modulation of the noise is not a proof of quantum
noise suppression, let alone of squeezing below the
vacuum noise level.

Fourth, the efficiency of the signal detection is
a crucial issue in photon squeezing experiments,
but not addressed in its phonon ‘analog’ experi-
ment. In a homodyne or heterodyne detector for
photons, if the efficiency of the photon counters is
less than one, additional noise is introduced into
the signal. Similarly, in a pump-probe phonon de-
tection scheme, the probe light pulse and photo-
detector should introduce additional noise into the
final signal. Therefore, a careful analysis of these
additional noise sources should be performed when
employing a pump-probe scheme to detect phonon
squeezing.

For the above reasons, it is premature and un-
warranted to claim that squeezed phonons have
been observed experimentally. The evidence pre-
sented so far is incomplete and inconclusive. The
answer to the question: ‘Can phonons be squeezed
like photons?’ is yes on theoretical grounds, but the
experimental proof still lies in the future.

The rest of this section presents quantitative deri-
vations in support of the statements made above.
Even with the reservations presented above regard-
ing the pump-probe scheme, we would like to point
out that it does provide a possible means for the
detection of phonon squeezing. Here we discuss the
criteria for achieving squeezing of quantum noise

through an impulsive SORS process in a pump-
probe experiment. We then give a numerical esti-
mate on whether squeezing of quantum noise has
been achieved in [14].

Experimentally, the observed quantity is the
change in the transmission ¹ due to the impulsive
SORS process. Up to second order in Qq , ¹ can be
expressed as

¹"¹
0
#+

q

­¹
­Qq

SQqT#+
q

­2¹
­Qq­Q@q

SQqQ@qT,

where the average is over the phonon states of the
crystal. In a squeezed vacuum (or thermal) state
considered here, SQqT"0 and SQqQ~qT"
2S*u2($q, t)T. Therefore, ¹ does contain informa-
tions on the atomic lattice fluctuations.

Through impulsive SORS, we can achieve modu-
lation of the total noise of the system, and the effect
can be seen through a modulation of the transmis-
sion ¹, or more specifically, *¹/¹. Starting from
a thermal state, we have

*¹

¹

+

1

¹

+
q

­2¹
­Qq­Q

~q

[1#2N(uq)]rq sin(2uqt).

Notice that this modulation of the total noise is not
equivalent to a squeezing of quantum noise, be-
cause *¹"0 is an indication of total noise limit
(that is, quantum noise plus thermal noise), not
quantum noise limit. Even though the experiment is
done at low temperatures, so that thermal noise is
miniscule, we still have to compare the thermal
noise to the squeezing factor (or modulation factor
through impulsive SORS) because the later is very
small, too. One criteria for quantum noise sup-
pression would be

*¹@
¹

"

¹!¹
7!#

¹
7!#

+

1

¹
7!#

+
q

­2¹

­Qq­Q
~q

[2N(uq)#rq sin(2uqt)].

A negative *¹@/¹ here indicates that, at least in
some spectral regions, the atomic displacement
noise is squeezed below the ground state limit. We
are now comparing the thermal population 2N(uq)
and the squeezing factor rq. In summary, there is
always modulation of total noise by the impulsive
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SORS, but only when rq'2N(uq) do we achieve
noise smaller than the ground state limit.

For example, at an experimental temperature of
10 K, the corresponding thermal energy k

B
¹ is

about 0.88 meV. The acoustic phonons involved
in the experiment reported in Ref. [14] have a
frequency of about 2.7 THz, which corresponds to
an energy quantum of +u+10.6 meV. Therefore,
the thermal noise factor here is about N"

1/Mexp(+u/k
B
¹)!1N+e~12+0.6]10~5, which is

almost identical to the squeezing factor given in
Ref. [14]. Therefore, it is quite clear that this par-
ticular experiment has not achieved squeezing of
quantum noise below the vacuum noise limit. How-
ever, if the experimental temperature is further
lowered, the thermal factor will become smaller.
The squeezing action initiated by the second-order
Raman scattering should then be strong enough to
realize suppression of noise below the ground state
level.

13. Conclusions

We have presented an overview of the definitions
relevant to quantum phonon optics, including quan-
tum coherent and squeezed phonons. Afterwards,
we have studied theoretically the generation of
phonon squeezing using a stimulated SORS pro-
cess. In particular, we calculated the time evolution
operators of the phonons in two different cases:
when the incident photons are in monochromatic
continuous waves, and when they are in an ultra-
short pulse. The amplitude of the squeezing factor
initially increases with time and then saturates in
the CW SORS case, while it remains constant in the
pulsed SORS case. In addition, the t"0 phase of
the squeezing factor in the CW SORS, /

12
, can

be continuously adjusted by tuning the relative
phase of the two incoming monochromatic photon
beams, while for the pulsed SORS the phase (Jj@q)
of the squeezing factor is determined by the ampli-
tude of the incoming light pulse. For both cases we
calculated the quantum fluctuations of a generaliz-
ed lattice amplitude operator and the second order
contribution to the change in dielectric constant,
which is measurable. For the finite-width impulsive
case, we computed the optimal pulse width, in

terms of the phonon period, that maximizes the
squeezing effect.
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