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Abstract

Using numerical simulations, we study the response, to an AC square-wave Lorentz force,
of an assembly of magnetic vortices interacting with a square lattice of double-well asymmetric
pinning centers. The collective AC-driven vortex dynamics becomes recti9ed for drive amplitudes
within an optimal recti9cation window. Here we focus on the dynamics right above the 9rst
matching 9eld, where there are slightly more vortices than pinning traps. Remarkably, for low
drive amplitudes the excess vortices, i.e., not sitting in the pinning centers, behave either like
highly mobile interstitials con9ned between two adjacent columns of vortices, or like stable
discommensurations of single lattice columns. In both cases these excess vortices exhibit a variety
of dynamical responses (e.g., current inversion, Stokes’ drift) depending on the amplitude of the
applied force.
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1. Introduction

Solid state structures with asymmetric potentials are currently attracting considerable
attention [1,2] because they provide novel ways to control the motion of particles in
devices. These were initially motivated by work on Brownian motors [3–6] Controlling
the motion [7] of magnetic Lux quanta in superconductors is of potential application
for very sensitive SQUID sensors of magnetic Lux [8] and for other applications,
including the design of novel magnetic Lux pumps, diodes, as well as for focusing
and lensing magnetic Lux quanta in designated target regions inside a superconducting
device [9–15].
Vortex dynamics in asymmetric superconducting devices driven by an external AC

force is a very new development [9–15] that promises an unprecedented degree of
control of the motion of Lux quanta, including easily controllable collective step-motors,
magnetic Lux concentrators and Lux dispersers, vortex brooms, etc.. The combination
of a driving force which is periodic in time and a certain degree of spatial asymmetry in
the potential energy felt by the movable objects induces a net stationary time-averaged
transport of vortices along one direction. This DC recti9cation of an AC-driven system
is known as the ratchet eNect [3]. Recti9cation of AC driven vortex dynamics has
been achieved by means of several mechanisms. Three of these are summarized here:
(i) Asymmetric boundaries [9] that allow freely moving vortices, which are pumped
back and forth through channels with suitably corrugated walls, to achieve a net average
DC velocity; (ii) Asymmetrically modulated spatial distributions (for distances ∼�) of
otherwise symmetric pinning centers [10], where a coarse-grained (for distances ∼�
or larger) eNective ratchet potential is generated by the vortices trapped in the pins,
and only the interstitial Low gets recti9ed. Here � denotes the length-scale beyond
which the vortex-vortex interactions decrease very fast. The length-scale �, which is
much smaller than �, denotes the typical vortex core size, which is of the same order
of magnitude as the pinning force interaction; (iii) Regular lattices of asymmetric
double-well pinning centers [11,12], where recti9cation occurs at the length scale of
the pins (∼� as opposed to the scale of ∼� in Ref. [10]) and acts on the entire vortex
array, with no distinction between interstitial and trapped vortices.
Twin boundaries in Lux-gradient-driven vortices, as opposed to the current-driven

vortices considered by most theoretical studies, can also be used as vortex diodes [13].
All of the above systems are intrinsically two-dimensional, whereas the potential energy
considered in Ref. [14] is essentially one-dimensional. Also, all previous proposals are
based on spatially-asymmetric substrates. Recently, time-asymmetric driving has been
used for samples that have no spatial asymmetry [15].
In the present work we study the interstitial vortex Low appearing in con9gura-

tion (iii), namely for superconducting samples with a square array of asymmetric
double-well pinning centers [11,12]. These type of samples can be produced in the lab-
oratory via controlled irradiation and specially using direct-write electron beam lithog-
raphy. For an appropriate choice of vortex density (i.e., of the applied magnetic 9eld) a
controllable fraction of the magnetic Lux lines penetrating the sample cannot be accom-
modated in the asymmetric traps, even in the absence of external drive. However, such
excess vortices still perceive the pin asymmetry through their long-range interaction
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with the trapped vortex array. The variety of the dynamical behaviors we observed as
a function of drive provides an ideal playground for studying novel spatio-temporal dy-
namics in a non-equilibrium driven system, including anomalous interstitial dynamics,
Stokes’ drift, and current inversion.
We focus here on an applied magnetic 9eld slightly above the 9rst matching 9eld

because in this dilute limit it is easier to study the dynamics of the moving interstitial
vortices interacting with the nearby pinned vortices. The location of these trapped
vortices is weakly shifted by the interstitial vortices as they pass very near the trapped
vortices. These small shifts of the trapped vortices play an important role inverting the
direction of motion of the interstitial vortices.
Fields below the 9rst matching 9eld provide no interstitial vortices. Fields much

larger than the 9rst matching 9eld are not useful for rectifying vortex motion. This is
easy to see considering an example. If the sample is placed in an externally applied
magnetic 9eld which is equal to twice the 9rst matching 9eld there are two vortices for
each pinning site. Under usual conditions, the interstitial vortices move back and forth
and do not get recti9ed. Thus, the excess vortices dissipate energy when moving back
and forth and their net motion is zero. Maximum recti9cation is achieved very near
the 9rst matching 9eld (experimentally a perfect equal sign is not easy to achieve).

2. Model

In Ref. [11] a lattice of asymmetric double-well pinning centers was generated by
means of two interpenetrating square lattices, each one with potential energy wells
at each square site and each one with diNerent pinning strengths. These two square
pinning lattices are shifted a distance d apart along the y-direction, with d smaller than
the lattice constant a0, here chosen as a0 = 1. Fig. 1(a) shows a schematic top view
or x-y view of a small section of a sample with two interpenetrating square arrays
of weak and strong pinning sites. Fig. 1(b) shows a small portion of the potential
energy landscape over which the vortices move. All Np pinning centers are modelled
by Gaussian potential wells with decay length Rp. The force exerted by the kth pinning
site on the ith vortex is [16]

Fk(ri) =−F�p0f0
(
ri − Rk
Rp

)
exp

(
−
∣∣∣∣ ri − Rk
Rp

∣∣∣∣
2
)
; (1)

where ri represents the location of the ith vortex and �= w (“weak”) or s (“strong”)
characterizes the strength of the kth pinning site located at Rk . The intensity of the
individual pinning force is denoted by F�p0f0.
In our simulation, forces (per unit length) are taken in units of f0 =�2

0=8�
2�3, with

�0 the superconducting Lux quantum and � the superconducting penetration depth
[17]. Since our pinning strengths F�p0 are unequal, the asymmetry of the lattice can be
controlled by d. The driving force acting on the vortices is the Lorentz force FL=J×�0,
where J is the applied electric current density. Here, an AC current is applied to the
sample along the x-direction in the x-y plane, so that the driving Lorentz force FL is
always parallel to the y-axis. The repulsive vortex-vortex interaction is modelled by
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Fig. 1. (a) Schematic top view of a subset of the sample showing two interpenetrating square lattices of
pinning sites shifted by d = 0:2a0 along the y-direction. The period a0 of both the strong pinning lattice
(indicated here schematically by darker grey circles) and the weak pinning lattice (lighter grey circles) are
the same. Both pinning sites have the same diameter. (b) 3D illustration of a small portion of the asymmetric
double-well pinning potential energy felt by the vortices in the sample.

a logarithmic potential, Uvv∼ − ln(r=�): Thus, the vortex-vortex repulsive interaction
force is

Fvv(ri) = Fvv0f0
Nv∑
j �=i

�r̂ij
|ri − rj| ; (2)

where r̂ij=(ri− rj)=|ri− rj|. The intensity of the intervortex interaction force is Fvv0f0
and its cut-oN length was set to 5a0. In the absence of thermal Luctuations [11] the
overdamped equation of motion of the ith vortex reads

�vi = FL + Fvv(ri) + Fp(ri) ; (3)

where � is the viscous damping coeScient (hereafter, �=1 for convenience) and Fp(ri)
is the total pinning force exerted on the vortex by both sublattices w and s.
The equation of motion for the vortices is solved by taking discrete time steps
�0 = 0:00667 in a 2D square sample containing two interpenetrating arrays of strong
and weak pinning sites with periodic boundary conditions in both directions. The initial
vortex positions are obtained by annealing, that is, the sample is 9rst exposed to high
temperatures and then cooled down to zero temperature. Due to the vortex-vortex
repulsion, the low density of excess vortices tend to sit in the channels formed by the
columns of trapped vortices. The sample is then subjected to a square-wave alternating
current along the x-axis, producing a square-wave Lorentz driving force along the y-axis
with amplitude FL and half period P. The remaining simulation lengths and forces used
in the 9gures here are kept constant: Rp=0:13a0, �=2:6a0, Fvv0=0:1 and Fsp0=0:5. Other
parameter values were also considered, with consistent results. Systematic simulation
runs were carried out only for a square sample with size 10a0×10a0, (i.e., with Np=100
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asymmetric pinning centers). We tested samples of diNerent sizes and geometries, as
well, coming to the conclusion that our results are insensitive to the sample size,
provided that the density of vortices and pinning sites remains unchanged. The number
of magnetic vortices Nv is a tunable parameter both in the lab and in the simulations.
In experiments Nv is controlled by varying the applied magnetic 9eld H perpendicular
to the sample.
A single trapped vortex can be extracted from an isolated composite pinning center

by applying an external force with amplitude larger than a characteristic depinning
force, namely FL¿Fm when FL ‖ y and FL¿FM when FL ‖ − y. For the pinning
parameters adopted throughout the present work, one obtains numerically Fm�0:236
and FM�0:436, respectively, for the weak and the strong pin stopping force.

3. Vortex mobility: DC drive

To investigate numerically the eNect of asymmetric pinning on the vortex motion,
we maximized the asymmetry eNects [11] by setting the pinning sublattices separation
to d= 0:2a0 and the relevant pinning strength ratio to FsP0=F

w
P0 = 2. We also chose to

work immediately above the 9rst matching 9eld H1; this means that in our simulations
the number of vortices Nv is set to be slightly larger than the number of pins Np (by
de9nition Nv=Np = H=H1), thus establishing a low density of excess vortices.
The key transport quantity we studied in detail is

VDC =

〈
1
Nv

Nv∑
i

vi

〉
AC

; (4)

where 〈· · ·〉AC denotes the net stationary time-average velocity over many AC cycles
of the driving force (typically 100 or a few hundred cycles). In all our runs stationarity
was reached after transient times that were shorter than 9fty AC cycles (the transients
typically lasted between 20 to 30 cycles).
In order to remove the linear growth component, in Fig. 2 we plot the vortex mobility
&R;L=|VDC |=FL versus the amplitude FL of a DC drive with FL ‖ y (for &R) and FL ‖ −y
(for &L), respectively. In this paper, &R;L is a compact way to refer to two quantities:
&R and &L. A step structure is apparent in the vortex mobility versus the amplitude
of the driving force, shown in Fig. 2. For large drives, FL¿Fm;M , all the vortices
(core-pinned and interstitial, alike) run in the FL direction and the average vortex
mobility approaches unity (as it should, since �=1). The compact notation FL¿Fm;M
refers to two inequalities: FL¿Fm and FL¿FM . On decreasing FL, a 9rst big drop
in the mobility curves occurs in the vicinity of Fm for &R(FL) and of FM for &L(FL).
In Ref. [11] we showed that the asymptotic branch of both mobility curves can be

approximated to
√
F2
L − F2

m;M with FL¿Fm;M , respectively, as earlier predicted for a
Brownian particle in a washboard potential [18,19].
The mobility curves &R;L(FL) for FL¡Fm;M are determined by the dynamics of the

excess, or interstitial, vortices (just one out of a total of 101 vortices in our sample
at H=H1 = 1:01), because the core-pinned vortices are trapped to the pinning lattice.
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Fig. 2. Vortex mobility curves &R;L versus the amplitude FL of a DC drive at constant magnetic 9eld
H=H1 =1:01, i.e., of a 10×10 vortex array with only one interstitial. The solid curves were obtained starting
from an interstitial con9guration and ramping up FL from 0 to 1 by steps of 0:001; the dashed curves were
obtained on ramping FL back down to 0. In the case of &R, the Lorentz force FL was oriented in the +y
direction, and vice versa for &L. The remaining simulation parameters are: a0 = 1, d = 0:2a0, Fsp0 = 0:5,
Fsp0=F

w
p0 = 2 and �0 = 0:0067.

(a) (b)

Fig. 3. Vortex trajectories for H=H1 = 1:01 and diNerent intensities of a DC drive oriented in the negative
direction (with mobility &L shown in Fig. 2): (a) FL=0:3, interstitial phase; (b) FL=0:4, discommensuration
phase. The remaining simulation parameters are as in Fig. 2.

The &L(FL) curve in Fig. 2 exhibits two clear-cut steps at FL�0:18 and 0:35 as FL is
being ramped up from 0 to 1. The latter step clearly indicates a sudden phase tran-
sition in the interstitial dynamics. This event is illustrated in Fig. 3: In panel (a) the
interstitial runs parallel to FL at the center of the channel delimited by two adjacent
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(locked) vortex columns; in panel (b) the moving vortex joins a vertical column pro-
ducing a travelling discrete soliton-like [20] deformation or discommensuration (like in
Ref. [17]). A vortex in phase (a) behaves like a proper interstitial, while a vortex of
phase (b) is rather to be regarded as a lattice discommensuration.
The interstitial is subjected to a periodic potential Ui(y) generated by the trapped

vortices; such a potential is weaker than the potential Up(y) responsible for the locking
of the vortex lattice, as proved by the inequality F (i)

m ¡Fm;M , where F
(i)
m �0:18 denotes

the 9rst step in the solid curve &L(FL) of Fig. 2. If we insert the excess vortex of
Fig. 3 by hand so as to form a travelling discommensuration and then slowly decrease
FL, the mobility &L retraces the entire discommensuration branch (solid line) backwards
and then continues it (dashed line) until it drops to zero at F (d)

M �0:113, with no further
intermediate step. The inequality F (d)

M ¡F
(i)
m suggests that the discommensuration phase

is stable and at low drive amplitudes is more mobile than the interstitial phase.
The analysis of the &R(FL) curve is simpler. When starting with an interstitial con-

9guration and ramping FL up, we detected a sudden jump in &R(FL) from a completely
locked phase, where not even the interstitial vortex moved, to a “travelling discom-
mensuration phase” at around FL�0:215. On ramping FL down to zero, the discom-
mensuration comes to a complete stop for F (d)

m �0:105. For the simulation parameters
of Fig. 2, a stable interstitial phase never shows up for FL ‖ y.
The mobility curves in Fig. 2 are an (almost linear) superposition of three distinct

depinning processes involving, respectively: (1) the trapped vortex lattice; (2) the dis-
commensurations; (3) the (proper) interstitials. All three classes of objects move on
quasi-one dimensional periodic asymmetric substrates in the y-direction. In particular,
discommensurations are well represented by extended quasi-particles diNusing on peri-
odic 1D potentials [20]. Here, as both F (d)

m ¡F
(d)
M and Fm¡FM , the eNective ratchet

potentials for the vortex lattice and the discommensurations are expected to show the
same polarity.
Finally, let us now consider the height of the mobility steps in Fig. 2. Here, the

normalization in the de9nition (4) of VDC plays an important role. The asymptotic
branch of both &R and &L approaches unity, when FL grows, because after depinning all
Nv=101 vortices of the sample move in the FL direction with speed close to FL. On the
contrary, the height of the interstitial step of &L (for FL�0:18 for &L in Fig. 2) is about
one hundredth the asymptotic mobility value (&→ 1), as to be expected in the presence
of one mobile interstitial among 101 vortices. However, the discommensuration step
(FL�0:35 for &L in Fig. 2), is about three times as large as the interstitial one, thus
implying that the eNective mobility of an isolated discommensuration in our simulation
is a about three times larger than the mobility of an interstitial vortex.

4. Recti!cation mechanisms for AC driven vortices

So far we have analyzed the response of the vortex system to a DC driving force,
induced by a DC applied current. We are now in a position to study the vortex response
to a square-wave AC drive—applied along the y-axis, with amplitude FL and half
period P. The curve VDC versus P for an amplitude value in the range (Fm; FM ) and
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Fig. 4. (a) Average net vortex velocity VDC versus the drive half-period P at constant magnetic 9eld
H=H1 = 1:01 and drive amplitude FL = 0:3. Snapshots of the vortex trajectories for the P values indicated
by the vertical arrows are displayed in Fig. 6; (b) The corresponding asymmetric pinning potential Up(y)
experienced by a vortex moving along a vertical column of pinning centers. The remaining simulation
parameters are as in Fig. 2. In panel (a) the horizontal dotted line is VM and the open circles represent
Vm(n) for n = 1 through 5.

H=H1 = 1:01 is displayed in Fig. 4(a). Notice that the collective motion of the vortex
array gets recti9ed in the positive y-direction through a sequence of depinning (for
FL‖y, positive half cycle) and re-pinning events (for FL ‖ −y, negative half cycle). On
increasing the drive half-period from P = 0 up to 5000�0 with small step VP = 10�0,
the recti9ed vortex response VDC develops a sharp sawtooth structure, that tapers out
at asymptotically large P values.
When P is suSciently small, the driven vortices travel a distance smaller than the

minimum interpin distance a0−d−2Rp during a positive half period P; afterwards, the
vortices are driven back to the original pinning center during the subsequent negative
half period. This results in a zero DC response of the trapped vortex lattice (on the
linear scale of Fig. 4(a), interstitial transport at H=H1 = 1:01 is negligible).

When the period of the driving force exceeds a threshold value Pc, which depends
on FL, the vortices move from one pinning site to another one nearby during a half
period and the system acts as a vortex recti9er or a collective “stepmotor” of Lux
quanta. In Ref. [11] the threshold half period is approximated to Pc = a0=〈u〉, where
〈u〉=+(FL)FL�FL(1−,pFm=FL) with ,p=2Rp+d is an estimate of the vortex velocity
in the periodic substrate potential Up(y) plotted in Fig. 4(b).

The curve VDC(P) versus P shows a sequence of peaks of the same height VDC=VM .
These peaks correspond to P = nPc + 0, i.e., to the driving condition when a single
vortex can advance by n lattice constants a0 in the y-direction during a positive half
cycle. The peak velocity is therefore VM = na0=2nPc = +(FL)FL=2: The minima Vm(n)
of the curve VDC versus P occur at P= nPc − 0, as the vortex drifts a distance na0 in
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a positive half period of duration (n+ 1)Pc; accordingly,

Vm(n) = VM n=(n+ 1) ;

with n=1; 2; 3; : : : : Both predictions for VM and Vm(n) are displayed in Fig. 4(a). Note
the positive polarity of Up(y) under periodic tilting (as in the AC, tilted, or rocked
ratchet [21]).
Let us focus now on the interstitial dynamics relative to the trapped vortex array;

the latter can be either locked for FL¡Fm, or advance by means of the stepmotor
mechanism just described for Fm¡FL¡FM , or run back and forth (with a net drift in
the positive y-direction) for FL¿FM . We distinguish two diNerent operating conditions
below and above threshold. These will be separately considered below.

5. Sub-threshold AC dynamics

For F (i)
M ¡FL¡Fm, the one excess vortex at H=H1 = 1:01 undergoes recti9cation

under the inLuence of the external AC drive. In Fig. 5(a) we display two VDC(P)
curves, for FL=0:2 and 0:225. The net velocity curve for FL=0:2 is negative over the
entire P domain we simulated and exhibits a sawtooth structure resembling that shown
in Fig. 4(a). Once again, the onset jump at Pc�1150�0 coincides with the distance
between two adjacent VDC peaks at higher P values. Moreover, the approximate formula
for Pc as a function of FL proposed in Ref. [11] (see above) appears to hold good in
this sub-threshold regime, too.
The net velocity curve for FL = 0:225 follows a similar pattern up to Pc�2850�0,

where it suddenly turns positive and much less ragged. To clarify the nature of such
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Fig. 5. (a) Average net vortex velocity VDC versus the drive half-period P at constant magnetic 9eld
H=H1 = 1:01 and diNerent drive amplitudes FL = 0:2 (dashed curve) and 0:225 (solid curve); (b) The
corresponding asymmetric pinning potential Ui(y) experienced by an interstitial moving along the channel
formed by two adjacent columns of trapped vortices. The irregularities in the curve Ui(y) are due to the
9nite cut-oN length of the force Fvv. The remaining simulation parameters are as in Fig. 2.
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an abrupt change, we took snapshots of the vortex assembly before and after current
reversal and concluded that the negative branch of the curve (and the entire curve for
FL=0:2) describes the time evolution of a proper interstitial, while the positive branch
corresponds to the recti9cation of a discommensuration.
The single particle argument developed for the collective vortex motion at large

drives, FL¿Fm, can be readily adjusted to describe an interstitial moving on the
ratchet potential Ui(y) of Fig. 5(b). Our numerical characterization of Ui(y) reveals
an asymmetric periodic interstitial potential with cell unit a0 and reversed polarity
with respect to the lattice ratchet potential Up(y). The negative polarity of Ui(y) is
a consequence of the asymmetric shape of the pinning centers in Fig. 1: A trapped
vortex can be pushed more easily from the weak to the strong pinning sub-unit than
vice versa; therefore, the driven interstitial encounters a slightly softer resistance to its
motion in that (negative) direction than in the opposite (positive) direction. Hence, its
negative recti9ed velocity VDC .
We already anticipated that the discommensuration eNective potential must have

the same positive polarity (and periodicity) as Up(y). This fact was proven for an
asymmetric Frenkel-Kontorova model in Ref. [22]. A simple argument goes as follows:
an excess vortex moves along a column continuously pushing out of a trap a nearby
trapped vortex; on advancing in the positive direction, the discommensurate vortex
displaces the pinned vortex immediately ahead by pushing it out of its trap through the
weaker site; vice versa to move in the negative direction, the discommensuration has to
displace a nearby trapped vortex through the stronger site. The corresponding stopping
forces F (d)

m and F (d)
M diNer enough from one another to ratchet the discommensuration

in the positive direction.

6. Supra-threshold AC dynamics

For FL¿Fm the interstitial Low becomes negligible in comparison with the collective
dynamics of the vortex array. Still, interstitial vortices exhibit a complicated, intriguing
behavior. Here, we limit our analysis to the 9rst sawtooth of the VDC(P) in Fig. 4(a),
where the three distinct dynamical phases of Fig. 6 were resolved.
Panel (a) in Fig. 6 is representative of the interstitial dynamics with drive half-period

in the domain (750�0; 790�0). The net interstitial velocity is positive, as the interstitial
is dragged along by the trapped vortex lattice moving in unison. This is an instance of
a mechanism known as Stokes’ drift [23]. The occurrence of such an eNect requires a
high degree of synchronization between the interstitial and the vortex lattice oscillations,
which can only be attained in the vicinity of Pc. The positive Stokes’ drift of the
interstitials contributes an additional term to the average velocity of the vortex array
for P∼Pc. This explains, for instance, the tiny bump detectable right at the tip of the
9rst peak of the VDC(P) curve in Fig. 4(a).

Panel (b) shows the eNect of increasing P in the interval (800�0; 1240�0). The in-
terstitial moves more freely than the trapped vortices; therefore, over longer drive
half-periods no synchronization is possible; moreover, the interstitial becomes less sen-
sitive to the pinning asymmetry, as the initially trapped vortices spend a substantial
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(a) (b)

(c)

Fig. 6. Interstitial trajectories for H=H1 = 1:01, FL = 0:3 and diNerent half-periods of the driving force as
indicated in Fig. 4: (a) P=760�0, positive net interstitial velocity (Stokes’ drift); (b) P=1000�0, interstitial
oscillations, no net drift; (c) P = 1400�0 negative net interstitial velocity (ratchet e<ect). The remaining
simulation parameters are as in Fig. 2.

fraction of their time in the interpin region. As a result the interstitial starts oscillating
back and forth with no net drift in either direction.
Panel (c) illustrates the onset of an interstitial recti9cation mechanism in the pres-

ence of collective vortex oscillations. This may require longer drive half-periods than
in the sub-threshold case, but it eventually does happen. For AC half periods corre-
sponding to the last portion of the 9rst VDC sawtooth, (1250�0; 1490�0), the interstitial
succeeds in covering a distance equal to two pinning lattice constants, while the slower
trapped vortices do not; the recti9cation mechanism sets on and the interstitial acquires
a negative net velocity.
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Finally, for P¿ 1500�0, that is starting with the second VDC sawtooth, the interstitial
disappears, replaced by a discommensuration. We checked that for P=2000�0 at FL=0:3
the average net velocity Wvd�0:060 of a single vortex in a discommensurate column
(10a0 long and subject to periodic boundary conditions), is signi9cantly smaller than the
average net velocity Wv�0:075 of a vortex in a regular column. The explanation of this
behavior is qualitatively simple. During a positive half cycle all columns, regular and
discommensurate, alike, move in the positive direction in unison since FL¿Fm; during
a negative half cycle regular columns get locked immediately (here, FL¡FM ), whereas
the discommensurations can travel in the negative direction as long as FL is larger than
F (d)
M (which we know being smaller than Fm). The incomplete re-pinning of the vortices

forming a discommensuration during a negative drive half cycle, degrades their average
net velocity in the positive direction. This interpretation of the discommensuration
dynamics in the supra-threshold regime can be checked quantitatively, too, with the
aid of Fig. 2.

7. Conclusions

In summary, we have studied the interstitial dynamics in superconductors with regular
arrays of asymmetric pinning centers subjected to an AC “square wave” electrical
current. Interstitials can be found in two stable dynamical phases depending on the
drive amplitude and period: proper interstitials diNusing in vertical channels parallel
to the applied drive, and discommensurations moving like 9nite density pulses along
vertical trapped vortex columns. At low amplitudes, AC driven transport of interstitials
and discommensurations show opposite ratchet polarity. At larger drive amplitudes,
discommensurations and the vortex lattice drift in the same direction under the action
of an external periodic force; exceptionally, interstitials may be dragged along by the
vortex lattice when certain synchronization conditions are ful9lled. These eNects and
other related ratchet eNects [24] could be visualized using Lorentz microscopy [25]. It
is important to emphasize that our results also apply to arrays of Josephson junctions,
colloidal systems, Wigner crystals and any system with repelling movable objects that
can be pinned by a lattice of traps.
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