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Abstract

We study the decoherence dynamics of a qubit coupled to a quantum two-level system (TLS) in addition to its weak coupling to a
background environment. We analyze the different regimes of behaviour that arise as the values of the different parameters are varied.
We classify those regimes as two weak-coupling regimes, which differ by the relation between the qubit and TLS decoherence times, and a
strong-coupling one. We also find analytic expressions describing the decoherence rates in the weak-coupling regimes, and we
verify numerically that those expressions have a rather wide range of validity. Along with obtaining the above-mentioned results, we
address the questions of qubit–TLS entanglement and the additivity of multiple TLS contributions. We also discuss the transition from
weak to strong-coupling as the parameters are varied, and we numerically determine the location of the boundary between the two
regimes.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

There have been remarkable advances in the quest to
build a superconductor-based quantum information pro-
cessor in recent years [1–14]. Coherent oscillations have
been observed in systems of single qubits and two interact-
ing qubits [2,4,5,8]. In order to achieve the desirable power
of a functioning quantum computer, one would need to
perform a large number of quantum gate operations of at
least hundreds of qubits. One of the main obstacles to
achieving that goal, however, are the relatively short deco-
herence times in these macroscopic systems (note that even
a single superconductor-based qubit can be considered a
macroscopic system). Therefore, there has been increasing
experimental and theoretical activity aimed at understand-
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ing the sources and mechanisms of decoherence of such
systems in recent years [10–21].

The environment causing decoherence of the qubit is
comprised of a large number of microscopic elements.
There is a large wealth of theoretical work on the so-called
spin-boson model [22], which models the environment as a
large set of harmonic oscillators, to describe the environ-
ment of a solid-state system. However, recent experimental
results suggest the existence of quantum two-level systems
(TLSs) that are strongly coupled to the qubit [10,11,23].
Furthermore, it is well known that the qubit decoherence
dynamics can depend on the exact nature of the noise caus-
ing that decoherence. For example, an environment com-
posed of a large number of TLSs that are all weakly
coupled to the qubit will generally cause non-Markovian
decoherence dynamics in the qubit (see, e.g., [15]). Note
that the mechanism of qubit–TLS coupling depends on
the physical nature of the qubit and TLS. The exact mech-
anisms are presently unknown.

mailto:ashhab@riken.jp


46 S. Ashhab et al. / Physica C 444 (2006) 45–52
The effect on the qubit of an environment consisting of
weakly coupled TLSs with short decoherence times is rather
well understood. As was presented in Ref. [18], one takes
the correlation functions of the TLS dynamics in the fre-
quency domain, multiplies each one with a factor describing
the qubit–TLS coupling strength, and adds up the contribu-
tions of all the TLSs to obtain the effective noise that is felt
by the qubit. We shall refer to that approach as the tradi-
tional weak-coupling approximation. In this paper, we shall
study the more general case where no a priori assumptions
are made about the TLS parameters. We shall identify the
criteria under which the traditional weak-coupling approx-
imation is valid. We shall also derive more general expres-
sions that have a wider range of validity, as will be
discussed below. Furthermore, we study the criteria under
which our weak-coupling results break down, and the
TLS cannot be easily factored out of the problem. It is
worth noting here that we shall not attempt to theoretically
reproduce the results of a given experiment. Although we
find potentially measurable deviations from the predictions
of previous work, we are mainly interested in answering
some questions related to the currently incomplete under-
standing of the effects of a TLS, or environment of TLSs,
on the qubit decoherence dynamics.

Since we shall consider in some detail the case of a
weakly coupled TLS, and we shall use numerical calcula-
tions as part of our analysis, one may ask why we do not
simulate the decoherence dynamics of a qubit coupled to
a large number of such TLSs. Alternatively, one may ask
why we separate one particular TLS from the rest of the
environment. Focussing on one TLS has the advantage
that we can obtain analytic results describing the contribu-
tion of that TLS to the qubit decoherence. That analysis
can be more helpful in building an intuitive understanding
of the effects of an environment composed of a large num-
ber of TLSs than a more sophisticated simulation of an
environment composed of, say, twenty TLSs. The main
purpose of using the numerical simulations in this work
is to study the conditions of validity of our analytically
obtained results.

The present paper is organized as follows: in Section 2
we introduce the model system and the Hamiltonian that
describes it. In Section 3 we describe the theoretical
approach that we shall use in our analysis. In Section 4
we use a perturbative calculation to derive analytic expres-
sions for the relaxation and dephasing rates of the qubit in
the weak-coupling regime and compare them with those of
the traditional weak-coupling approximation. In Section 5
we numerically analyze the qubit decoherence dynamics in
the different possible regimes. We also address a number of
questions related to the intuitive understanding of the
problem, including those of qubit–TLS entanglement and
the case of two TLSs. In Section 6 we discuss the question
of the boundary between the weak and strong-coupling
regimes, and we perform numerical calculations to deter-
mine the location of that boundary. We finally conclude
our discussion in Section 7.
2. Model system

We consider a qubit that is coupled to a quantum TLS.
We take the qubit and the TLS to be coupled to their own
(uncorrelated) environments that would cause decoherence
even if the qubit and TLS are not coupled to each other.
We shall be interested in the corrections to the qubit deco-
herence dynamics induced by the TLS. The Hamiltonian of
the system is given bybH ¼ bH q þ bH TLS þ bH I þ bH Env; ð1Þ
where bH q and bH TLS are the qubit and TLS Hamiltonians,
respectively, bH I describes the coupling between the qubit
and the TLS, and bH Env describes all the degrees of freedom
in the environment and their coupling to the qubit and the
TLS. The qubit Hamiltonian is given by

bH q ¼ �
Dq

2
r̂ðqÞx �

�q

2
r̂ðqÞz ; ð2Þ

where Dq and �q are the adjustable control parameters of
the qubit, and r̂ðqÞa are the Pauli spin matrices of the qubit.
For example, for the charge qubit in Ref. [2], Dq and �q are
the energy scales associated with tunnelling and charging,
respectively. Similarly, the TLS Hamiltonian is given by

bH TLS ¼ �
DTLS

2
r̂ðTLSÞ

x � �TLS

2
r̂ðTLSÞ

z : ð3Þ

The energy splitting between the two quantum states of
each system, in the absence of coupling between them, is
then given by

Ea ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

a þ �2
a

q
; ð4Þ

where the index a refers to either qubit or TLS. For future
purposes, let us also define the angles ha by the criterion

tan ha �
Da

�a
: ð5Þ

We take the interaction Hamiltonian between the qubit
and the TLS to be of the form:

bH I ¼ �
k
2
r̂ðqÞz � r̂ðTLSÞ

z ; ð6Þ

where k is the coupling strength between the qubit and the
TLS. Note that the minus sign in bH I is simply a matter of
convention, since k can be either positive or negative. It is
worth mentioning here that the applicability of this form of
interaction is not as limited as it might appear at first sight.
Any interaction Hamiltonian that is a product of a qubit
observable (i.e. any Hermitian 2 · 2 matrix) and a TLS ob-
servable can be recast in the above form with a simple basis
transformation.

We assume that all the terms in bH Env are small enough
that its effect on the dynamics of the qubit + TLS system
can be treated within the framework of the Markovian
Bloch–Redfield master equation approach. It is well known
that the effect of certain types of environments cannot be
described using that approach, e.g. those containing 1/f
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low-frequency noise. However, there remain a number of
unanswered questions about the problem of a qubit experi-
encing 1/f noise. For example, it was shown in Ref. [16]
that the decoherence dynamics can depend on the specific
physical model used to describe the environment. There-
fore, treating that case would make it more difficult to
extract results that are directly related to the phenomenon
we are studying, namely the effect of a single quantum TLS
on the qubit decoherence dynamics. We therefore do not
consider that case.

Depending on the physical nature of the system, the
coupling of the qubit and the TLS to their environments
is described by specific qubit and TLS operators. In princi-
ple one must use those particular operators in analyzing the
problem at hand. However, since we shall present our
results in terms of the background decoherence rates,
which are defined as the relaxation and dephasing rates
in the absence of qubit–TLS coupling, the choice of sys-
tem-environment interaction operators should not affect
any of our results. In fact, in our numerical calculations
below we have used a number of different possibilities
and verified that the results remain unchanged, provided
that the background decoherence rates are kept constant.
Furthermore, the background-noise power spectrum affects
the results only through the background decoherence rates.
Note that we shall not discuss explicitly the temperature
dependence of the background decoherence rates. It should
be kept in mind, however, that the background dephasing
rates generally have a strong temperature dependence in
current experiments on superconducting qubits.

It is worth noting that, since we are considering a quan-
tum-mechanical TLS, the model and the intermediate alge-
bra that we use are essentially identical to those used in
some previous work studying two coupled qubits [24–26].
However, as opposed to being a second qubit, a TLS is
an uncontrollable and inaccessible part of the system.
Therefore, in interpreting the results, we only consider
quantities related to the qubit dynamics.
3. Theoretical analysis: master equation

As mentioned above, we take one particular element of
the environment, namely the TLS, and do not make any a

priori assumptions about its decoherence times or the
strength of its coupling to the qubit. We assume that the
coupling of the qubit to its own environment and that of
the TLS to its own environment are weak enough that a
Markovian master equation approach provides a good
description of the dynamics. The combined qubit + TLS
system has four quantum states. The quantity that we con-
sider is therefore the 4 · 4 density matrix describing that
combined system. We follow the standard procedure to
write the Bloch-Redfield master equation as (see e.g. Ref.
[27]):

_qab ¼ �ixabqab þ
X

cd

Rabcdqcd ; ð7Þ
where the dummy indices a, b, c and d run over the four
quantum states, xab � (Ea � Eb)/�h, Ei is the energy of the
quantum state labelled by i, and the coefficients Rabcd are
given by

Rabcd ¼ �
Z 1

0

dt
X

a¼q;TLS

gaðtÞ dbd

X
n

hajr̂ðaÞz jnihnjr̂ðaÞz jcieixcnt

"(

þ hajr̂ðaÞz jcihdjr̂ðaÞz jbieixcat

#

þ gað�tÞ dac

X
n

hdjr̂ðaÞz jnihnjr̂ðaÞz jbieixnd t

"

þ hajr̂ðaÞz jcihdjr̂ðaÞz jbieixbd t

#)
ð8Þ

gaðtÞ ¼
Z 1

�1
dxSaðxÞe�ixt; ð9Þ

where Sa(x) is the background-noise power spectrum. In
calculating Rabcd we neglect the imaginary parts, which ren-
ormalize the energy splittings of the qubit and TLS, and we
assume that those corrections are already taken into ac-
count in our initial Hamiltonian. We do not use any secular
approximation to simplify the tensor Rabcd any further.
One of the main reasons for avoiding the secular approxi-
mation is that we shall consider cases where the coupling
strength between the qubit and the TLS is very small,
which results in almost degenerate quantum states, a situa-
tion that cannot be treated using, for example, the form of
the secular approximation given in Ref. [27].

Once we solve Eq. (7) and find the dynamics of the com-
bined system, we can trace out the TLS degree of freedom
to find the dynamics of the reduced 2 · 2 density matrix
describing the qubit alone. From that dynamics we can
infer the effect of the TLS on the qubit decoherence and,
whenever the decay can be fit well by exponential func-
tions, extract the qubit dephasing and relaxation rates.

4. Analytic results for the weak-coupling limit

We first consider a case that can be treated analytically,
namely that of a strongly dissipative weakly coupled TLS.
That is exactly the case where the traditional weak-cou-
pling approximation is expected to work. Here, we perform
a perturbative calculation on Eq. (7) where the coupling
strength k is treated as a small parameter in comparison
with the decoherence times in the problem. We shall discuss
the differences between the predictions of the two
approaches in this section, and we shall show in Section
5 that our results have a wider range of validity than the
traditional weak-coupling approximation.

In the first calculation of this section, we consider the
zero-temperature case. If we take the limit k! 0 and look
for exponentially decaying solutions of Eq. (7) with rates
that approach the unperturbed relaxation and dephasing
rates CðqÞ1 and CðqÞ2 , we find the following approximate
expressions for the leading-order corrections:
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dCðqÞ1 � 1
2
k2 sin2 hq sin2 hTLS

CðTLSÞ
2

þCðqÞ
2
�CðqÞ

1

CðTLSÞ
2

þCðqÞ
2
�CðqÞ

1ð Þ2þ Eq�ETLSð Þ2

dCðqÞ2 � 1
4
k2 sin2 hq sin2 hTLS

CðTLSÞ
2

�CðqÞ
2

CðTLSÞ
2

�CðqÞ
2ð Þ2þ Eq�ETLSð Þ2

;

ð10Þ
which are expected to apply very well when CðTLSÞ

2 þ CðqÞ2 �
CðqÞ1 . The above expressions can be compared with those
given in Ref. [18]:

dCðqÞ1 � 1
2
k2 sin2 hq sin2 hTLS

CðTLSÞ
2

CðTLSÞ
2

2
þðEq�ETLSÞ2

dCðqÞ2 � 1
2
dC1 þ k2 cos2 hq cos2 hTLS

CðTLSÞ
1

sech2 ETLS

2kBT

� �
:

ð11Þ

The two approaches agree in the limit where they are both
expected to apply very well, namely when the decoherence
times of the TLS are much shorter than those of the qubit
[note that we are taking T = 0 in Eq. (10)]. Our results can
therefore be considered a generalization of those of the tra-
ditional weak-coupling approximation. We shall discuss
the range of validity of our results in Section 5.3.1.

We now turn to the finite temperature case. In addition
to treating k as a small parameter, one can also perform a
perturbative calculation to obtain the temperature depen-
dence of the decoherence rates in the low temperature limit.
In the general case where the qubit and TLS energy split-
tings are different and no assumption is made about the
relation between qubit and TLS decoherence rates, the
algebra is rather complicated, and the resulting expressions
contain a large number of terms. Therefore we only present
the results in the case where Eq = ETLS � E, which is the
case that we shall focus on in Section 5. In that case we find
the additional corrections to the relaxation and dephasing
rates to be given by

dCðqÞ1;T ¼ 0

dCðqÞ2;T ¼ k2e�E=kBT

0@4 cos2 hq cos2 hTLS

CðTLSÞ
1

:

� sin2 hq sin2 hTLSC
ðqÞ
1

CðTLSÞ
2 � CðqÞ2

� �
CðTLSÞ

2 � CðqÞ2 þ CðqÞ1

� �
1A:

ð12Þ

Note that the first term inside the parentheses agrees with
the expression given in Eq. (11) for the TLS contribution
to the dephasing rate. If the decoherence times of the
TLS are much shorter than those of the qubit, the second
term is negligible. A similar situation occurs when
Eq 5 ETLS, i.e., all the terms can be neglected except for
the one given in Eq. (11).

5. Numerical solution of the master equation

We now turn to the task of numerically analyzing the
effect of the TLS on the qubit with various choices of
parameters. We analyze any given case by first solving
Eq. (7) to find the density matrix of the combined
qubit + TLS system as a function of time. We then trace
out the TLS degree of freedom to find the (time-dependent)
density matrix of the qubit alone, which is perhaps most
easily visualized as a curve in the Bloch sphere [28]. We
then use the Hamiltonian of the qubit including the
mean-field correction contributed by the TLS as a pole of
reference in the Bloch sphere, from which we can extract
the dephasing and relaxation dynamics of the qubit. In
other words, we transform the qubit density matrix into
the qubit energy eigenbasis, such that the diagonal matrix
elements describe relaxation dynamics and the off-diagonal
matrix elements describe dephasing dynamics. The relaxa-
tion rate is then defined as the rate of change of the diago-
nal matrix elements divided by their distance from the
equilibrium value. The dephasing rate is defined similarly
using the off-diagonal matrix elements [29].

Since our main goal is to analyze the different possible
types of behaviour in the qubit dynamics, we have to iden-
tify the relevant parameters that determine the different
behaviour regimes. As discussed in Section 2, the energy
scales in the problem are the qubit and TLS energy split-
tings, their background decoherence rates (which are
related to the environment noise power spectrum), the
qubit–TLS coupling strength and temperature. Note that
if the difference between the two energy splittings is sub-
stantially larger than the coupling strength, the effect of
the TLS on the qubit dynamics diminishes rapidly. The
above statement is particularly true regarding the relaxa-
tion dynamics. We therefore consider only the case where
the two energy splittings are equal, i.e. Eq = ETLS. In other
words, we take the TLS to be on resonance with the qubit.
Furthermore, we take the energy splitting, which is the
largest energy scale in the problem, to be much larger than
all other energy scales, such that its exact value does not
affect any of our results. We take the temperature to be
much smaller than Eq, so that environment-assisted excita-
tion processes can be neglected. We are therefore left with
the background decoherence rates and the coupling
strength as free parameters that we can vary in order to
study the different possible types of behaviour in the qubit
dynamics.

5.1. Weak-coupling regimes

Although the discussion of the criterion that distin-
guishes between the weak and strong-coupling regimes is
deferred to Section 6, we separate the results of this section
according to that criterion. We start with the weak-coupling
regimes. In Figs. 1 and 2, we show, respectively, the relaxa-
tion and dephasing rates of the qubit as functions of time
for three different sets of parameters differing by the relation
between the qubit and TLS decoherence rates, maintaining
the relation CðaÞ2 ¼ 2CðaÞ1 , where CðaÞ1 and CðaÞ2 are the back-
ground relaxation and dephasing rates, i.e. those obtained
in the case k = 0, and the index a refers to qubit and TLS.
The case k = 0 is trivial, and we only show it as a point of
reference to demonstrate the changes that occur in the case
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respectively. hq = p/3 and hTLS = 3p/8.
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k 5 0. All the curves shown in Figs. 1 and 2 agree very well
with the formulae that will be given below.

5.1.1. Relaxation dynamics

Characterizing the dynamics is most easily done by con-
sidering the relaxation dynamics. From Fig. 1 we can see
that in the case k 5 0, there are several possible types of
behaviour of the qubit depending on the choice of the dif-
ferent parameters in the problem. As a general simple rule,
which is inspired by Fig. 1(a), we find that for small values
of k the relaxation rate starts at its background value and
follows an exponential decay function with a characteristic
time given by ðCðTLSÞ

2 þ CðqÞ2 � CðqÞ1 Þ
�1, after which it satu-

rates at a steady-state value given by Eq. (10), with
Eq = ETLS:

dP exðtÞ=dt
P exðtÞ � P exð1Þ

� �CðqÞ1 �
k2 sin2 hq sin2 hTLS

2 CðTLSÞ
2 þ CðqÞ2 � CðqÞ1

� �
� 1� exp � CðTLSÞ

2 þ CðqÞ2 � CðqÞ1

� �
t

n o� �
:

ð13Þ

We can therefore say that the qubit relaxation starts with
an exponential-times-Gaussian decay function for a certain
period of time, after which it is well described by an expo-
nential decay function with a rate that incorporates the ef-
fects of the TLS, namely that given in Eq. (10). Clearly the
above picture is only valid when the expression for the
transient time given above is much smaller than 1=CðqÞ1 .
Furthermore, Eq. (13) is not well defined when
CðTLSÞ

2 þ CðqÞ2 � CðqÞ1 ¼ 0. However, even when the above
condition about the short transient time is not satisfied,
and even when the exponent in Eq. (13) becomes positive,
we find that for times of the order of the qubit relaxation
time, a very good approximation for the relaxation rate
is still given by Eq. (13). The reason why that is the case
can be seen from the expansion of Eq. (13) in powers of t:

dP exðtÞ=dt
P exðtÞ � P exð1Þ

� �CðqÞ1 �
1

2
k2 sin2 hq sin2 hTLSt; ð14Þ

which can be integrated to give:

P exðtÞ � expf�CðqÞ1 t � k2 sin2 hq sin2 hTLSt2=4g; ð15Þ

where we have assumed that Pex(0) = 1 and that Pex(1) is
negligibly small. Eq. (15) describes the initial decay for any
ratio of qubit and TLS decoherence times. Whether that
function holds for all relevant times or it turns into an
exponential-decay function depends on the relation be-
tween CðqÞ1 and CðTLSÞ

2 þ CðqÞ2 , as discussed above. In partic-
ular, in the case when the TLS decoherence rates are much
smaller than those of the qubit, Eq. (15) holds at all rele-
vant times, and the contribution of the TLS to the qubit
relaxation dynamics is therefore a Gaussian decay func-
tion. We also note here that the relaxation rate shows small
oscillations around the functions that we have given above.
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However, those oscillations have a negligible effect when
the rate is integrated to find the function Pex(t).

5.1.2. Dephasing dynamics

The dephasing dynamics was somewhat more difficult to
analyze. The dephasing rate generally showed oscillations
with frequency Eq, and the amplitude of the oscillations
grew with time, making it difficult to extract the dynamics
directly from the raw data for the dephasing rate. However,
when we plotted the averaged dephasing rate over one or
two oscillation periods, as was done in generating Fig. 2,
the curves became much smoother, and we were able to
fit those curves with the following simple analytic formula,
which we obtained in an analogous manner to Eq. (13):

1

q01

dq01

dt

� �
� �CðqÞ2 �

k2 sin2 hq sin2 hTLS

4ðCðTLSÞ
2 � CðqÞ2 Þ

� 1� exp � CðTLSÞ
2 � CðqÞ2

� �
t

n o� �
: ð16Þ

Starting from this point, the analysis of the dephasing
dynamics is similar to that of relaxation. When the deco-
herence rates of the TLS are much larger than those of
the qubit, the dephasing rate starts from its background
value but quickly reaches its steady-state value given by
Eq. (10). In the opposite limit, where the TLS decoherence
rates are much smaller than those of the qubit, a good
approximation is obtained by expanding Eq. (16) to first
order in t. In that case we find that:

q01ðtÞ � q01ð0Þ expf�CðqÞ2 t � k2 sin2 hq sin2 hTLSt2=8g: ð17Þ
5.2. Strong-coupling regime

In the strong-coupling regime corresponding to large
values of k, the qubit relaxation and dephasing rates as
plotted similarly to Figs. 1 and 2 show oscillations through-
out the period where the qubit is far enough from its ther-
mal equilibrium state. Therefore one cannot simply speak
of a TLS contribution to qubit decoherence. Analytic
expressions can be straightforwardly derived for the
dynamics in the limit where the coupling strength is much
larger than the decoherence rates. However, the algebra is
quite cumbersome, and the results are rather uninspiring.
Therefore, we shall not present such expressions here.

5.3. Further considerations

5.3.1. Comparison with traditional weak-coupling

approximation

To demonstrate the differences between our results and
those of the traditional weak-coupling approximation, we
plot in Fig. 3 the relaxation rate (at the end of the transient
time) as a function of the coupling strength k. A similar fig-
ure can be obtained for the dephasing rate, but we do not
include it here. Our numerical results agree with the pertur-
bation calculation of Section 4 (Eq. (10)) up to the point
where the coupling can be classified as strong, as will be
explained in Section 6. Therefore, we conclude that the
results of our perturbation calculation have a much wider
range of validity than those of the traditional weak-cou-
pling approximation. The more non-negligible the TLS
decoherence times are relative to those of the qubit, the lar-
ger the difference between the two approaches. Note that in
our perturbation-theory calculation we took the limit
where k is much smaller than all the decoherence rates in
the problem. It turns out, however, that the results of that
calculation are valid as long as k is substantially smaller
than the TLS decoherence rates, assuming those are sub-
stantially larger than the qubit decoherence rates. No spe-
cific relation is required between k and the qubit
decoherence rates in that case.

For further demonstration of the differences between the
predictions of the two approaches, we ran simulations of
an experiment where one would sweep the qubit energy
splitting and measure the relaxation and dephasing rates.
We used a TLS with the parameters of Fig. 3(a) and k rang-
ing from 0.15 to 0.5. In such an experiment, one would see
a peak in the relaxation and dephasing rates at the TLS
energy splitting. According to the traditional weak-cou-
pling approximation, the height of the dephasing peak
should be half of that of the relaxation peak. In the numer-
ical simulations with the above parameters, we see a devi-
ation from that prediction by about 25%. The relation
between the shapes of the two peaks agrees very well with
the expressions in Eq. (10). That difference would, in prin-
ciple, be measurable experimentally. Note, however, that
since we are dealing with an uncontrollable environment,
there is no guarantee that a TLS with the appropriate
parameters will be found in the small number of qubit sam-
ples available at a given laboratory.
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5.3.2. Two TLSs

In order to establish that our results are not particular to
single quantum TLSs, we also considered the case of two
TLSs that are both weakly coupled to the qubit. If we take
the two TLS energy splittings to be larger than the widths
of their frequency–domain correlation functions, we find
that the relaxation dynamics is affected by at most one
TLS, depending on the qubit energy splitting. The TLS
contributions to pure dephasing dynamics, i.e. that unre-
lated to relaxation, are additive, since that rate depends
on the zero-frequency noise. We then considered two TLSs
with energy splittings equal to that of the qubit. We found
that the TLS contributions to the qubit relaxation and
dephasing dynamics are additive in both the large and
small C(q)/C(TLS) limits. These results are in agreement with
those found in Ref. [30], where a related problem was
treated.

5.3.3. Entanglement

It is worth taking a moment here to discuss the question
of entanglement between the system and environment. It is
commonly said that in a Markovian master equation
approach the entanglement between a system and its sur-
rounding environment is neglected, a statement that can
be misinterpreted rather easily. In order to address that
point, we consider the following situation: we take the
parameters to be in the weak-coupling regime, where such
a discussion is meaningful. We take the qubit to be initially
in its excited state, with no entanglement between the qubit
and the TLS. We find that the off-diagonal matrix elements
of the combined system density matrix describing coher-
ence between the states j"q#TLSi and j#q"TLSi start from
zero at t = 0 and reach a steady state at the end of the tran-
sient time. Beyond that point in time, they decay with the
same rate as the excited state population. We therefore
conclude that the final relaxation rate that we obtain takes
into account the effects of entanglement between qubit and
TLS, even though the density matrix of the qubit alone
exhibits exponential decay behaviour.

6. Criteria for strong-coupling between qubit and two-level

system

There are a number of possible ways one can define the
criteria distinguishing between the weak and strong-cou-
pling regimes. For example, one can define a strongly cou-
pled TLS as being one that contributes a decoherence rate
substantially different from that given by some weak-cou-
pling analytic expression. One could also define a strongly
coupled TLS as being one that causes visible oscillations in
the qubit dynamics, i.e. one that causes the relaxation and
dephasing rates to change sign as time goes by. We shall
use the criterion of visible deviations in the qubit dynamics
from exponential decay as a measure of how strongly cou-
pled a TLS is.

Even with the above-mentioned criterion of visible devi-
ations in the qubit dynamics from exponential decay, one
still has to specify what is meant by visible deviations,
e.g. maximum single-point deviation or average value of
deviation. One also has to decide whether to use relaxation
or dephasing dynamics in that definition. We have used a
number of different combinations of the above and found
qualitatively similar results. Those results can essentially
be summarized as follows: a given TLS can be considered
to interact weakly with the qubit if the coupling strength
k is smaller than the largest (background) decoherence rate
in the problem. The exact location of the boundary, how-
ever, varies by up to an order of magnitude depending
on which part of the dynamics we consider and how large
a deviation from exponential decay we require.

We have also checked the boundary beyond which our
analytic expressions and numerical results disagree, and
we found that the boundary is similar to the one given
above. That result confirms the wide range of validity of
our analytic expressions. Note in particular that even if
the qubit–TLS coupling strength k is larger than the deco-
herence rates of the qubit, that TLS can still be considered
weakly coupled to the qubit, provided the TLS decoher-
ence rates are larger than k.

7. Conclusion

We have analyzed the problem of a qubit interacting
with a quantum TLS in addition to its coupling to a back-
ground environment. We have characterized the effect of
the TLS on the qubit decoherence dynamics for weak
and strong-coupling, as well as weakly and strongly dissi-
pative TLSs. We have found analytic expressions for the
contribution of a single TLS to the total decoherence rates
in the weak-coupling regimes, which is a much larger range
than just the weak-coupling limits. We recover the results
of the traditional weak-coupling approximation as a spe-
cial case of our results, namely for a weakly coupled
strongly dissipative TLS. We have found that weakly cou-
pled weakly dissipative TLSs exhibit memory effects by
contributing a non-exponential factor to the qubit decoher-
ence dynamics. We have verified that the contributions of
two TLSs to the qubit relaxation and dephasing rates are
additive in the weak-coupling limit. We have discussed
the transition from weak to strong-coupling and numeri-
cally found that the transition occurs when the qubit–
TLS coupling strength exceeds all the decoherence rates
in the problem.
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