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Abstract

We have analyzed and measured the quantum coherent dynamics of a circuit containing two-coupled superconduc-
ting charge qubits. Each qubit is based on a Cooper pair box connected to a reservoir electrode through a Josephson
junction. Two qubits are coupled electrostatically by a small island overlapping both Cooper pair boxes. Quantum state
manipulation of the qubit circuit is done by applying non-adiabatic voltage pulses to the common gate. We read out
each qubit by means of probe electrodes connected to Cooper pair boxes through high-Ohmic tunnel junctions. With
such a setup, the measured pulse-induced probe currents are proportional to the probability for each qubit to have an
extra Cooper pair after the manipulation. As expected from theory and observed experimentally, the measured pulse-
induced current in each probe has two frequency components whose position on the frequency axis can be externally
controlled. This is a result of the inter-qubit coupling which is also responsible for the avoided level crossing that we
observed in the qubits� spectra. Our simulations show that in the absence of decoherence and with a rectangular pulse
shape, the system remains entangled most of the time reaching maximally entangled states at certain instances.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

From starting as a purely mathematical disci-
pline a few years ago, quantum computation has
turned into an experimental subject, recently
ed.
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attracting the efforts of experimentalists from var-
ious fields [1,2]. One of the main goals of experi-
mentalists now is to find a proper physical
system that can be used as a quantum bit (qubit),
a building block of a quantum computer.
Although quite many physical systems have been
suggested as potential implementations of qubits,
solid-state systems, and superconducting systems
in particular [3,4], are of great interest because
they offer the possibility of scaling to a large num-
ber of interacting qubits. Within the past few
years, there has been substantial experimental pro-
gress with single solid-state qubits in which coher-
ent manipulation of quantum states has been
performed [5–11]. Superconducting qubits utilize
charge [5–7] or flux [8] degrees of freedom, or en-
ergy levels quantization in a single Josephson junc-
tion [9,10]. Charge qubits are based on a Cooper
pair box whose state is read-out by means of a
probe junction [5], the switching of a large Joseph-
son junction [6], or a sensitive fast electrometer,
e.g., radio-frequency single-electron transistor
(SET) [7], or a charge trap coupled to a conven-
tional SET [12].

One of the key steps in constructing a quantum
computer is to couple two qubits and then scale the
circuit to many qubits. Despite substantial progress
in single qubit operation, there has been very little
work done to couple several solid-state qubits.
Measurements in the time domain have been per-
formed on two-coupled charge qubits [13]. Spectro-
scopic measurements have been carried out on
coupled single junction [14] and flux qubits [15].

Here, we summarize our experiment on two-
coupled superconducting charge qubits [13] adding
more experimental details and presenting analyti-
cal expressions for the time evolution of the prob-
ability amplitudes and entropy of entanglement
for the case of a rectangular pulse shape in the ab-
sence of decoherence.
Vg1Vg2 Vp

Cg1Cg2
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Fig. 1. Schematic diagram of the two-coupled-qubit circuit.
Black bars denote Cooper pair boxes.
2. Two-qubit circuit diagram

One of the physical realizations of a solid-state
qubit is provided by a Cooper pair box [16,17]
which is a small superconducting island connected
to a large superconducting electrode, a reservoir,
through a Josephson junction. The two charge
states of the box, say j0i and j1i, differing by one
Cooper pair, are coherently mixed by the Joseph-
son coupling as was confirmed experimentally
[18]. Quantum state manipulation of such a system
can be done by using a non-adiabatic pulse tech-
nique, and the read-out can be performed by a
properly biased probe electrode [5]. Here, we take
two charge qubits and couple them by means of a
miniature on-chip capacitor. The read-out of each
qubit, in this case, is done similar to the single-
qubit read-out: we connect a probe electrode to
each qubit. We then perform state manipulation
and demonstrate qubit–qubit interaction.

The circuit we study is shown schematically in
Fig. 1. It is made of aluminum by angle evapora-
tion through a suspended mask prepared by elec-
tron-beam lithography and dry etching. Exposing
the Al surfaces to oxygen in the evaporation cham-
ber after each evaporation step forms the tunnel
junctions. The oxidation parameters (oxidation
time and gas pressure) were different for Josephson
and probe tunnel junctions. The measurements are
done in a dilution refrigerator with a mixing cham-
ber temperature of about 40 mK.

The circuit consists of two charge qubits that are
electrostatically coupled by an on-chip capacitor
Cm. The right qubit has a SQUID geometry to al-
low for the control of the Josephson coupling to
its reservoir while the Josephson coupling of the
left qubit is fixed. Both qubits have a common
pulse gate but separate dc gates, probes and reser-
voirs. The pulse gate has nominally equal coupling
to each box. In the experiment, both reservoirs are
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kept grounded. External controls that we have in
the circuit are the dc probe voltages Vb1 and Vb2,
dc gate voltagesVg1 andVg2, and pulse gate voltage
Vp. The information on the final states of the qubits
after manipulation comes from the pulse-induced
currents measured in the probes. An interesting
feature of the circuit is that all its essential para-
meters (e.g., charging energies and Josephson ener-
gies) can be obtained from various independent
measurements. For example, each qubit can be
measured as a single-electron transistor in the dc
regime. The current between reservoir and probe
in each SET depends on the dc voltages applied
to probes and dc gates. By doing routine current–
voltage–gate voltage measurements, we can esti-
mate the capacitances indicated in Fig. 1: CJ1 =
620 aF, CJ2 = 460 aF, Cb1 = 41 aF, Cb2 = 50 aF,
Cg1 = 0.60 aF, Cg2 = 0.61 aF, Cp � 1 aF, Cm =
34 aF. These give the following values of the char-
acteristic energies: Cooper pair charging energy of
the first (right in Fig. 1) qubit Ec1 = 484 leV
(117 GHz in frequency units), Cooper pair charg-
ing energy of the second (left in Fig. 1) qubit
Ec2 = 628 leV (152 GHz) and the coupling energy
Em = 65 leV (15.7 GHz). All these energies are
higher than the energy of thermal fluctuations
kBT � 3 leV (0.7 GHz). The charging and the
coupling energies are defined as follows: Ec1;2 ¼
4 e2CR2;1=2ðCR1CR2 �C2

mÞ, where CR1,2 are the sum
of all capacitances connected to the corresponding
Cooper pair box including the coupling capacitance
Cm, and Em ¼ 4e2Cm=ðCR1CR2 � C2

mÞ. Here, e is the
electron charge. The way we determine the qubits�
Josephson energies EJ1 and EJ2 will be described
later in the text.
Fig. 2. Contour plot of the ground state energy band as a
function of the normalized gate charges ng1 and ng2. Dashed
lines are boundaries between charge states (n1,n2) differing by
one Cooper pair. The three thick arrows indicate non-adiabatic
pulse shifts of the system from the initial states within the cell
(00).
3. Two-qubit circuit model

The Hamiltonian of the system in the charge
representation can be written as

H ¼
X
n1;n2

h
Ec1ðng1 � n1Þ2 þ Ec2ðng2 � n2Þ2

þ Emðng1 � n1Þ ng2 � n2
� �i

n1n2j i n1n2h j

� EJ1

2
n1n2j i ðn1 þ 1Þn2h j½
þ n1ðn2 þ 1j i ðn1 þ 1Þðn2 þ 1Þh j�

� EJ2

2
n1n2j i n1ðn2 þ 1Þh j½

þ ðn1 þ 1Þn2j i ðn1 þ 1Þðn2 þ 1Þh j�. ð1Þ
Here, n1 and n2 (n1,n2 = 0,±1,±2, . . .) are the num-
bers of excess Cooper pairs in the first and the sec-
ond Cooper pair boxes, and ng1,2 = (Cg1,2Vg1,2 +
CpVp)/2e are the normalized charges induced on
the corresponding qubit by the dc and pulse gate
electrodes. The eigenenergies, Ek (k = 0,1,2, . . .),
of the Hamiltonian (1) form 2e-periodic energy
bands corresponding to the ground (k = 0), first
excited (k = 1), etc. states of the system. The en-
ergy bands Ek for the one-dimensional case were
first introduced in Ref. [19]. A contour plot of
the ground energy band around zero gate-induced
charge is shown in Fig. 2. It consists of hexagonal
cells (shown partly) whose boundaries marked by
the dashed lines delimit two neighboring charge
states with equal electrostatic energies. For exam-
ple, points R and L correspond to degeneracies be-
tween the states j00i and j10i, and the states j00i
and j01i that differ by one Cooper pair in the first
(right) and the second (left) Cooper pair box,
respectively. The band has minimums in the



Fig. 3. Cross-sections of energy bands through points R and L

in Fig. 2. Dashed lines: eigenenergies of the Hamiltonian (2)
showing only the four lower states. Solid lines: electrostatic
energies E00, E10, E01, and E11. Solid arrows along E00 indicate
pulse drives. Quantum state evolution takes place at the gate
voltages corresponding to the lower degeneracy point E00 = E10

(a) or E00 = E01 (b). The two upper states are not involved.
Dotted lines on the left show the decay of the excited state (j10i
or j01i) after the evolution (termination of the pulse). This
decay gives rise to the pulse-induced dc probe current in the first
or second probe.

Yu.A. Pashkin et al. / Physica C 426–431 (2005) 1552–1560 1555
middle of each cell and also maximums in between
(one of the maximums is marked by X). If we
choose the dc gate charges ng1 and ng2 far from
the boundaries but within the (0,0) cell, then be-
cause of the large electrostatic energies we can
assume that the system remains in the state j00i.
Strictly speaking, this charge stability diagram
[20] is valid in the absence of Josephson coupling;
however, it also remains valid for small Josephson
coupling, except at the boundaries where the
charge states become superposed. Since the pulse
gate has equal coupling to each qubit, the applica-
tion of a pulse shifts the state of the system on this
diagram along the line tilted at 45� (indicated by
arrows in Fig. 2). The dynamics of the system
strongly depends on how fast it is driven by the
gate voltages and on the final point it is driven
to. If only dc gate voltages are applied, then the
system stays in the ground energy band, but can
be moved from one cell to another. If a pulse volt-
age is applied, then excited energy bands become
involved. When the system is driven non-adiabati-
cally to the point R or L, it behaves like a single
qubit oscillating between the degenerate states
with a frequency x1,2 = EJ1,2/�h. Let us first con-
sider the cross-section of the energy bands through
the point R along the pulse direction shown by the
arrow pointing at R in Fig. 2. The cross-section is
presented in Fig. 3a. The four eigenenergies are
grouped in two pairs, and each pair has its own
degeneracy (E00 = E10, E01 = E11) shifted with re-
spect to each other by an amount determined by
the coupling energy Em and separated by a large
energy gap from other states. If the system is pre-
pared in the j00i initial state and then pulse-driven
to the point R, the system starts to evolve quantum
coherently between only two states: j00i and j10i.
To describe the dynamics of the system around the
point R, we can consider only these two states as a
basis. The Hamiltonian of the system in this case is
a 2 · 2 matrix with electrostatic energies E00 and
E10 as diagonal elements and �EJ1/2 as off-diago-
nal elements. The probability to be in the state j10i
oscillates as (1 � cosx1t)/2. This corresponds to
the single (first) qubit oscillation while the number
of Cooper pairs in the second qubit remains con-
stant (zero). In other words, we have coherent
oscillations in the first qubit while the second one
remains in the blockade regime. Similar oscilla-
tions in the second qubit will take place when the
system is driven to the point L. The corresponding
cross-section of the energy diagram is shown in
Fig. 3b. The lower degeneracy is between states
j00i and j01i. In this case, the first qubit remains
in the blockade regime while the second one oscil-
lates coherently with the probability of state j01i
being equal to (1 � cosx2t)/2). Applying arrays
of pulses and measuring oscillations of the probe
currents I1 and I2, we can determine the Josephson
energies of each qubit. The accuracy of the



Fig. 4. Cross-section of energy bands through the point X in
Fig. 2. Dashed lines: eigenenergies of Hamiltonian (2). Solid
lines: electrostatic energies E00, E10, E01, and E11. Solid arrow
along E00 indicates non-adiabatic pulse shift of the system.
Quantum state evolution involving all four basis states takes
place at the gate voltages ng1 = ng2 = 0.5 corresponding to the
double-degeneracy point X in Fig. 2: E00 = E11 and E10 = E01.
Dotted lines on the left show qualitatively the decay of the
excited states (j11i, j10i and j01i) after the evolution (termina-
tion of the pulse). This decay gives rise to the pulse-induced
probe currents in both probes.
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measured EJ1,2 is very high since the electrostatic
coupling through Cm has almost no effect on x1,2

along the boundaries in the vicinity of R and L.
The corresponding experimental data is shown in
Fig. 5.

Now let us consider point X in Fig. 2 which is a
peak in the ground energy band. This point corre-
sponds to two degeneracies: E00 = E11 and E10 =
E01, therefore we call this a double-degeneracy
point. If the circuit is fabricated to have the follow-
ing relation between the characteristic energies:
EJ1,2 � Em < Ec1,2, then we can use a four-
level approximation for the description of the sys-
tem. The state of the system in the vicinity of X can
be described by the coherent superposition of the
four charge states j00i, j01i, j10i and j11i around
ng1 = ng2 = 0.5 while other charge states are sepa-
rated by large energy gaps. These four charge
states can be used as a new basis and the Hamilto-
nian (1) can be simplified to the following 4 · 4
matrix form:

H ¼

E00 � 1
2
EJ1 � 1

2
EJ2 0

� 1
2
EJ1 E10 0 � 1

2
EJ2

� 1
2
EJ2 0 E01 � 1

2
EJ1

0 � 1
2
EJ2 � 1

2
EJ1 E11

2
6664

3
7775; ð2Þ

where En1n2 = Ec1(ng1 � n1)
2 + Ec2(ng2 � n2)

2 + Em

(ng1 � n1)(ng2 � n2) is the total electrostatic
energy of the system (n1,n2 = 0,1). The cross-
section of the energy bands through the point X
is presented in Fig. 4. Here, the dynamics of
the quantum evolution becomes more complex
(involving all for charge states) and reflects the
coupling between the qubits. Exactly at the dou-
ble-degeneracy point, the time evolution of the
system can be described analytically for any initial
state. First, we write down the state of the system
in general as

jwðtÞi ¼ c1j00i þ c2j10i þ c3j01i þ c4j11i; ð3Þ

where jcij (i = 1,2,3,4) are the time dependent
probability amplitudes obeying the normalization
condition

P4
i¼1jcij

2 ¼ 1. Then, we use Hamiltonian
(2) and the initial state j00i and obtain the follow-
ing dependence of the probability amplitudes on
time:
c1 ¼
1

2
cosXt þ cos et½ � � iEm

8�hXe
e sinXt þ X sin et½ �;

c2 ¼
i

4

EJ1 þ EJ2

�hX
sinXt þ EJ2 � EJ1

�he
sin et

� �
;

c3 ¼
i

4

EJ1 þ EJ2

�hX
sinXt � EJ2 � EJ1

�he
sin et

� �
;

c4 ¼
1

2
cosXt � cos et½ � � iEm

8�hXe
e sinXt � X sin et½ �;

ð4Þ
where X = ((EJ1 + EJ2)

2 + (Em/2)
2)1/2/2�h, e =

((EJ1 � EJ2)
2 + (Em/2)

2)1/2/2�h.
Similar expressions for the time evolution of

amplitudes can be obtained for the other initial
states. Preparation of excited initial states j10i,
j01i and j11i requires a different pulsing part of
the circuit: we would need separate pulse gates
for each qubit in order to address each qubit indi-
vidually and flip them. This was done in our later
experiment [21], with a two-qubit circuit where
two pulse gates were utilized. In the present work,
we use one common pulse gate and assume state
j00i as an initial state.
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From the expressions (4), we can calculate ob-
servable quantities, e.g., probabilities jcij2 of each
charge state. However, in our read-out scheme,
we measure a probe current I1,2 proportional to
the probability p1,2(1) for each qubit to have a
Cooper pair on it, regardless of the state of the
other qubit, i.e., I1 / p1(1) � jc2j2 + jc4j2 and
I2 / p2(1) � jc3j2 + jc4j2. Assuming the initial state
at t = 0 is j00i, we can derive for an ideal rectangu-
lar pulse shape of a length t the time evolution of
these probabilities:

p1;2ð1Þ ¼ ð1=4Þ 2� ð1� v1;2Þ cosfðXþ eÞtg
�

� 1þ v1;2
�
cosfðX� eÞtg

� �
; ð5Þ

where v1;2 ¼ ðE2
J2;1 � E2

J1;2 þ E2
m=4Þ=ð4�h2XeÞ.

One can see that unlike single qubit case, there
are two frequencies present in the oscillation spec-
trum of the qubits: X + e and X � e, both depen-
dent on EJ1, EJ2 and Em. Note that in the
uncoupled situation (Em = 0), X ± e = EJ1,2/�h each
qubit oscillates with its own frequency x1,2. Let us
stress, however, that the above treatment is valid
only in the ideal case when the pulse has zero
rise/fall time and the time evolution occurs exactly
at the double-degeneracy point.
Fig. 5. Probe current oscillations in the first (a) and the second
(b) qubit when the system is driven non-adiabatically to the
points R and L, respectively. Right panels show the corres-
ponding spectra obtained by the Fourier transform. Peak
position in the spectrum gives the value of the Josephson energy
of each qubit, indicated by arrow. In both cases, the experi-
mental data (open triangles and open dots) can be fitted to a
cosine dependence (solid lines) with an exponential decay with
2.5 ns time constant.
4. Experimental results

The idea of the experiment is shown schemati-
cally in Fig. 2. First, to determine EJ1 and EJ2,
we bring the system to the points R or L from
the initial state j00i (within the cell (00)). The ini-
tial state is adjusted by the dc gate voltages, and
the pulse voltages are shown schematically by
thick black arrows. In this case the system oscil-
lates as a single qubit (first or second) as described
earlier in the text. The final states are measured as
probe currents resulting from the decay of the ex-
cited states (j10i or j01i). Thus, coherent Cooper
pair tunneling through Josephson junction and
incoherent decay of the final state as two quasipar-
ticle tunneling events through the probe junction
are the two steps of the so-called Josephson-quasi-
particle cycle [22]. The current from the single
manipulation event, �2e/sm � 10�17 A (where
sm = 20 ms is the measurement time), appears
too low to be measured by any existing current me-
ters. Therefore, to accumulate a signal, we apply a
pulse array (�3 · 105 pulses) to the pulse gate. The
estimated amplitude of the applied pulses is
Vp � 30 mV. The repetition time between the
pulses is 64 ns, long enough (in comparison to
the quasiparticle relaxation time �10 ns) to let
the system relax to the ground state through a qua-
siparticle decay and to give rise to a probe current
proportional to p1,2. The expected current oscilla-
tion amplitude is 2e/repetition time = 5 pA. The
corresponding oscillations of the probe currents
I1 and I2 are shown in Fig. 5. The observed ampli-
tudes are 2.5 pA for the first qubit and 3.5 pA for
the second one. This gives the qubit efficiency of
50% and 70%, respectively. Note, however, that
these amplitudes were estimated at t = 80 ps, the
minimum pulse length provided by our pulse pat-
tern generator. The oscillations can be fitted to a
cosine function with an exponential decay time
of about 2.5 ns. The oscillations spectra (right pan-
els of Fig. 5) obtained by Fourier transform con-
tains one pronounced component at 13.4 GHz
for the first qubit and another at 9.1 GHz for the
second one. We identify these values with EJ1

and EJ2. Judging from our previous experiments
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we can conclude that these values are close to what
we expect for the given fabrication parameters, i.e.,
overlap area and oxidation conditions.

Next, we repeat the same procedure shifting the
system to the point X by an array of pulses and
measuring again the oscillations of the pulse-
induced currents I1 and I2. The pulse (solid arrow
in Fig. 4) brings the system to the double-degener-
acy point, and the system evolves for the pulse
duration time t, producing a superposed state
(3). After the pulse terminates, the system remains
in the superposed state until it decays (dotted ar-
rows in Fig. 4) to the ground state by emitting
quasiparticles into the probe junctions biased at
Vb1,2 � 600 leV.

The results obtained in this way are presented in
Fig. 6. The oscillation pattern becomes more com-
plex and more frequency components appear in
the spectrum (right panels in Fig. 6). The observed
spectral properties of the oscillations agree with
the predictions of Eq. (5) in a sense that there
are two peaks in the spectrum and the peak posi-
tions are close to the expected frequencies X + e
and X � e for the parameters EJ1 = 13.4 GHz and
EJ2 = 9.1 GHz measured in the single qubit exper-
iments (Fig. 5), and Em = 15.7 GHz estimated
from the independent dc current–voltage charac-
teristics measurements. Positions of the X + e and
Fig. 6. Probe current oscillations in the first (a) and the second
(b) qubit when the system is driven non-adiabatically to the
double-degeneracy point X for the case EJ1 = 9.1 GHz and
EJ2 = 13.4 GHz. Right panels show the corresponding spectra
obtained by Fourier transformation. Arrows and dotted lines
indicate theoretically expected position of the peaks.
X � e peaks expected from Eq. (6), are indicated
by arrows and dotted lines. The decay time
�0.6 ns of the coupled oscillations is shorter when
compared to the case of independent oscillations
as should be expected since qualitatively an extra
decoherence channel appears for each qubit after
coupling to its neighbor (see quantitative discus-
sion in Ref. [23]). The amplitudes of the spectral
peaks, however, do not exactly agree with Eq.
(6). We attribute this to the non-ideal pulse shape
(finite rise/fall time �35 ps), and the fact that a
small shift of ng1 and ng2 from the double-degener-
acy point drastically changes the oscillation pat-
tern. Also, even far from the double degeneracy,
we still have a small contribution to the initial state
from the other charge states which distorts the
oscillations. We found that Em = 14.5 GHz, close
to the value estimated from the dc measurements,
gives better agreement of the fit with the experi-
mental data.

Finally, we checked the dependence of the oscil-
lation frequencies on EJ1 controlled by a weak
magnetic field (up to 20 Gs). The results are shown
in Fig. 7. The plot contains the data from both qu-
bits represented by open triangles (first qubit) and
open circles (second qubit). Without coupling
0
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Fig. 7. EJ1 dependence of the spectrum components of Fig. 6.
Solid lines: dependence of X + e and X � e obtained from Eq.
(6) using EJ2 = 9.1 GHz and Em = 14.5 GHz and varying EJ1

from zero to its maximum value of 13.4 GHz. Dashed lines:
dependence of the oscillation frequencies of both qubits in the
case of zero coupling (Em = 0).
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(Em = 0), the single peaks in each qubit would fol-
low dashed lines with an intersection at EJ1 = EJ2.
The introduced coupling modifies this dependence
by creating a gap and shifting the frequencies to
higher and lower values, the spacing between the
two branches being equal to Em/2hwhen EJ1 = EJ2.
We compare the observed dependence with the pre-
diction of Eq. (4) given by solid lines and find a
remarkable agreement.
Fig. 8. Entropy of entanglement E evolution as described by
Eq. (6).
5. Entanglement of two qubits

The observed quantum coherent dynamics of
coupled qubits in the vicinity of the double-degen-
eracy point X in Fig. 2 (in particular, double-
frequency structure of the probability oscillations
in both qubits and frequency ‘‘repulsion’’ at
EJ1 � EJ2—see Figs. 6 and 7) is a clear evidence
for the interaction of two qubits. The fact that
the two qubits interact, in turn, implies that they
become entangled during the course of coupled
oscillations although direct measurement of the
degree of entanglement was not possible. We have
done numerical simulations of the entanglement
evolution using different measures for the amount
of entanglement: negativity, concurrence and
entropy of formation [24]. Here, we calculate ana-
lytically the amount of entanglement using a stan-
dard expression for the case of pure states [25]
using entropy as a measure of the amount of
entanglement. Using Hamiltonian (2) we calcu-
lated the time evolution of the entropy of entangle-
ment for an ideal (rectangular) pulse shape:

E ¼ 1� 1

2 log 2
1�

ffiffiffiffiffiffiffiffiffiffiffi
1� q

p� 	
log 1�

ffiffiffiffiffiffiffiffiffiffiffi
1� q

p� 	h

þ 1þ
ffiffiffiffiffiffiffiffiffiffiffi
1� q

p� 	
log 1þ

ffiffiffiffiffiffiffiffiffiffiffi
1� q

p� 	i
; ð6Þ

where

q ¼ m2

X2
sin2Xtþ m2

e2
sin2et� 2m4

X2e2
sin2Xt sin2 et

� D2m2

X4
sin4Xt� d2m2

e4
sin4et� m2

2Xe
sin 2Xt sin 2et.

ð7Þ

Here, m = Em/4�h, D = (EJ1 + EJ2)/2�h, d = (EJ2 �
EJ1)/2�h and X and e were introduced in Eq. (4).
E as a function of time for equal Josephson ener-
gies EJ1 = EJ2 = 9.1 GHz is shown in Fig. 8. This
dependence coincides with numerically calculated
entropy of formation as expected for pure bipar-
tite systems. It has an oscillatory behavior and
reaches unity at about 0.2 ns. This means that
the two qubits become maximally entangled at
this instance. Our numerical simulations show that
the amount of entanglement does not decrease
significantly when a realistic pulse shape is taken
into account [26].

In conclusion, we were able to manipulate
quantum states of two-coupled Josephson charge
qubits using a common pulse gate and have ob-
served time-domain oscillations with a clear evi-
dence for interaction between the qubits. One of
the next major steps towards building a Josephson
junction quantum computer prototype will be the
demonstration of controllable coupling between
the qubits. A simple scheme for making control-
lable coupling between charge qubits has been
proposed recently [27]. The hardest hurdle to over-
come, however, is the short decoherence time that,
in our case, is determined by energy relaxation
[28].
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