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Abstract
We analyze the information that one can learn about the state of a quantum two-level system,
i.e. a qubit, when probed weakly by a nearby detector. We consider the general case where the
qubit Hamiltonian and the qubit’s operator probed by the detector do not commute. Because
the qubit’s state keeps evolving while being probed and the measurement data is mixed with a
detector-related background noise, one might expect the detector to fail in this case. We show,
however, that under suitable conditions and by proper analysis of the measurement data, useful
information about the initial state of the qubit can be extracted. Our approach complements
the usual master-equation and quantum-trajectory approaches, which describe the evolution of
the qubit’s quantum state during the measurement process but do not keep track of the
acquired measurement information.

PACS numbers: 03.65.Ta, 42.50.Dv

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

Solid-state systems are among the most promising candidates
for future quantum information processing devices. One type
of such systems are superconductor- and semiconductor-based
charge qubits [1]. These qubits are commonly measured by
capacitively coupling them to quantum point contacts (QPC)
or single-electron transistors (SET), such that the current in
the detector is sensitive to the charge state of the qubit [2–6]4,5.
By measuring the current passing through the detector, one
can infer the state of the qubit. One limitation that arises in
practical situations is that, in order to minimize the effects
of the detector on the qubit before the measurement, the
qubit–detector coupling strength is set to a value that is small

4 We shall not consider measurement methods based on probing the
capacitance of the qubit [7].
5 For a review on different readout methods in solid-state qubits, see e.g. [8].

compared with the qubit’s energy scale6. As a result one
must deal with some form of weak-measurement regime.
This type of weak, charge-sensitive readout works well when
the qubit is biased such that the charge states are eigenstates
of the Hamiltonian and therefore do not mix during the
measurement. In this case, one can allow the detector to
probe the qubit for as long as is needed to obtain a high
signal-to-noise ratio, without having to worry about any
coherent qubit dynamics (note that, since we are mainly
interested in the measurement process, we ignore any addi-
tional qubit decoherence mechanisms in the system, which
could impose constraints on the allowed measurement time).

In contrast to the simple situation described above, when
the detector weakly probes the charge state of the qubit

6 Interestingly, weak measurement can have the advantage of being
insensitive to undesirable mixing or ‘contamination’ between the states of
the measurement basis [9].
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Figure 1. Schematic diagrams of (a) a charge qubit measured by a
QPC and (b) the probability distributions of the possible QPC
current values for the two charge states of the qubit. The finite
widths of the probability distributions are a result of the finite
measurement time. When the distance between the two center
points in figure 1(b) | Ī R − Ī L| is much smaller than the widths of the
distributions, the QPC performs a weak measurement on the qubit
in the short interval under consideration. In panel (b), we have
assumed that Ī R > Ī L, which would be the case if the qubit is
defined by an extra positive charge (e.g. a hole) tunneling between
the two wells. Taking the opposite case, i.e. Ī L > Ī R, would not
have any effect on the analysis of this paper.

while the Hamiltonian induces mixing dynamics between the
different charge states, it becomes unclear how to interpret a
given measurement signal. Since the signal typically contains
a large amount of detector-related noise and the measurement
unavoidably destroys the coherence present in the qubit’s
initial state, it might seem that this type of measurement
cannot be used to determine the initial state of the qubit,
i.e. at the time that the experimenter decides to perform the
measurement. Indeed, there have been a number of studies
analyzing the measurement-induced decoherence and the
evolution of the qubit’s state in this situation [2–6], but not the
question of how to take the measurement data and extract from
it information about the initial state of the qubit. This question
is a key issue for qubit-state readout and is the main subject of
this paper. We shall show below that high-fidelity information
can be extracted from the measurement data, provided that
additional decoherence mechanisms are weak and the readout
signal can be monitored at a sufficiently short timescale. It
turns out that not only the measurement result, but also the
measurement basis is determined stochastically in this case.
In spite of the uncontrollability of the measurement basis, the
measurement results correspond properly to the initial state of
the qubit. As an example, we show how they can be used to
perform quantum state tomography (QST) on the qubit. These
results show that under suitable conditions and by proper
analysis of the measurement data, useful information about
the state of the qubit can be obtained.

2. Model

We consider a system composed of a charge qubit capacitively
coupled to a QPC, as illustrated in figure 1. The qubit can be
viewed as a system where a charged particle is trapped in a
double-well potential and can occupy, and tunnel between, the
localized ground states of the two wells. We shall denote these
states by |L〉 and |R〉.

During the measurement a voltage is applied to the QPC,
and a current flows through it. We assume that the QPC
measures the qubit in the {|L〉, |R〉} basis; the current through
the QPC depends on whether the qubit is in the state |L〉 or
|R〉. We further assume that the QPC does not induce any

decoherence in the qubit’s state except that associated with
the measurement-induced projection. For the purpose of fully
characterizing the operation of the QPC as a detector for the
state of the qubit, it is convenient to make a few statements
about the QPC’s operation when the qubit Hamiltonian is
diagonal in the charge basis and the qubit is initialized in
one of the states of the charge basis. In this case, there is
no mechanism by which the states |L〉 and |R〉 mix during
the system dynamics. If the qubit is initially in the state |L〉,
the long-time-averaged QPC current is given by Ī L, and the
qubit remains in the state |L〉. A similar statement applies to
the state |R〉 of the qubit, with corresponding QPC current
Ī R. The QPC current therefore serves as an indicator of the
qubit’s state in the charge basis {|L〉, |R〉}, as long as the qubit
Hamiltonian does not mix the states of this basis.

On any finite timescale, there will be fluctuations in the
QPC current, and the observed value might deviate from
Ī L or Ī R. The longer the period over which the averaging
is made, the smaller the fluctuations. One can therefore
define a measurement timescale that determines how long
one needs to wait in order to distinguish between the states
|L〉 and |R〉. The relation between this timescale and the
qubit’s Hamiltonian-induced precession period separates two
measurement regimes: fast versus slow measurement, or
alternatively strong versus weak qubit–detector coupling.
Note that this distinction is irrelevant when the qubit
Hamiltonian is diagonal in the charge basis, since there is no
mixing between the states |L〉 and |R〉 in this case.

For the remainder of this paper, we analyze the general
case where the qubit Hamiltonian is not necessarily diagonal
in the charge basis. We shall use the basis in which the qubit
Hamiltonian is diagonal, thus

Ĥ q = −E σ̂z/2, (1)

where E is the energy splitting between the qubit’s two energy
levels, and σ̂z is the z-axis Pauli matrix. We shall denote
the ground and excited states of the Hamiltonian by |0〉

and |1〉, respectively. The states of the charge basis can be
expressed as

|R〉 = cos
β

2
|0〉 + sin

β

2
|1〉

|L〉 = sin
β

2
|0〉 − cos

β

2
|1〉,

(2)

where β represents the angle between the charge basis and the
energy eigenbasis.

3. Measurement- and Hamiltonian-induced
dynamics

We start our analysis by considering a short-time interval
between times t and t + δt . We assume that during this time
interval a large number of electrons tunnel through the QPC,
such that it is natural to define a QPC current I (t) during
this short interval. We also assume that a weak-measurement
regime exists for a properly chosen value of δt , which means
that the QPC-current probability densities (for the states |L〉

and |R〉) are broad and almost completely overlap, as shown
in figure 1(b). For definiteness we shall take these probability
densities to be time-independent, Gaussian functions. The
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interval δt is taken to be much longer than the coherence time
of the QPC, such that the QPC’s operation during this interval
is independent of the QPC’s state at earlier times. Finally, we
take δt to be much shorter than the precession period of the
qubit.

We now construct matrices (or propagators) that describe
the qubit-state evolution depending on the observed QPC
current I (t): when a given value of I (t) is observed in the
QPC, the quantum state of the qubit is projected (possibly
partially) according to the observed value. Neglecting
decoherence that is not associated with the measurement, the
projection of the qubit’s state is described by a 2 × 2 matrix
that we shall call Û M[I, δ I, δt], where δ I defines the size of
a finite interval of QPC currents that we identify with a single
value:

ρq(t + δt)∝ Û M[I, δ I, δt] ρq(t) Û †
M[I, δ I, δt], (3)

where ρq denotes the qubit’s density matrix, and † represents
the complex conjugate transpose. One could say that with the
introduction of δ I we are turning the probability distributions
in figure 1(b) into histograms with discrete possible outcomes
(this discretization will also be used in our numerical
calculations below). In order to identify the appropriate form
for Û M[I, δ I, δt], we note that the probability of obtaining the
corresponding outcome is

P[I, δ I, δt] = Tr{Û †
M[I, δ I, δt]Û M[I, δ I, δt]ρq(t)}. (4)

Let us denote by Pj [I , δ I, δt] the probability that the value
I (up to the dicretization parameters δ I and δt) of the QPC
current is observed given that the qubit is in state j . We
now find that the simplest, and in some sense ideal, matrix
Û M[I, δ I, δt] that satisfies equation (4) is given by

Û M[I, δ I, δt] =

√
PL[I, δ I, δt]|L〉 〈L|

+
√

PR[I, δ I, δt]|R〉 〈R| . (5)

This matrix could be followed by a unitary transformation that
does not affect equation (4). Any such transformation can be
incorporated into the analysis straightforwardly.

In addition to the measurement-induced evolution
described by equation (5), the qubit Hamiltonian induces a
unitary evolution in the qubit’s state during the time interval t
to t + δt : taking h̄ = 1

Û H[δt] = exp{−iĤ qδt} ≈ 1 + i
E

2
δt σ̂z . (6)

The matrices Û M[I, δ I, δt] and Û H[δt] can now be
combined to give the total evolution matrix

Û [I (t), δ I, δt] = Û M[I (t), δ I, δt] × Û H[δt]. (7)

Note that both Û M[I, δ I, δt] and Û H[δt] are approximately
proportional to the unit matrix in the limit δt → 0, with
lowest-order corrections of order δt . The operators
Û M[I, δ I, δt] and Û H[δt] therefore commute to first
order in δt .

When a given QPC output signal I (t) (from the initial
time t = 0 until t = tf) is observed, one can take the corres-
ponding short-time evolution matrices explained above
and use them to construct the total evolution matrix

Û Total[I (t : 0 → tf), δ I, δt]. Using the unit matrix as the total
evolution matrix for t = 0, we find that

Û Total[I (t : 0 → tf), δ I, δt] = Û [I (tf − δt), δ I, δt]

× · · · × Û [I (0), δ I, δt]. (8)

Once the 2 × 2 matrix Û Total[I (t : 0 → tf), δ I, δt] is
calculated, one can divide it into two parts, a measurement
matrix Û Meas[I (t : 0 → tf), δ I, δt] followed by a unitary
transformation Û Rot[I (t : 0 → tf), δ I, δt] :

Û Total[I (t : 0 → tf), δ I, δt] = Û Rot[I (t : 0 → tf), δ I, δt]

× Û Meas[I (t : 0 → tf), δ I, δt].

(9)

The matrix Û Meas has the form

Û Meas =

√
P1|ψ1〉 〈ψ1| +

√
P2|ψ2〉 〈ψ2| , (10)

where |ψ1〉 and |ψ2〉 are two orthogonal states. The states |ψ1〉

and |ψ2〉 represent the measurement basis that corresponds
to the output signal I (t), and the parameters Pi are the
probabilities that the outcome defined by I (t), δ I and δt is
obtained given that the qubit was initially in the state |ψ1〉.
With a simple calculation, one can see that the measurement
fidelity is given by (see e.g. [10])

fidelity =

∣∣∣∣ P1 − P2

P1 + P2

∣∣∣∣ . (11)

To summarize, the QPC output-current signal can be
used to derive the matrix Û Total[I (t : 0 → tf), δ I, δt]. This
matrix can then be used to determine the measurement
basis, the measurement result (i.e. ±1 along the measurement
axis), the fidelity (or in other words the degree of certainty
about the obtained measurement result) and the final state of
the qubit (given by the measurement result transformed by the
unitary, i.e. rotation, matrix Û Rot[I (t : 0 → tf), δ I, δt] ). Note
that when the measurement fidelity approaches one, the final
state is a pure state that can be determined even without any
a priori knowledge about the initial state.

4. Results and discussion

We now present the results of our numerical calculations.
The calculations were performed by analyzing a sequence
of discrete events, with each event representing a time step
of size δt . We also discretize the possible values of QPC
current. We have verified that the results presented below are
insensitive to the exact discretization parameters, as long as
we take Eδt � 1 and there are a large number of possible
QPC current values. The qubit is initialized in a given state
that depends on the specific calculation. In each time step,
the value of the QPC current is determined stochastically
using equation (4). Based on the obtained value, the qubit’s
state evolves as described in equation (3). Following this
weak-measurement step, a unitary transformation of the form
of equation (6) is applied to the qubit’s state. After a
sufficiently long QPC signal is obtained, this signal (in all its
detail) is taken and used to extract the measurement matrix

3
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Figure 2. The spherical coordinates θ and φ that define the
stochastically determined measurement bases obtained in
simulations of the experiment under consideration (note that
(θ, φ)= (0, 0) for the energy eigenbasis and (θ, φ)= (β, 0)
for the charge basis). Each figure contains 200 points. In
figure 2(a) Eτm/(2π)= 0.01, i.e. deep in the strong-coupling
regime. In figure 2(b), Eτm/(2π)= 0.2 (intermediate-coupling
regime), and in figure 2(c) Eτm/(2π)= 5 (weak-coupling regime).
In all the figures, β = π/4. In each set, the figure on the left is
generated using the initial state |L〉, and the one on the right is
generated using the initial state |0〉. Each set is an identical pair, up
to statistical fluctuations, demonstrating that the initial state
plays no role in determining the measurement basis.

Û Meas explained above. This matrix is then used to extract the
measurement basis and fidelity.

The strength of the qubit–QPC coupling is determined
by the relation between two parameters in the numerical cal-
culations: (1) the width, or standard deviation σ , of the
QPC-current distribution functions and (2) the distance
between the average values of these distribution functions
( Ī R − Ī L). It is more convenient, however, to present the
results in terms of a different parameter that characterizes the
qubit–QPC coupling strength, namely Eτm/(2π), where τm

is the timescale needed to obtain sufficient QPC signal to read
out the state of the qubit (for the time being one can think
of this definition as applying to the case when β = 0; but
see below). If one considers N of the small steps considered
above, the standard deviation of the QPC’s averaged signal
scales as σ/

√
N (note that σ is the standard deviation for

one step). The measurement time τm can now be naturally
defined as the product of the time step δt and the value of
N at which 2σ/

√
N = | Ī R − Ī L|. The measurement time is

therefore given by

τm =
4σ 2δt

| Ī R − Ī L|2
. (12)
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Figure 3. The measurement fidelity as a function of measurement
duration for three different values of the angle β between the charge
basis and the energy eigenbasis: β = 0 (red; lowest line), π/4
(green) and π/2 (blue). Here Eτm/(2π)= 5, i.e. deep in the
weak-coupling regime. The fidelity increases as the measurement
duration increases, but the fidelity is essentially independent
of the angle β.

First, in figure 2 we show the spherical coordinates of the
(stochastically determined) measurement bases for different
levels of qubit–detector coupling. In the strong-coupling,
fast-measurement regime (figure 2(a)), the measurement
basis is always the charge basis, which is the natural
measurement basis for the detector under consideration. As
the qubit–detector coupling strength is reduced (figure 2(b)),
the measurement bases start to deviate from the charge
basis, and they develop some statistical spread. This region
could be called the intermediate-coupling regime. In the
weak-coupling, slow-measurement regime (figure 2(c)), the
measurement bases are spread over all the possible directions.

In figure 3, we plot the measurement fidelity as a function
of measurement duration for three different values of β,
keeping all other parameters fixed. We can see that the fidelity
approaches one for long enough measurement duration,
regardless of the angle β. In fact, the fidelity is almost
independent of β. This result shows that even though more
complicated analysis is needed to extract useful measurement
information when β 6= 0, the information acquisition rate is
only slightly affected by the coherent, Hamiltonian-induced
precession.

The fact that the measurement basis is generally
unpredictable, and therefore uncontrollable, is a rather strange
phenomenon from a fundamental point of view. From a
practical point of view, one can wonder whether anything use-
ful can be done with such measurements that are performed in
a stochastically determined basis. If one absolutely requires
a measurement in a given basis, measurement results in
different bases would be less useful. One could then treat the
deviation of the observed measurement basis from the desired
one as an experimental error and deal with it accordingly.

In the above discussion, we have ignored any
decoherence other than that associated with the measurement-
induced projection. If the measurement time τm is much
smaller than the timescale of decoherence caused by other
mechanisms, the measurement is completed with minimal
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effects of any additional decoherence. Our results are valid in
this case. A number of different types of detectors, including
QPCs, are approaching this limit where the decoherence is
limited by the measurement [11], indicating that our results
could be observable in such systems.

4.1. QST

One example of a procedure where the uncontrollability of
the measurement basis can be harmless is QST. In QST, one
is given a large number of copies of the same quantum state,
and the goal is to deduce this state. Typically, one measures
the operator σ̂x for one third of the copies, and similarly for
σ̂y and σ̂z . Once the average values 〈σ̂x 〉, 〈σ̂y〉 and 〈σ̂z〉 are
known, the density matrix is reconstructed straightforwardly:

ρ =
1
2

(
1 +

〈
σ̂x

〉
σ̂x +

〈
σ̂y

〉
σ̂y +

〈
σ̂z

〉
σ̂z

)
. (13)

In the present case, the measurement bases are chosen
stochastically, and in principle no two of them are the
same. One must therefore reconstruct the unknown quantum
state using a procedure that allows for data taken from
measurements made in any combination of bases. One such
procedure is the minimization of the function

T (r, θ, φ)=

∑
j

[
1 − r cos�(θ, φ, θ j , φ j )

]2
, (14)

where r , θ and φ are the spherical coordinates of a point in
the Bloch sphere; j is an index labeling the different runs of
the experiment; the direction (θ j , φ j ) defines the qubit state
obtained in a given measurement; and �(θ, φ, θ j , φ j ) is the
angle between the directions (θ, φ) and (θ j , φ j ). Assuming
that the measurement bases cover all possible directions (see
e.g. figure 2(c)), the convergence of this procedure to the
correct density matrix should be similar to the convergence
of the standard QST procedure explained in the previous
paragraph.

We have simulated QST by repeating the measurement
procedure a large number of times, obtaining a set of
measurement results (in the form of premeasurement qubit
states), and then minimizing the function T (r, θ, φ) with
respect to r , θ and φ. We have chosen several initial states
covering the Bloch sphere, and the tomography procedure
consistently produced the initial state of the qubit for the
parameters of figures 2(b) and (c). For strong qubit–detector
coupling (see figure 2(a)), the procedure becomes unreliable,
because the vast majority of the measurements are performed
in one basis.

5. Conclusion

In conclusion, we have analyzed the question of what
information can be extracted from the output signal of a QPC
that weakly probes the charge state of a charge qubit when the
qubit Hamiltonian induces oscillations between the different

charge states. We have shown that the measurement basis
is determined stochastically every time the measurement is
repeated. In the case of weak qubit–detector coupling, the
possible measurement bases cover all the possible directions.
The measurement basis and result can both be extracted
from the QPC output signal. We have also shown that the
information acquisition rate is independent of the angle β
between the direction defining the charge basis and that
defining the qubit Hamiltonian. In other words, given enough
time, the detector will produce a high-fidelity measurement
result, regardless of the value of β. These results show
that, under suitable conditions and by proper analysis, the
detector’s ability to obtain high-fidelity information about the
state of the qubit is not affected by the competition between
the measurement and coherent-precession dynamics. More
detailed analysis of the results discussed in this paper is
presented elsewhere [12].
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