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We consider the question of how to distinguish quantum from classical transport through nano-

structures. To address this issue we have derived two inequalities for temporal correlations in nonequi-

librium transport in nanostructures weakly coupled to leads. The first inequality concerns local charge

measurements and is of general validity; the second concerns the current flow through the device and is

relevant for double quantum dots. Violation of either of these inequalities indicates that physics beyond

that of a classical Markovian model is occurring in the nanostructure.
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Quantum coherence of electrons is the essential ingre-
dient behind many interesting phenomena in nanostruc-
tures (e.g., [1,2]). Considerable progress has recently been
made in the investigation of coherent effects in nanostruc-
tures with both charge and transport measurements, (e.g.,
[2–7]). Typically, Rabi oscillations in the current are taken
as a distinctive signature of quantum coherence. However,
since even classical autonomous rate equations can admit
oscillatory solutions (e.g., [8]), oscillations by themselves
cannot be considered as a definitive proof of the existence
of quantum coherent dynamics.

In this Letter we formulate a set of inequalities that
would allow an experimentalist to exclude the possibility
of a classical description of transport through a nanostruc-
ture. The inspiration for this comes from the Leggett-Garg
inequality [9], which has been described as a single-system
temporal version of the famous Bell inequality, also a topic
of interest in nanostructures at the present (e.g., [10]).
The Leggett-Garg inequality [9] can be summarized as
follows. Given an observable QðtÞ, which is bound above
and below by jQðtÞj � 1, the assumption of: (A1) macro-
scopic realism and (A2) noninvasive measurement implies
the inequality,

hQðt1ÞQi þ hQðt1 þ t2ÞQðt1Þi � hQðt1 þ t2ÞQi � 1; (1)

where Q � Qðt ¼ 0Þ. The question of (A1) ‘‘realism’’ [9]
can be phrased as before we perform the measurement
Q on the system [11], does it have a well-defined value?
A classical system does, but a quantum system does not.

In the context of nanostructures weakly coupled to con-
tacts, such that a generalized master equation description
(e.g., [1,12,13]) is appropriate, we derive and study two
inequalities. The first concerns correlations between local
charge measurements performed, e.g., by a quantum point
contact (QPC) (e.g., [7]). We formulate this inequality in
quite general terms, applicable to a range of nanostruc-
tures. The charge measurements we consider here are

related, in spirit, to recent work (e.g., [14]) on violations
of the Leggett-Garg inequality, using continuous weak
measurements on closed systems. However, in contrast
to their work, here we are considering a very different
situation: ensemble averages of strong (i.e., projective)
noncontinuous measurements on open transport systems.
Moreover, our second inequality explicitly focuses on
DQDs, providing an inequality for the correlation func-
tions of the current flowing through this widely-studied
nanostructure. This second inequality is of particular rele-
vance to DQD experiments along the lines of those of
Refs. [3,4], where we predict that violations of both in-
equalities should occur.
Systems.—We begin by outlining the class of systems

studied in this work. We consider nanostructures (Fig. 1)

FIG. 1 (color online). (a) A generic single-charge nanostruc-
ture. The single-charge can occupy one of N internal states.
Local charge occupation of one or more sites is measured using a
charge detector (CD) Eq. (2), e.g., a quantum point contact.
(b) Schematic of a double quantum dot, the main example we
discuss here. �L=R describe the left/right tunneling rates, � is the

coherent tunneling amplitude between the left and right dots, and
� is the energy difference between the left and right occupation
states. Local charge measurements are done on the right (R) state
for the charge inequality of Eq. (2), or transport is measured into
the collector reservoir for the current inequality of Eq. (4).
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weakly coupled to leads such that transport proceeds
via sequential tunneling, and we assume a large bias such
that higher-order tunneling, level-broadening, and non-
Markovian effects can be neglected [12]. We assume
strong Coulomb blockade such that the system admits at
most one excess electron. In these limits the master equa-
tion formalism we apply here, while simple, has been
shown to be very accurate by a variety of experiments
[2–7]. In general, non-Markovian effects might lead to a
violation of these inequalities, so care must be taken
to verify one is in these limits. Our system comprises of
ðN þ 1Þ states: the ‘‘empty’’ state, j0i, with no excess
electron, and states jni with a single excess electron in
state n ¼ 1 . . .N. The dynamics is described by the gener-
alized master equation _�ðtÞ ¼ W ½�ðtÞ�, where �ðtÞ is the
density matrix and the superoperatorW is the Liouvillian.
Within a quantum-mechanical description, the density ma-
trix �ðtÞ contains coherences, and the Liouvillian has a
Lindblad formW ¼ W 0 þ�, where the coherent evolu-
tion of the system is given byW qm

0 ¼ �i½H; �� withH the

internal system Hamiltonian, � is the self-energy induced
by the contact with reservoirs (both electronic and other-
wise), and throughout we set e ¼ @ ¼ 1.

The analogous classical description is a rate equation for
the probabilities PnðtÞ of finding the system in state n
at time t. This rate equation can be written in the same
form as above: _� ¼ W cl½��, but now the density matrix
� only includes diagonal elements [the probabilities
PnðtÞ ¼ �nnðtÞ]. This � can be represented as a vector
such that the Liouvillian W cl is a classical rate matrix
withW cl

ij > 0; i � j andW cl
ii ¼ �P

j�iW
cl
ji. Our general

strategy is to explore the behavior allowed by this classical
rate equation and use this to derive our inequalities.

Charge inequality.—The first inequality we derive is for
localized state measurements. Consider a charge detector
which registers the value Qn � 0 when the system is in
state n (see Fig. 1). Furthermore, let us designate as state N
the state for which Q has maximum value: QN ¼ Qmax(i)
Classical regime: We assume that for a classical system the
charge measurement can be performed noninvasively. An
initial state, described by a set of probabilities Pnð0Þ, is
fixed and known (actually one only requires knowledge of
the relevant expectation values in this state). When non-
invasively measuring the charge of a classical Markovian
system, we posit that the following inequality holds:

jLQðtÞj � j2hQðtÞQi � hQð2tÞQij � QmaxhQi; (2)

where hQi ¼ P
kPkð0ÞQk is the expectation value of

Q � Qðt ¼ 0Þ, and hQðtÞQi is the charge-charge correla-
tion function. This inequality holds in two regimes:
(i) stationarity, where it follows from the original
Leggett-Garg [Eq. (1)] by defining the normalized operator
Q ¼ 2Q=Qmax � 1 [15] and taking the stationary expecta-
tion value; and (ii) if only a single state contributes to
the detection process, i.e., Qn ¼ Qmax�nN , then Eq. (2)
holds for an arbitrary initial state (defined by the

set of probabilities Pk), and not just the stationary
state. This latter can be seen as follows. Within both
classical and quantum stochastic theory, the charge-
charge correlation function can be written as hQðtÞQi ¼
Qmax�NNðtÞQmaxPNð0Þ, where the ‘‘propagator’’ �NNðtÞ
is an element of the stochastic matrix giving the probability
of finding the system in local charge state N a time t after
it is in state N. The quantity LQ can thus be written as

(for this single state measurement) LQðtÞ ¼ Q2
maxPNð0Þ�

½2�NNðtÞ ��NNð2tÞ�. If the behavior is classical and
Markovian, then the Chapman-Kolgomorov equation for
classical rate equations applies [13], and we can write the
propagator with argument 2t as a decomposition over
intermediate states �NNð2tÞ ¼ P

k�NkðtÞ�kNðtÞ to obtain
LQðtÞ ¼ Q2

maxPNð0Þ½�NNð2��NNÞ �P
k�N�Nk�kN�.

Hereafter, we suppress the time argument, � ¼ �ðtÞ.
LQðtÞ is then maximized by choosing the propagators such

that the system always ends up in state N, i.e., �NN ¼ 1,
which gives maxfLQðtÞg ¼ Q2

maxPNð0Þ ¼ QmaxhQi. The

lower bound is minfLQðtÞg ¼ �QmaxhQi. For this single

state measurement the inequality holds independent of
the initial state, as the dynamics are sufficiently con-
strained by the Chapman-Kolgomorov equation alone.
We first illustrate the charge inequality violation with an
example, before continuing to derive the inequality for
current measurements. (ii) Quantum regime: The transport
DQD consists of a dot L, connected to the emitter, and dot
R, connected to the collector (see Fig. 1). Assuming weak
coupling, large bias, and Coulomb Blockade, the basis of
electron states is fj0i; jLi; jRig. Its Hamiltonian becomes

H ¼ �ðjLihLj � jRihRjÞ þ �ðjLihRj þ jRihLjÞ; (3)

with � the level splitting, and � the coherent tunneling
amplitude betweens the dots, and with self-energy

�½�� ¼ � 1

2

X

�¼L;R

��½s�sy��� 2sy��ðtÞs� þ �s�s
y
��;

where sL ¼ j0ihLj, sR ¼ jRih0j, and �L and �R are the left/
right tunnelling rates (throughout we set e ¼ @ ¼ 1).
The influence of phonons can also be included in � in
the standard way [1,16]. The corresponding classical
Liouvillian is a 3� 3 matrix with elements W cl

��; �,

� ¼ 0, L, R. For illustrative purposes, we consider a
charge measurement in which the detector only registers
when there is an electron in the right-hand QD:Q ¼ jRihRj
for which Qmax ¼ 1. The correlation functions are then

calculated from hQðtÞQi ¼ Tr½QeW tQ�0�, with �0 the
stationary density matrix of the system.
In Fig. 2 we plot jLQðtÞj=ðQmaxhQiÞ as a function of time

for a DQD. The behavior is oscillatory, but also damped
due to coupling to both the collector and the phonon bath.
The shaded region (> 1) indicates where jLQðtÞj vio-

lates the inequality of (2). The most prominent violation
occurs at the maximum closest to t ¼ 0. For these parame-
ters then, no classical Markov description of the system is
possible and here, it is quantum oscillations between L and
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R states that are responsible for the violation. As we
discuss later, the degree of violation can be increased by
decreasing �R, which permits the electron to spend a
longer time in the DQD. In the limit �R ! 0 and with
�L ! 1, such that the empty state may be eliminated, we
find the analytic form LQðtÞ=ðQmaxhQiÞ ¼ ½cosð2�tÞ þ
sin2ð2�tÞ�, for � ¼ 0. The coherent tunnelling � defines
the time when the violation is maximum, tmax ¼ �=6�,
such that LQðtmaxÞ=ðQmaxhQiÞ ¼ 5

4 . The time tmax is in

agreement with that observed for the Leggett-Garg in-
equality [9] for a single free qubit with level coupling
�=2. The effects of a phonon bath are also apparent in
Fig. 2, where we have used reasonable bath parameters [1].
Although the oscillations of LQðtÞ are damped, the first and

most significant maximum remains.
Current Inequality.—Our second inequality concerns the

current IðtÞ flowing through the transport DQD:

jLIðtÞj � j2hIðtÞIi � hIð2tÞIij � �RhIi; (4)

where �R is the coupling to the collector, I � Iðt ¼ 0Þ
and hIi is the average current of the initial state.
Although this second inequality resembles the first one,
in Eq. (2) (�R is the maximum instantaneous collector
current), its derivation and significance are somewhat dif-
ferent. This is because, in the master equation approach,
the current operator translates into a ‘‘jump’’ superoperator
and Eq. (4) thus represents an inequality concerning
transitions in the system, and not static properties such as
the charge under the noninvasive measurements of Eq. (2).
For the DQD model in the infinite bias limit, the current
superoperator acts as J ½�� ¼ �Rj0ihRj�jRih0j, such that

the average current is hIi ¼ TrfJ�g and the correla-

tion function of interest is obtained as hIðtÞIi ¼
TrfJ eW tJ�0g, where again the stationary distribution is
chosen as the initial state. Thus, while the stationary cur-
rent depends on the occupation of the right dot, the corre-
lation function illustrates the invasive nature of J ½��;
immediately after the first measurement, the state of the
system has changed. In these terms, Eq. (4) can be written

as LIðtÞ ¼ TrfJ ð2eW t � e2W tÞJ�0g. In the classical de-
scription of the DQD, J is the 3� 3 matrix with elements
J �� ¼ �R��;0��;R. Thus using Chapman-Kolgomorov

again, we have LIðtÞ ¼ �2
RPRð0Þð�R0ð2��00 ��RRÞ �

�RL�L0Þ. For a general Markov stochastic matrix, �, the
maximum of LI is 2�

2
RPRð0Þ. However, the rate equation

form �ðtÞ ¼ eW t furnishes us with a further constraint.
Maximizing LIðtÞ with respect to time, from _LI ¼ 0

and _� ¼ W�, we find that the maximum of LI occurs
when �00 þ�RR ¼ 1 and �R0 ¼ 1, giving maxfLIg ¼
�2
RPRð0Þ ¼ �RhIi. This result relies on the geometry of

the DQD, and, in particular, the form of the jump operator
and the absence of direct tunnelling from emitter to dot R,
i.e., W R0 ¼ 0.
Figure 3 illustrates the violation of the current inequality

Eq. (4) for the DQD. As with the charge measurement, the
quantity LIðtÞ is oscillatory and violates the respective
inequality with the strongest violation occurring at the
first maximum, which is here at a time tmax ¼ �=ð2�Þ.
The degree to which this current inequality is violated is of
greater magnitude than that for the charge measurement.
This is because the current correlator relies on a different
propagator from the charge one. Again, in the limit
�L ! 1, one can eliminate the empty state and find an
analytical form. In addition, the �R ! 0 limit gives
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LIðtÞ=ð�RhIiÞ ¼ �2sin2ð�tÞ cosð2�tÞ. Thus the violation
has a maximum of LIðtmaxÞ=ð�RhIiÞ ¼ 2.

Under the above assumptions, the three-state classical
DQD Liouvillian cannot produce a violation. However, if
these assumptions are relaxed (e.g., allowingW R0 � 0), a
small violation (on the order of 0:003%�RhIi) of the in-
equality can be observed in extreme parameter regimes.
This is in contrast to the LQ inequality, where no further

constraints are required of the Liouvillian. This difference
reflects the fact that here the current measurement is
essentially a destructive measurement of the state of the
nanostructure. An infinitesimal time interval after a posi-
tive current measurement is obtained, the electron has left
the system, leaving it in the ‘‘empty’’ state. This behavior is
implicit in the jump superoperator form of the current
measurement.

Figure 4 shows how the maximum degree of violation
of both inequalities depends on the parameters of the DQD
with no phonons. A violation of the current inequality
Eq. (4) requires � * 1:5�R, �L � �R, and small detuning
(� <�). The violation of the charge inequality Eq. (2) is
more resilient, and always occurs unless there is strong
over-damping from the reservoir �R � �.

Finally, we note that in practice one needs to measure the
correlation functions in Eq. (2) or Eq. (4) on very short time
scales (e.g., [7]). Alternatively, one can obtain either cor-
relator from the inverse Fourier transform of the appropri-
ate noise power function. In the transport case [Eq. (4)],
one must consider contributions from both particle- (as
considered here) and displacement-currents. In principle,
one can either choose appropriate gate/junction capacitan-
ces to neglect the displacement current contribution, or
include them in the definition of Eq. (4), and its subsequent
maximization.

Conclusions.—In summary, we have derived two in-
equalities for nonequilibrium transport in nanostructures:
one concerning local chargemeasurements and the other for
current flow through the device. The first is of general val-
idity; the second of relevance to the usual DQD geometry

found in numerous experiments. Violation of either of these
inequalities indicates that physics beyond that of a classical
Markovian model is occurring in the nanostructure. This
may be taken as evidence for quantum oscillations of
the electron within the device; or it may indicate a non-
Markovian interaction with previously unappreciated de-
grees of freedom. Finally, we point out that these ideas can
be expanded in a number of different directions: to other
types of measurements; to inequalities with different time
dependencies, as in the original Leggett-Garg work [9]; and
to different physical situations for which master equations
are appropriate, such as atom-field interactions in quantum
optics. This work can also be applied to networks of quan-
tum dots, Cooper pair boxes, and molecules.
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