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It is typically assumed, without justification, that a weak coupling between a system and a bath is a
necessary condition for the equivalence of a canonical ensemble and a microcanonical ensemble. For instance,
in a canonical ensemble, temperature emerges if the system and the bath are uncoupled or weakly coupled. We
investigate the validity region of this weak-coupling approximation, using a coupled composite-spin system.
Our results show that the spin coupling strength can be as large as the level spacing of the system, indicating
that the weak-coupling approximation has a much wider region of validity than usually expected.
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I. INTRODUCTION

It is of fundamental importance to revisit statistical me-
chanics, based on principles of quantum mechanics �see, e.g.,
�1–12��. Starting from a microcanonical ensemble, the con-
cept of temperature emerges from a canonical ensemble in
the limit of weak coupling between a system and a bath. This
is valid both for classical distributions on phase space and
for quantum density matrices �see, e.g., �1–3��. A general
composite system made of a central system and a bath can be
described by

H = HS + HB + HSB, �1�

with HS the system Hamiltonian, HB the bath Hamiltonian,
and HSB the system-bath coupling. In order to obtain the
temperature, the small term HSB is usually neglected.

In quantum mechanics, the density matrix of a thermal
equilibrium state in a microcanonical ensemble with energy
between �E ,E+�� ���E but much larger than the level
spacing of the bath� is described by

�C =
1

d
PC �2�

where d is the dimension of the subspace with total energy in
the interval �E ,E+��, and PC is the projection onto that sub-
space. In the weak-coupling limit, HSB→0, the canonical-
ensemble distribution is derived from the microcanonical en-
semble by following the standard procedure �see, e.g., �1,3��

�S � TrB��C� =
e−�HS

Z
�3�

with the partition function Z=Tr�exp�−�HS�� and the inverse
temperature �=1 /T. A much stronger statement, called ca-
nonical typicality, has also been made, which states that an
arbitrary pure random state in the microcanonical subspace is
enough to derive the above canonical-ensemble result �see,
e.g., �3,4��. Several works have followed this direction �see,
e.g., �9,13–24��. However, the meaning of “weak coupling”
has been invoked without any justification, except in the pa-
pers by Dong et al. �25� and Reimann �26�.

In this paper, we investigate the effect of coupling be-
tween the spin system and the bath of spins and justify the
validity of the weak-coupling approximation in coupled spin
systems. These spin systems are very different from the har-
monic oscillators in Ref. �25�. This paper is organized as
follows. We describe the model of a coupled spin composite
system in Sec. II and present our numerical results in Sec.
III. A brief discussion and a conclusion are given in Sec. IV.

II. COUPLED SPIN SYSTEMS

We consider a model for many spin-1/2 particles �see Fig.
1�. Some of these spins are labeled as “system spins,” de-
noted by Sm, with m=1,2 , . . . ,M. Others are labeled as “bath
spins,” denoted by Ik, with k=1,2 , . . . ,K. This composite
system is described by the Hamiltonian in Eq. �1�, where

HS = �
m=1

M

�mŜmz,

HB = �
k=1

K

�kÎkz,

HSB = �
m=1

M

�
k=1

K

AkmŜmzÎkx �4�

with Akm describing the coupling between the system spin Sm
and the bath spin Ik. Here, �m and �k are the Zeeman split-

FIG. 1. �Color online� Schematic of a spin system �red arrows
with circles� coupled to a spin bath �blue arrows without circles�.
The dashed lines denote the coupling between them.
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tings of the mth system spin and the kth bath spin, respec-
tively. We have set �=1 and kB=1 for convenience. Note that
the system and the bath have dimensions of 2M and 2K, re-
spectively. The system is only experiencing dephasing be-
cause of the commutation between the system HS and the
coupling HSB, �HS ,HSB�=0.

The above model �Eqs. �1� and �4�� is exactly solvable.
Without the system-bath coupling term, the total energy ET is
the sum of the system energy ES and the bath energy EB, i.e.,
ET=ES+EB. For an eigenstate, the eigenvalue of H is

Eij = Ei
S + Ej

B = �
m=1

M

�msmz + �
k=1

K

�kIkz, �5�

where smz and Ikz are the eigenvalues of Ŝmz and Îkz, respec-
tively. The eigenbasis are the usual computational basis.
Here, i and j label the eigenstates, and range from 1 to 2M

and from 1 to 2K, respectively. With the system-bath cou-
pling term, the eigenvalue of an eigenstate becomes

Ei,j�
= �

m=1

M

�msmz � �1

2�
k=1

K

�Bk
2 + �k

2	 , �6�

where Bk=�m=1
M Akmsmz, i �from 1 to 2M� and j� �from 1 to

2K−1� label the eigenstates �27�.

III. NUMERICAL RESULTS

In our calculations, we choose a set of random numbers
�m� �0,0.4�, �k� �0,1�, Akm� �0,0.037�. The number of
system spins and bath spins are M =3 and K=18, respec-
tively. For example, here we set the energy shell �E ,E+�� by
choosing E=−1.722 and �=0.0350. We count the total num-
ber of composite-system eigenstates whose energy is within
the given energy shell �E ,E+�� and partition this number
according to different system eigenstates into 2M numbers
�28�. In this way, we obtain the probabilities Pi �i
=1,2 , ¯ ,8 for M =3�. We adjust the coupling strength by
multiplying an integer n �e.g., n=0,3 ,10,30� for all Akm.
Thus, n=0 corresponds to the case without coupling, n=3
weak coupling, and larger n denotes stronger coupling.

We plot in Fig. 2, the relation between ln�Pi� and Ei
S. One

would expect a linear relationship if the canonical ensemble
�Eq. �3�� is equivalent to the microcanonical ensemble. We

TABLE I. Inverse temperatures � extracted by fitting the slope
of the curves in Fig. 2, and the corresponding linear correlation
coefficient r of each fit.

Coupling strength n 0 3 10 30

Inverse temperature � 1.027 0.993 0.875 0.388

Linear correlation coefficient r −0.998 −0.998 −0.990 −0.815

TABLE II. The width of the Gaussian fit of the curves, 	0, in
Fig. 3. Due to the symmetry, only the four lowest curves are listed.

System-bath coupling strength

Level index

1 2 3 4

n=0 1.89 1.89 1.89 1.89

n=3 1.90 1.89 1.89 1.89

n=10 2.06 1.95 1.90 1.94

n=30 3.11 2.37 2.00 2.34
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FIG. 2. �Color online� Canonical relation between ln�Pi� and the
system energy Ei

S for various system-bath coupling strengths: n=0
�no coupling, blue dashed line with circles�, n=3 �weak coupling,
green solid line with crosses�, n=10 �medium coupling, red solid
line with upper triangles�, and n=30 �strong coupling, cyan solid
line with down triangles�. Here Pi is the probability that the system
is in the ith eigenstate with energy Ei

S. For weak and medium cou-
plings �n=0,3 ,10�, the curves are almost linear. See also Table I.
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FIG. 3. �Color online� Normalized density of states for system-
bath coupling strength n=0 �a�, 3 �b�, 10 �c�, 30 �d�. The red lines
show the energy range �E ,E+�� for small ��E. Here, E=−1.722.
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clearly see a linear relationship in the cases of no coupling
�n=0� and weak coupling �n=3� as well as deviations from a
linear relationship in the cases of medium coupling �n=10�
and specially for strong coupling �n=30�. The stronger the
coupling between the system and the bath spins, the larger
the deviation from a straight line. By fitting these data with
straight lines, we can obtain the inverse temperature � from
each data set, i.e., the negative slope of the fitted line. We
also obtain the linear correlation coefficient r, which shows
how good the linear relationship is, where 
r
=1 corresponds
to a straight line. The values of � and r are listed in Table I
for the four cases we present in Fig. 2. Again, we find from
these values better linear relationships in the cases of no
coupling and weak coupling.

From the above numerical results, we observe that the
canonical-ensemble distribution is valid in the cases of no
coupling and weak coupling, and approximately valid for
medium coupling. By comparing the level spacing s�0.1 of
the system and the typical coupling strength of the medium-
coupling case, Akm
0.37, we find that the canonical-
ensemble distribution is a good approximation if the cou-
pling strength is less or of the order of the level spacing,
Akm
s. In other words, the canonical ensemble is equivalent
to the microcanonical ensemble if the typical coupling terms
are less or equal to the level spacing of the system. However,
the equivalence between the two ensembles is broken once
Akm�s, as shown in the strong-coupling case n=30 in Fig.
2�d�. Compared to Tasaki’s estimation Akm�s �2�, our results
give a much wider range, which significantly extends the
previous smallness requirement on the system-bath coupling.

Next we consider how � depends on the composite sys-
tem’s parameters. We plot in Fig. 3 the normalized density of

states �DOS� distribution for each system eigenstate. For
clarity, we shift each curve up 0.1 in all panels. As expected
for spin systems, one clearly sees Gaussian distributions for
the density of states. It is especially interesting to note that
the widths of the Gaussian distributions are almost identical
in panels 3�a�–�c�, where one finds that the canonical-
ensemble distribution is valid. We list in Table II the width of
the Gaussian fit of the curves in Fig. 3.

A. Weak-coupling limit

From Figs. 3�a�–3�c�, it is clear that the bath-level distri-
bution for each system eigenstate is the same, except for a
shifted peak position. In the “weak” coupling limit, let us
assume that the probability of the system to be in the ith
eigenstate �with the total energy E� is

Pi�E� =
1

	0
��

exp�−
�E − Ei�2

	0
2 	 , �7�

where 	0 is the width of the bath spectrum. Within the en-
ergy shell �E ,E+��, the probability becomes

Pi = �
E

E+�

Pi�x�dx 
 Pi�E�� . �8�

For two system eigenstates, the ratio of probabilities is

Pi

Pi�
= exp�−

�E − Ei�2 − �E − Ei��
2

	0
2 	 �

exp�− �Ei�
exp�− �Ei��

, �9�

where ��−2E /	0
2, if E�Ei ,Ei�. Using Eq. �9�, we can es-

timate the inverse temperature � for a given E and a bath-
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Strong coupling FIG. 4. �Color online� Same as Fig. 2 except

that the bath sizes are K=21 �left� and K=25
�right�. The energy shell lies at E
=−1.722 for both cases. Comparing with the case
of K=18 �Fig. 2�, we find that larger bath sizes do
not qualitatively affect the equivalence condition
between canonical and microcanonical
ensembles.
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that the bath size is K=25 for two other energy
shells: E=−2.179 �left�; E=−2.637 �right�. Com-
paring with the bottom panel of Fig. 4, we do not
observe a significant effect of the position of the
energy shell on the equivalence condition be-
tween canonical and microcanonical ensembles.
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spectrum width 	0. For the zero-coupling case, where the
bath-spectrum widths are the same for all states, we find �
=0.964 in the cases shown in Figs. 2�a�–2�c�. This value of �
is in good agreement with the first three values shown in
Table I.

B. Strong-coupling limit

In the strong-coupling limit, the assumption of 	0 being
the same for all system eigenstates does not hold, as shown
in Fig. 3�d�. In this limit, it is impossible to obtain the �in-
verse� temperature, since the canonical ensemble and the mi-
crocanonical ensemble are not equivalent. From the features
of the density of states, we thus conclude that the equiva-
lence between a canonical ensemble and a microcanonical
ensemble happens only when the system-bath coupling is
“weak,” so that the coupling does not significantly change
the spectrum properties, e.g., the spectrum width 	0. We
would like to remark that we may obtain a negative inverse
temperature ��
0� if the total energy of the composite sys-
tem is positive �E�0�, according to the evaluation of the
density of states.

It is desirable to investigate whether the equivalence con-
dition between a canonical ensemble and a microcanonical
ensemble, i.e., Akm
s, still holds for other bath sizes and
other values of the energy shell. We present results for two
other bath sizes in Fig. 4 and also results for two other
choices for the energy shell in Fig. 5. By comparing these
with Fig. 2, we do not find any significant bath-size effect or
energy-shell effect on the equivalence condition between a
canonical ensemble and a microcanonical ensemble in the
cases we investigate �29�.

We now tentatively conjecture that a system with evenly
distributed levels is more sensitive to the coupling strength.
With the help of our numerics, we check below this conjec-
ture by comparing the previous almost-even level distribu-
tion case with the following uneven one. We find that this
conjecture is invalid.

We keep all the parameters the same as before except �m.
We then choose another set of �m, which generates unevenly
distributed energy levels for the system �see Fig. 6�. Namely,
the successive or consecutive energy levels have different
spacings between them. This is in contrast with the previous
case, where the energy spacing between the successive or
consecutive energy levels are almost equal. The results are
presented in Figs. 6 and 7, and in Tables III and IV. Com-
paring the two cases, especially the linear correlation coeffi-
cients r in Table I and III, we do not find strong evidence to
support the above conjecture that systems with evenly dis-
tributed levels are more sensitive to the coupling strength
between the system and the bath.

IV. DISCUSSION AND CONCLUSION

The composite system we calculate is finite, with M =3
spins for the system and K=18,21,25 spins for the bath. The
total number of eigenstates is less than 228�3�108. But the
number of eigenstates in the energy shell �E ,E+�� is not
very large ��105� for the parameters we choose. From the
numerical point of view, the relative statistical error of the

TABLE III. Same as Table I except that these values are now
extracted from Fig. 6.

Coupling strength n 0 3 10 30

Inverse temperature � 1.325 1.300 1.101 0.734

Linear correlation coefficient r −0.998 −0.999 −0.992 −0.915
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FIG. 6. �Color online� Same as Fig. 2 except that the system
level distribution is now uneven. Note that this implies that an
uneven level spacing distribution is equally sensitive to the system-
bath coupling strength.
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FIG. 7. �Color online� Same as Fig. 3 except for a system with
uneven level distribution. The total energy �the red vertical dashed
line� is E=−2.214. Note that the DOS is not significantly affected
by the uneven distribution of the system energy levels.
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data we present in Figs. 2 and 6 is of the order of 1%.
Choosing a larger composite system would reduce the statis-
tical error, with the price of more computation time. But we
believe that our main conclusions would still hold qualita-
tively.

In summary, we investigate the effect �on the canonical-
ensemble distribution� of the coupling between a spin system
and a spin bath. We find that the canonical-ensemble distri-
bution still holds even if the typical coupling strength has the
same order of magnitude as the system’s level spacing. This
is much larger than what was expected �2�. In addition, we

observe that the inverse temperature � for a composite spin
system can be expressed as �=−2E /	0, with E being the
energy in the microcanonical ensemble and 	0 the width of
the density of states in the system’s eigenstates.
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