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Antiferromagnetic states and phase separation in doped AA-stacked graphene bilayers
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We study electronic properties of AA-stacked graphene bilayers. In the single-particle approximation such a
system has one electron band and one hole band crossing the Fermi level. If the bilayer is undoped, the Fermi
surfaces of these bands coincide. Such a band structure is unstable with respect to a set of spontaneous symmetry
violations. Specifically, strong on-site Coulomb repulsion stabilizes antiferromagnetic order. At small doping
and low temperatures, the homogeneous phase is unstable and experiences phase separation into an undoped
antiferromagnetic insulator and a metal. The metallic phase can be either antiferromagnetic (commensurate or
incommensurate) or paramagnetic depending on the system parameters. We derive the phase diagram of the system
on the doping-temperature plane and find that, under certain conditions, the transition from the paramagnetic
to the antiferromagnetic phase may demonstrate reentrance. When disorder is present, phase separation could
manifest itself as a percolative insulator-metal transition driven by doping.
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I. INTRODUCTION

Graphene is the first experimentally realizable stable
true atomic monolayer. It has a host of unusual electronic
properties.1–3 After its discovery, graphene’s physical proper-
ties became the subject of intense scientific efforts. In addition
to single-layer graphene, bilayer graphene is also actively
studied. This interest is driven by the desire to extend the
family of graphenelike materials and to create materials with
a gap in the electronic spectrum, which could be of interest for
applications.

Bilayer graphene exists in two stacking modifications.
The most common is the so-called Bernal, or AB, stacking
of bilayer graphene (AB-BLG). In such a stacking, half of
the carbon atoms in the top layer are located above the
hexagon centers in the lower layer, and half of the atoms
in the top layer lie above the atoms in the lower layer.
A different layer arrangement, in which carbon atoms in
the upper layer are located on top of the equivalent atoms
of the bottom layer, is referred to as AA-stacked bilayer
graphene (AA-BLG) (Fig. 1). So far, the most efforts have been
focused on studying the AB-BLG,4 for which high-quality
samples are available.5,6 In recent years, the experimen-
tal realization of the AA-BLG has been also reported.7–9

However, AA-BLG received a limited amount of theoretical
attention.9–13

The tight-binding analysis shows that both AA- and AB-
BLGs have four bands (two hole bands and two electron
bands). However, the structures of these bands are different.
In the undoped AB-BLG, two bands (one hole band and
one electron band) touch each other at two Fermi points,
and the low-energy band dispersion is nearly parabolic.14

The AA-BLG has two bands near the Fermi energy, one
electronlike and one holelike.10,11 The low-energy dispersion
in the AA-BLG is linear, similar to the monolayer graphene.
Unlike the latter, however, AA-BLGs have Fermi surfaces
instead of Fermi points.

An important feature of the AA-BLG is that the hole and
electron Fermi surfaces coincide in the undoped material. It
was shown in Ref. 15 that these degenerate Fermi surfaces
are unstable when an arbitrarily weak electron interaction is
present, and the bilayer becomes an antiferromagnetic (AFM)
insulator with a finite electron gap. This electronic instability
is strongest when the bands cross at the Fermi level. Doping
shifts the Fermi level and suppresses the AFM instability.16

Assuming a homogeneous ground state, here we demonstrate
that the AFM gap � decreases when the doping x grows and
vanishes for dopings above some critical value xc. However,
the homogeneously doped state, depending on temperature
and carrier concentration, may become unstable with respect
to phase separation into an undoped AFM insulator and a
doped metal.16 In the phase-separated state, the concentration
of the AFM insulator decreases when doping increases. Above
a certain threshold value of doping x∗, the insulator-to-metal
transition occurs.

In this paper we present a detailed study of the electronic
properties of the AA-BLG. In Sec. II, we write down its tight-
binding model Hamiltonian and briefly analyze its properties.
In Sec. III, we add the on-site Coulomb interaction to the
Hamiltonian and derive the mean-field equations for the com-
mensurate AFM gap for finite doping and temperature. The
incommensurate AFM state is analyzed in Sec. IV. In Sec. V,
we demonstrate that the AA-BLG is unstable with respect to
phase separation within some doping and temperature range.
The obtained results are discussed in Sec. VI.

II. TIGHT-BINDING HAMILTONIAN

The crystal structure of the AA-BLG is shown in Fig. 1. The
AA-BLG consists of two graphene layers, 1 and 2. Each carbon
atom of the upper layer is located above the corresponding
atom of the lower layer. Each layer consists of two triangular
sublattices A and B. The elementary unit cell of the AA-BLG
contains four carbon atoms, A1, A2, B1, and B2.
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FIG. 1. (Color online) Crystal structure of the AA-stacked bilayer
graphene. The circles denote carbon atoms in theA (red) andB (blue)
sublattices in the bottom (1) and top (2) layers. The unit cell of the AA-
BLG consists of four atoms A1, A2, B1, and B2. Hopping integrals
t and t0 correspond to the in-plane and interplane nearest-neighbor
hopping.

We write the single-particle Hamiltonian of the AA-BLG
in the form

H0 = −t
∑

〈nm〉iσ
(d†

niAσ dmiBσ + H.c.)

−t0
∑
naσ

(d†
n1aσ dn2aσ + H.c.) − μ

∑
niaσ

d
†
niaσ dniaσ . (1)

Here d
†
niaσ and dniaσ are the creation and annihilation operators

of an electron with spin projection σ in the layer i = 1, 2 on
the sublattice a = A,B at the position n; μ is the chemical
potential; and 〈· · · 〉 denotes the nearest-neighbor pair. The
amplitude t (t0) in Eq. (1) describes the in-plane (interplane)
nearest-neighbor hopping. For calculations, we will use the
values of the hopping integrals t ≈ 2.57 eV, t0 ≈ 0.36 eV
computed by density functional theory for multilayer AA
systems in Ref. 17.

If we perform the unitary transformation

hnaσ = dn1aσ + dn2aσ√
2

, gnaσ = dn1aσ − dn2aσ√
2

, (2)

then Eq. (1) can be rewritten as

H0 = −t
∑

〈nm〉σ
(h†

nAσhmBσ + H.c.) − (μ + t0)
∑
naσ

h†
naσ hnaσ

− t
∑

〈nm〉σ
(g†

nAσ gmBσ + H.c.) − (μ − t0)
∑
naσ

g†
naσ gnaσ .

(3)

Therefore, in this representation the Hamiltonian H0 is a sum
of two single-layered graphene Hamiltonians,1 with different
effective chemical potentials μ ± t0.

The Hamiltonian Eq. (3) can be readily diagonalized.
To perform the diagonalization, we switch to the fermion
operators hkaσ and gkaσ , which are defined in the momentum
representation, and make the unitary transformation

γk1σ = hkAσ + hkBσ eiϕk

√
2

, γk2σ = hkAσ − hkBσ eiϕk

√
2

,

(4)

γk3σ = gkAσ + gkBσ eiϕk

√
2

, γk4σ = gkAσ − gkBσ eiϕk

√
2

,

FIG. 2. (Color online) (a) The single-particle band structure of
the AA-stacked bilayer graphene. It consists of two single-layered
graphene spectra shifted relative to each other by the energy 2t0.
(b) The k dependence of the spectra ε

(s)
0k near the Dirac point K

located at momentum K [this is a detailed view of the rectangular
area bounded by dashed line in panel (a)]. Here, k = K + δkyey .
The intersection of the bands s = 2 and 3 occurs exactly at zero
energy, which corresponds to the Fermi level of the undoped system.
(c) The first Brillouin zone (hexagon) and the reciprocal-lattice unit
cell (rhombus) of the AA-BLG. The circles around K and K′ points
correspond to Fermi surfaces of the doped system.

where ϕk = arg(fk),

fk = 1 + 2 exp

(
3ikxa0

2

)
cos

(√
3kya0

2

)
, (5)

and a0 is the in-plane carbon-carbon distance. As a result,
Hamiltonian Eq. (3) becomes

H0 =
∑
ksσ

(
ε

(s)
0k − μ

)
γ
†
ksσ γksσ . (6)

In this equation, the band index s runs from 1 to 4, and the
band spectra ε

(s)
0k are

ε
(1)
0k = −t0 − tζk, ε

(2)
0k = −t0 + tζk,

(7)
ε

(3)
0k = +t0 − tζk, ε

(4)
0k = +t0 + tζk,

where ζk = |fk|. The band structure obtained is shown
in Fig. 2. The bands s = 2 and 3 cross the Fermi level
near the Dirac points K = 2π (

√
3, 1)/(3

√
3a0) and K′ =

2π (
√

3,−1)/(3
√

3a0) [see Fig. 2(b)].
For undoped systems (μ = 0, half filling) the Fermi

surfaces are given by the equation |fk| = t0/t . Since t0/t � 1,
we can expand the function |fk| near the Dirac points and
find that the Fermi surface consists of two circles with radius
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kr = 2t0/(3ta0). These Fermi surfaces transform into four
circles in doped AA-BLG [see Fig. 2(c)].

The most important feature of this tight-binding band
structure is that at half filling the Fermi surfaces of both bands
coincide. That is, the electron and hole components of the
Fermi surface are perfectly nested. This property of the Fermi
surfaces is quite stable against changes in the tight-binding
Hamiltonian. It survives even if longer-range hoppings are
taken into account or a system with two nonequivalent layers
is considered (e.g., similar to the single-side hydrogenated
graphene18). However, the electron interactions can destabilize
such a degenerate spectrum, generating a gap.15

III. COMMENSURATE ANTIFERROMAGNETIC STATE

The single-electron spectrum described in the previous
section changes qualitatively when interaction is included.
Specifically, using mean-field theory, we will demonstrate
that the degenerate Fermi surface of the undoped AA-BLG
is unstable with respect to the spontaneous generation of AFM
order.

A. Mean-field equations

We approximate the electron-electron interaction by the
Hubbard-like interaction Hamiltonian:

Hint = U

2

∑
niaσ

(
nniaσ − 1

2

)(
nniaσ̄ − 1

2

)
, (8)

where nniaσ = d
†
niaσ dniaσ , and σ̄ = −σ . It is known that the

on-site Coulomb interaction U in graphene and other carbon
systems is rather strong, but the estimates available in the
literature vary considerably,20,21 ranging from 4–5 to 9–10 eV.

We analyze the properties of the Hamiltonian H = H0 +
Hint in the mean-field approximation. We choose the x axis as
the spin-quantization axis and write the order parameters as

�ia ≡ U 〈d†
nia↑dnia↓〉, (9)

�1A = �2B = −�1B = −�2A ≡ �, (10)

and � is real. Such AFM order, when spin at any given site is
antiparallel to spins at all four nearest-neighbor sites, is called
in the literature G-type AFM. Other types of spin order are
either unstable or metastable.

In the mean-field approximation, the interaction Hamilto-
nian has the form

H MF
int = N

[
4�2

U
− U (n2 − 1)

]
+ Ux

2

∑
niaσ

nniaσ

−
∑
nia

�ia(d†
nia↑dnia↓ + d

†
nia↓dnia↑), (11)

where x = n − 1 is the doping level, n is the number of
electrons per site, and N is the number of unit cells in the
sample [a unit cell of AA-BLG consists of four carbon atoms
(see Fig. 1)]. Below, when quoting numerical estimates for
doping, we will write x as a percentage of the total number of
carbon atoms in the sample.

We introduce the four-component spinor

ψ
†
kσ = (d†

k1Aσ ,d
†
k2Aσ ,d

†
k1Bσ ,d

†
k2Bσ ), (12)

which can be used to build an eight-component spinor �
†
k =

(ψ†
k↑,ψ

†
k↓). In terms of this spinor, the mean-field Hamiltonian

H MF = H0 + H MF
int can be written as

H MF = NE0 +
∑

k

�
†
k

(
Ĥ0k − μ′ �̂

�̂ Ĥ0k − μ′

)
�k, (13)

where

E0 = 4�2

U
− U (n2 − 1), μ′ = μ − Ux

2
. (14)

In these equations, E0 is a c number, μ′ is the renormalized
chemical potential, and Ĥ0k and �̂ are 4 × 4 matrices:

Ĥ0k = −

⎛
⎜⎜⎜⎝

0 t0 tfk 0

t0 0 0 tfk

tf ∗
k 0 0 t0

0 tf ∗
k t0 0

⎞
⎟⎟⎟⎠ , (15)

�̂ =

⎛
⎜⎜⎜⎝

−� 0 0 0

0 � 0 0

0 0 � 0

0 0 0 −�

⎞
⎟⎟⎟⎠ . (16)

We diagonalize the 8 × 8 matrix in Eq. (13) and obtain four
doubly degenerate bands:

ε
(1,4)
k = ∓

√
�2 + (tζk + t0)2,

(17)

ε
(2,3)
k = ∓

√
�2 + (tζk − t0)2.

To determine the AFM gap � we should minimize the grand
potential �. The grand potential per unit cell is

� = E0 − 2T

4∑
s=1

∫
dk
VBZ

ln[1 + e(μ′−ε
(s)
k )/T ], (18)

where VBZ is the volume of the first Brillouin zone.
To evaluate integrals over the Brillouin zone it is convenient

to introduce the density of states

ρ0(ζ ) =
∫

dk
VBZ

δ(ζ − ζk). (19)

This function is nonzero only for 0 < ζ < 3. It is related to
the graphene density of states ρgr(E) as ρgr(E) = ρ0(|E/t |)/t

(see Ref. 1).
Minimization of � with respect to � gives the equation

1 = U

4t

∫ 3

0
dζ ρ0(ζ )[F (

√
δ2 + (ζ + ζ0)2)

+F (
√

δ2 + (ζ − ζ0)2)], (20)

where δ = �/t , ζ0 = t0/t , and

F (ε) = f (−tε − μ′) − f (tε − μ′)
ε

, f (E) = 1

e
E
T + 1

.

(21)
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Equation (20) determines the gap � as a function of the
renormalized chemical potential μ′. To find � as a function
of doping, we need to relate the doping and the chemical
potential. It is easy to prove that

n = 1 + x = −1

4

∂(� − E0)

∂μ′ . (22)

Then, using Eqs. (18) and (19) we derive

x = 1

2

∫ 3

0
dζ ρ0(ζ )[G(

√
δ2 + (ζ + ζ0)2)

+G(
√

δ2 + (ζ − ζ0)2)], (23)

where

G(ε) = f (−tε − μ′) + f (tε − μ′) − 1. (24)

Solving Eqs. (20) and (23) we obtain the AFM gap �(x,T )
and the chemical potential μ(x,T ).

The solutions of Eqs. (20) and (23) satisfy the following re-
lations: �(−x,T ) = �(x,T ) and μ(−x,T ) = −μ(x,T ). They
are consequences of the particle-hole symmetry of the model
Hamiltonian. The next-nearest-neighbor hopping breaks this
symmetry. However, our analysis shows that corrections,
introduced by these terms, do not exceed 1–2% for the range
of parameters characteristic of graphene systems. Assuming
particle-hole symmetry, below we only consider electron
doping, x > 0.

B. Zero temperature

If T = 0, Eqs. (20) and (23) become

1 = U

4t

∫ 3

0
dζ ρ0(ζ )

[
1 − �(μ′/t −

√
δ2 + (ζ + ζ0)2)√

δ2 + (ζ + ζ0)2

+ 1 − �(μ′/t −
√

δ2 + (ζ − ζ0)2)√
δ2 + (ζ − ζ0)2

]
, (25)

x = 1

2

∫ 3

0
dζ ρ0(ζ )[�(μ′/t −

√
δ2 + (ζ + ζ0)2)

+�(μ′/t −
√

δ2 + (ζ − ζ0)2)], (26)

where �(x) is the step function. At half filling, n = 1, x = 0,
and μ = μ′ = 0. The lower two bands are filled, the upper two
bands are empty, and both � functions in Eq. (25) are zero for
any ζ .

When doping is introduced, analysis of the latter equations
shows that μ′ changes abruptly from zero to the value μ′ > �.
The gap �(x,T = 0) decreases monotonously from �(x =
0,T = 0) ≡ �0 to 0, when x increases from zero to some
critical doping xc. To find xc we must put δ = 0 into Eqs. (25)
and (26) and solve them for μ′ and x = xc.

Equations (25) and (26) can be solved analytically, if �0 �
t,t0. Using the asymptotic expansions of integrals in these

equations for small δ we obtain16

�(x,0) = �0

√
1 − x

xc

, (27)

μ(x,0) = �0

[
sgn (x) − x

2xc

]
+ Ux

2
, (28)

xc = �0ρ0(ζ0)

2t
∼= �0t0

π
√

3t2
when t0 � t. (29)

In this limit the value of �0 is given by the relation15

�0 = 2
√

t0(3t − t0) exp

{
−4t − Uη(ζ0)

2Uρ0(ζ0)

}
, (30)

where

η(ζ0) =
∫ 3

0
dζ

[
ρ0(ζ )

ζ + ζ0
+ ρ0(ζ ) − ρ0(ζ0)

|ζ − ζ0|
]

. (31)

The dependence of the ratio �(x,0)/�0 on x/xc for
different values of U is shown in Fig. 3(a). Figure 3(b) shows
�0 and xc as functions of U calculated both numerically
[Eqs. (25) and (26)] and analytically [Eqs. (29) and (30)].

FIG. 3. (Color online) (a) The AFM gap ratio �/�0 vs doping
x/xc for different values of the on-site Coulomb repulsion U : (red)
squares correspond to U = 5.5 eV, (blue) circles correspond to U =
7 eV, and (green) triangles correspond to U = 9 eV. The solid (black)
curve is �(x)/�0 = √

1 − x/xc. (b) The dependencies �(x = 0,T =
0) ≡ �0 and critical doping xc vs U . The solid curves are numerical
solutions of Eqs. (25) and (26), while the dashed curves are calculated
using the approximate analytical solution, Eqs. (29) and (30).
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FIG. 4. (Color online) The dependence of �(x,T ) on doping x

calculated for U = 5.5 eV and different T/�0: (1) T/�0 = 0.06,
(2) T/�0 = 0.17, (3) T/�0 = 0.33, (4) T/�0 = 0.41, (5) T/�0 =
0.47, (6) T/�0 = 0.52, (7) T/�0 = 0.55, and (8) T/�0 = 0.58.
Inset: The dependence of the mean-field transition temperature on
doping. The reentrance from the paramagnet (PM) to AFM state
exists in the doping range xc < x < 1.231xc; xc = 0.128% and
�0 = 0.124 eV.

Equations (28) and (29) together with Eq. (30) for �0 are valid
if U � 6 eV. However, Eq. (27) is accurate for any U , provided
that xc and �0 are calculated numerically from Eqs. (25) and
(26) [see Fig. 3(a)].

C. Finite temperatures

In this subsection we will analyze the finite-temperature
solutions of the mean-field equations (20) and (23). However,
it is necessary to remember that in two-dimensional (2D)
systems no long-range order is possible if T > 0. In such a
situation the mean-field solutions characterize the short-range
order, which survives for sufficiently low T . The effects
beyond the mean-field approximation will be discussed
in Sec. III D.

Solving numerically the mean-field equations (20) and (23),
we find � as a function of doping x and temperature T (see
Fig. 4). The temperature TMF at which � vanishes is the
mean-field transition temperature (see inset of Fig. 4). The
transition temperature, as a function of doping x, is not a
single-valued function. Instead, it demonstrates a pronounced
reentrant behavior. We discuss this unusual phenomenon in
more detail in Secs. IV–VI.

Equations (20) and (23) can be simplified in the case of a
small gap, when �0 � t0,t . Neglecting terms of the order of
�2

0/t2 in Eq. (20) and taking into account Eq. (30) for �0, we
obtain the following equation for �:

ln
�0

�
= 1

4

∫ ∞

�/T

dz acosh

(
zT

�

) [
cosh−2

(
z − μ′/T

2

)

+ cosh−2

(
z + μ′/T

2

)]
. (32)

In the same limit, we derive from Eq. (23) the relation between
μ′ and x in the form

x

xc

= T

2�0

∫ ∞

�/T

dz

√
z2 − �2

T 2

[
cosh−2

(
z − μ′/T

2

)

− cosh−2

(
z + μ′/T

2

)]
. (33)

At half filling (x = 0) we find from Eq. (32) the BCS-like
result TMF(0) ∼= 0.567�0. If we use normalized quantities
(x/xc), (�/�0), (μ′/�0), and (T/�0), then Eqs. (32) and (33)
do not include any parameter characterizing the AA-BLG
band structure. Thus, if the electron interaction U is not
large, the obtained results do not depend on details specific
to the AA-BLG and are valid for other systems with imperfect
nesting.19,22,23

D. Crossover temperature

In 2D systems, finite-temperature fluctuations destroy the
AFM long-range order. Then, the results obtained above in
the mean-field approximation are valid only if the mean-field
correlation length ξ = vF/� is smaller than the spin-wave
correlation length ξsw (here vF

∼= 3a0t/2 is the Fermi velocity
in our model). Otherwise, short-range ordering of spins
disappears, and we cannot define the AFM order even locally.

In the limit ξsw > ξ , the spin fluctuations can be described
using the nonlinear σ model with Lagrangian24,25

Lsw = ρ

2

[
(∂tD)2 − c2

sw(∂rD)2
]
, (34)

where D is the unit vector along the local AFM magnetization.
The spin-wave stiffness ρ and velocity csw can be evaluated
from Eqs. (7.89) and (7.90) of Ref. 26:

csw = vF√
2
, ρ =

{
t0/

(
8πv2

F

)
, if t0 � �,

�/
(
16πv2

F

)
, if t0 � �.

(35)

The correlation function K(r) = 〈D(r)D(0)〉 can be obtained
using the Lagrangian Eq. (34). At large distances it behaves
as24,25

K(r) ≈ 1 − T

πρv2
F

ln

(
eγ

√
2 rT

3a0t

)
, (36)

where γ is the Euler’s constant. The spin-wave correlation
length ξsw describing the characteristic size of the short-range
AFM order can be estimated using the equation K(ξsw) = 0.
Thus, we have

ξsw ≈ a0t

T
exp

(
2πρc2

sw

T

)
. (37)

Solving the equation ξsw = ξ , we find the crossover temper-
ature T ∗ between the short-range AFM and the paramagnet
(PM). The short-range AFM order exists over distances of
about ξsw � a0, if T < T ∗, and it is destroyed if T > T ∗.
Our numerical analysis shows that T ∗(x)/TMF(x) ≈ 0.8 – 0.9
for any ratio �/t . Thus, the mean-field transition temperature
gives an appropriate estimate for the AFM-to-PM crossover
temperature.
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IV. INCOMMENSURATE ANTIFERROMAGNETIC STATE

The G-type AFM state considered above has the smallest
value of the grand thermodynamic potential � among other
states with commensurate magnetic order. However, further
optimization of � could be achieved if we allow the local
direction of the AFM magnetization to slightly rotate from site
to site.19 Then, the translation invariance with a lattice period
disappears. Such a state is referred to as incommensurate (or
helical) AFM. The complex order parameter for this state has
the form

�nia = U 〈d†
nia↑dnia↓〉 = eiqn�ia, (38)

where q describes the spatial variation of the AFM magneti-
zation direction, the position vector n specifies the location of
a given carbon atom, and �ia satisfies Eq. (10). The averaged
electron spin Snia at site n lies in the x-y plane. It is related to
the order parameter as 〈d†

nia↑dnia↓〉 = Sx
nia + iS

y

nia . As a result,
we obtain

Snia = �ia

U
(cos(qn), sin(qn)) . (39)

The mean-field version of the interaction Hamiltonian
Eq. (8) corresponding to the order parameter �nia [Eq. (38)]
can be written in the momentum representation as [c.f.
Eq. (11)]

Hint = N
[

4�2

U
− U (n2 − 1)

]
+ Ux

2

∑
kiaσ

nkiaσ

−
∑
kia

�ia

(
d
†
k+ q

2 ia↑d
k− q

2 ia↓ + d
†
k− q

2 ia↓d
k+ q

2 ia↑

)
.

(40)

It is convenient to redefine the spinor � (see Sec. III A):

�
†
kq = (

ψ
†
k+q/2↑,ψ

†
k−q/2↓

)
. (41)

We can rewrite the mean-field Hamiltonian H0 + H MF
int in the

form

H = NE0 +
∑

k

�
†
kq

⎛
⎝ Ĥ0k+ q

2
− μ′ �̂

�̂ Ĥ0k− q
2

− μ′

⎞
⎠ �kq,

(42)

where Ĥ0k and �̂ are given by Eqs. (15) and (16), respectively.
The electron spectrum in the incommensurate AFM state

is found by diagonalization of the 8 × 8 matrix in Eq. (42).
It consists of eight nondegenerate bands, E(s)

k,q, s = 1,2, . . . ,8.

The analytical expression for E
(s)
k,q can be obtained in the limit

|q| � 1/a0:

E
(s)
k,q

t
≈ ±

ζk+ q
2

− ζk− q
2

2
±

√√√√�2

t2
+

[
t0

t
±

ζk+ q
2

+ ζk− q
2

2

]2

.

(43)

If q = 0, this spectrum coincides with the spectrum of Eq. (17).
The expression for the grand potential � has similar

structure as Eq. (18), but now the summation includes eight

FIG. 5. (Color online) The dependence of � (red solid curve) and
|q| (blue dashed curve) on doping x calculated for T/�0 = 0.06 and
U = 8 eV. The dot-dashed curve is the gap � calculated for the same
model parameters but putting q = 0. The doping x is normalized by
the critical doping xc, calculated for the commensurate AFM state.
The incommensurate AFM exists in a slightly larger doping range
than the commensurate AFM. Note that the gap for commensurate
AFM remains nonzero even for x > xc. This is a manifestation of the
reentrance; see inset of Fig. 4.

bands:

� = E0 − T

8∑
s=1

∫
dk
VBZ

ln
[
1 + e(μ′−E

(s)
k,q)/T

]
. (44)

Minimization of � with respect to � and q, together with
the condition relating x and μ′, gives the closed system of
equations for calculating �(x,T ), q(x,T ), and μ(x,T ):

∂�

∂�
= 0,

∂�

∂q
= 0, 1 + x = −∂(� − E0)

∂μ′ . (45)

We calculate the functions �(x,T ), q(x,T ), and μ(x,T )
numerically for different values of U . Typical curves �(x)
and |q(x)| are shown in Fig. 5. For comparison, the curve
�(x) calculated for the commensurate AFM is also plotted.
We see that the incommensurate AFM state exists in a
slightly wider doping range than the commensurate one. The
incommensurate phase arises at arbitrary small doping if
T = 0. At nonzero T the commensurate AFM state is stable
until doping exceeds some T -dependent threshold xq(T ). The
curve T q(x) separates the incommensurate and commensurate
AFM states; the more symmetrical AFM state with q = 0 lies
above T q(x).

The phase diagrams of the model in the x–T plane are
shown in Fig. 6 for three different values of U . The diagrams
for small U (�6 eV) and large U (�6 eV) demonstrate a
qualitative difference. Namely, for small U [Fig. 6(a), U =
5.5 eV] the reentrance, seen in the inset of Fig. 4, disappears.
It is masked by the incommensurate AFM phase. For larger
U , however, it survives [Figs. 6(b) and 6(c)]. Reentrance is
an unusual phenomenon because the ordering occurs as the
temperature increases. If reentrance is a genuine feature of the
model or it is an artifact of the mean-field approximation,
whose reliability deteriorates when U grows, we do not
know. Similar behavior was predicted theoretically for the
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FIG. 6. (Color online) The phase diagram of the model in the
(x, T ) plane, calculated for the electron doping x > 0 and U = 5.5 eV
(a), U = 6.5 eV (b), and U = 8 eV (c). Solid (red) curves are
TMF(x); (blue) dashed curves are T q (x), at which the commensurate-
incommensurate transition occurs. The dotted (red) curves are TMF(x),
calculated without taking into account the incommensurate AFM
state. The dot-dashed (green) curves show the region of phase
separation. For hole doping (x < 0) the results are the same.
Paramagnetic phase is denoted by ‘PM’.

quarter-filled Hubbard model at moderate interaction
strength27 and numerically for the classical rotor model.28

V. PHASE SEPARATION

In our discussion above we implicitly assumed that the
ground state of the AA-BLG is spatially homogeneous.
However, this is not always true: it was predicted in Ref. 16
that there is a finite doping range where the AA-BLG separates
in two phases with unequal electron densities n1,2 = 1 + x1,2.

FIG. 7. (Color online) Chemical potential μ of the homogeneous
state vs doping x; U = 5.5 eV and T = 0.014 eV. The vertical dot-
dashed line separates the AFM states with q = 0 and q �= 0. In the
doping range x1 < x < x2, phase separation occurs. The values x1,2

are determined by the Maxwell construction: the horizontal (black)
line is drawn in such a manner that the areas of the shaded regions
are equal to each other.

Indeed, if �0 � t,t0 we can use Eq. (28) and obtain that

∂μ

∂x
< 0, if

U

t
<

π
√

3t

t0
. (46)

The negative value of the derivative ∂μ/∂x indicates the in-
stability of the homogeneous state toward phase separation.29

If the possibility of the incommensurate AFM is ignored,
then a zero-temperature phase separation16 occurs between the
AFM insulator (x1 = 0) and the PM (U � 6 eV) or the AFM
(U � 6 eV) metal (x2 > 0). Here we study phase separation
taking into account the incommensurate AFM phase and
nonzero temperature. We numerically analyze the stability of
the homogeneous state using the dependence of the chemical
potential μ on the doping x.

A typical dependence μ(x) for nonzero temperature is
shown in Fig. 7. The derivative ∂μ/∂x is negative in some
range of doping, and the system separates in commensurate
(q = 0, x1 < x) and incommensurate (q �= 0, x2 > x) AFM
phases. The doping concentrations x1 and x2 are found using
the Maxwell construction:29 the (black) horizontal line is
drawn in such a manner that the areas of the shaded regions in
Fig. 7 are equal to each other. When temperature increases, the
doping range x1 < x < x2, where the phase separation exists
becomes narrower and disappears at some critical temperature.
Our calculations show that the separated phases are AFM with
q = 0 and q �= 0 for any values of the model parameters. The
region of the phase separation in the (x,T )-phase diagram is
shown in Fig. 6 by (green) dot-dashed lines.

VI. DISCUSSION

In this paper we study the evolution of the electron
properties of AA-BLG with doping x and temperature T . We
calculate the phase diagram of the system in the (x,T ) plane.
This diagram includes regions of the AFM commensurate and
incommensurate states, a region of phase separation, and the
PM state. With good accuracy, the electronic properties of the
AA-BLG are symmetric with respect to the electron (x > 0)
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or hole (x < 0) doping. The maximum crossover temperature
between the short-range AFM and the PM states depends on
the on-site Coulomb repulsion U . For example, AFM ordering
can exist up to temperatures of about 100 K if U = 5 eV
and to temperatures much higher than room temperature if
U � 6.5 eV. At present, there is no consensus on the value of
the on-site Coulomb repulsion in graphene-based materials.
However, it is commonly accepted that U lies in the range
6 < U < 10 eV and, consequently, the AFM state can be
observed in the AA-BLG.

The critical doping value xc, at which the AFM is replaced
by the PM, also strongly depends on U , changing from ∼0.1%
if U = 5.5 eV to ∼10% if U = 8 eV. For graphene systems,
doping of about 10% and even higher was achieved.30 Similar
to single-layered graphene, the AA-BLG can be doped by
using appropriate dopants,30,31 choosing the substrate and
applying a gate voltage,32,33 or by combinations of these
methods.

We predict the existence of phase separation in the AA-
BLG. The separated phases have different electron con-
centrations, x1 and x2, and the phase separation will be
frustrated by long-range Coulomb repulsion.34 In this case the
formation of nanoscale inhomogeneities is more probable. The
electron-rich phase (incommensurate AFM) is metal, and the
electron-poor phase (commensurate AFM insulator if T = 0)
is insulator or “bad” metal. Thus, the percolative insulator-
metal transition will occur when the doping x exceeds some
threshold value,16 which is about 0.5(x1 + x2) in 2D systems.
Phase separation exists in the doping range x1 < x < x2, and
x2 � 1% for any value of U . Depending on U , phase separation
could be observed from 30–40 K to room and even higher

temperatures (see Fig. 6). This makes AA-BLG promising for
applications.

The incommensurate AFM phase is mathematically
equivalent to the Fulde-Ferrel-Larkin-Ovchinnikov state in
superconductors,35,36 which is sensitive to disorder37 and
difficult to observe experimentally. Consequently, it is rea-
sonable to expect that the incommensurate AFM phase can
be destroyed by factors our study did not account for. Our
calculations predict that in this case the region of phase sep-
aration changes only slightly in the phase diagram. However,
the separated phases would be the AFM insulator and PM
(U � 6 eV) of AFM metal (U � 6 eV).

To conclude, we studied the phase diagram of the AA-
stacked graphene bilayers on the doping-temperature plane.
It consists of paramagnetic and antiferromagnetic (both
commensurate and incommensurate) homogeneous phases.
In addition, a region of phase separation is also identified.
Magnetic properties of the AA-BLG may survive even at room
temperature.
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