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Metal-insulator transition and phase separation in doped AA-stacked graphene bilayer

A. O. Sboychakov,1,2 A. L. Rakhmanov,1,2,3 A. V. Rozhkov,1,2 and Franco Nori1,4

1Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198, Japan
2Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow, Russia

3Moscow Institute for Physics and Technology (State University), 141700 Moscow Region, Russia
4Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA

(Received 21 October 2012; published 4 March 2013)

We investigate the doping of AA-stacked graphene bilayers. By applying a mean field theory at zero temperature
we find that, at half-filling, the bilayer is an antiferromagnetic insulator. Upon doping, the homogeneous phase
becomes unstable with respect to phase separation. The separated phases are undoped antiferromagnetic insulator
and metal with a nonzero concentration of charge carriers. At sufficiently high doping, the insulating areas shrink
and disappear, and the system becomes a homogeneous metal. The conductivity changes drastically upon doping,
so the bilayer may be used as a switch in electronic devices. The effects of finite temperature are also discussed.
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Introduction. Controlled metal-insulator (M-I) transitions
are very useful for electronic applications of graphene.1 Such
transitions have been analyzed theoretically (e.g., Ref. 2)
and experimentally observed in graphene by several groups
using different techniques, e.g., chemical adsorption,3 thermal
annealing,4 gate-induced M-I transition,5 and percolation-
driven M-I transition in graphene nanoribbons due to inho-
mogeneous electron-hole puddle formation.6

Here we study an AA-stacked bilayer of graphene (AA-
BLG). The purpose of this work is to demonstrate that this
system, which has been successfully fabricated recently,7,8 can
exhibit a M-I transition upon doping. Further, we demonstrate
that the required levels of doping are within current experi-
mental capabilities. Unlike AB-stacked bilayers, the AA-BLG
received very modest theoretical attention.8–13 However, ad-
vances in fabrication of AA-stacked bilayers and multilayers7,8

underscore the need for thorough theoretical investigations.
Tight-binding calculations for AA-BLG9,10 predict that

near the Fermi energy the bilayer has two bands, one electron-
like and one hole-like. These bands have Fermi surfaces,
unlike Fermi points in monolayer graphene and AB-stacked
bilayers. An important feature of the AA-BLG is that the
hole and electron Fermi surfaces coincide. As shown in
Ref. 13, if interactions are included, these degenerate Fermi
surfaces become unstable, and the bilayer turns into an
antiferromagnetic (AFM) insulator with a finite gap. This
electronic instability is strongest when the bands cross at the
Fermi energy. Impurities or doping shift the Fermi level and
suppress the AFM instability.

Superficially, one may expect that the AFM gap � decreases
with doping x and vanishes above some critical value xc.
However, we show that the homogeneously doped state is
unstable with respect to the phase separation into undoped
AFM insulator and doped metal. As the doping grows, the
concentration of the AFM insulator shrinks, while it grows
for the metal. Above a certain threshold x∗, metallic islands
connect into an infinite cluster and the percolation-driven
insulator-metal transition occurs, at which point the sample
becomes metallic.

Here we study the electronic properties of the doped
AA-BLG in the framework of the Hubbard-like model used

in Ref. 13. We determine how the gap � depends on x

in the homogeneous state and find the critical value xc,
where � vanishes. We further show that at small doping the
homogeneous state is unstable because the compressibility of
the system is negative and find the doping range where this
instability arises. The effects of nonzero temperature are also
discussed.

The model. The Hamiltonian for pz electrons of carbon
atoms for the AA-BLG can be written as

H = H0 + Hint − μN̂, (1)

where H0 describes electron hopping, Hint is the electron-
electron interaction, μ is the chemical potential, and N̂ is the
operator of the total electron number in the system. In the
tight-binging approximation

H0 = −t
∑

〈nm〉iσ
a
†
niσ bmiσ

− t0

(∑
nσ

a
†
n1σ an2σ +

∑
mσ

b
†
m1σ bm2σ

)
+ H.c. (2)

Here a
†
niσ and aniσ (b†miσ and bmiσ ) are the creation and

annihilation operators of an electron with spin σ in the
layer i = 1, 2 on the sublattice A (B) at site n ∈ A (m ∈
B). The amplitude t (t0) in Eq. (2) describes the in-plane
(interplane) nearest-neighbor hopping. For calculations we use
the values of the hopping integrals t ≈ 2.57 eV, t0 ≈ 0.36 eV
specific to multilayer AA systems.14 Longer-range hoppings
are neglected because these are small (about or less than
0.1 eV), and we checked that the effects they produce are
negligible (within 1–2%).

The onsite Coulomb interaction can be written as

Hint = U

2

∑
niσ

(
nniAσ − 1

2

) (
nniAσ̄ − 1

2

)

+ U

2

∑
miσ

(
nmiBσ − 1

2

) (
nmiBσ̄ − 1

2

)
, (3)

where nniAσ = a
†
niσ aniσ , nmiBσ = b

†
miσ bmiσ , and σ̄ = −σ . It

is known that the onsite Coulomb interaction in graphene
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FIG. 1. (Color online) The band structure for the homogeneous
phase of the AA-stacked bilayer graphene near the K point; k =
K + δkyey . The dashed lines show the noninteracting single-electron
bands. At half filling these bands intersect with each other at the
Fermi energy μ = 0. Adding interactions opens a gap. The mean
field bands [see Eqs. (7)] are shown by solid lines. With doping,
these bands are filled up to the level μ′ = μ − Ux/2. As a result
of doping, the Fermi surface degeneracy disappears, and we have
two Fermi surface components around each Dirac point. The inset
shows the first Brillouin zone (hexagon) and the reciprocal lattice
unit cell (rhombus) of the AA-BLG. Circles around the K and K′

points correspond to Fermi surfaces of the doped system.

and other carbon systems is rather strong, but the estimates
available in the literature vary considerably,15,16 ranging from
U ∼ t to ∼4t . Because of this uncertainty, we present our
results in the form of U -dependent functions rather than
definite estimates.

Antiferromagnetic state. In the absence of electron-electron
coupling, U = 0, and zero doping (x = 0, which corresponds
to half filling) the AA-BLG band structure is shown in Fig. 1
by dashed lines. Two bands pass through the Fermi energy
level near the Dirac points K = 2π{√3, 1}/(3

√
3a) and K′ =

2π{√3,−1}/(3
√

3a), where a is the in-plane carbon-carbon
distance. The chemical potential is μ = 0, while the Fermi
surfaces are given by the equation |fk| = t0/t , where

fk = 1 + 2 exp (3ikxa/2) cos(kya
√

3/2). (4)

For t0/t 
 1, one can expand the function |fk| near the Dirac
points and demonstrate that the Fermi surface consists of two
circles with radius kr = 2t0/(3ta) around the Dirac cones K
and K′. Upon doping, these Fermi surfaces are transformed
into four circles [see the inset in Fig. 1]. The presence of two
bands with identical Fermi surfaces makes the system unstable
with respect to spontaneous symmetry breaking.

Since the unit cell of AA-BLG consists of four atoms, it is
convenient to introduce the bispinors ψ

†
kσ = (ψ†

kAσ , ψ
†
kBσ ),

with spinor components ψ
†
kAσ = (a†

k1σ , a
†
k2σ ) and ψ

†
kBσ =

e−iϕk (b†k1σ , b
†
k2σ ), where ϕk = arg{fk}. The Hamiltonian H0

in this basis is

Ĥ0k = −

⎛
⎜⎝

0 t0 t |fk| 0
t0 0 0 t |fk|

t |fk| 0 0 t0
0 t |fk| t0 0

⎞
⎟⎠ . (5)

In mean field, the interaction operator Hint, Eq. (3), is
replaced by a single-particle operator which breaks a certain
symmetry of the system. As shown in Ref. 13 the ground
state of our model is G-type AFM (that is, the spins on
any two nearest-neighbor sites are antiparallel), for which the
spin-up and spin-down electron densities are redistributed as
n1A↑ = n2B↑ = n2A↓ = n1B↓ = (1 + x + �n)/2 and n1A↓ =
n2B↓ = n2A↑ = n1B↑ = (1 + x − �n)/2, while the total on-
site electron density n = niaσ + niaσ̄ = 1 + x is the same for
any site. The mean-field interaction Hamiltonian for such
phase is

H MF
int = Ux

2
N̂ + �

∑
k

(ψ†
kA↓σ̂zψkA↓ − ψ

†
kA↑σ̂zψkA↑

− ψ
†
kB↓σ̂zψkB↓ + ψ

†
kB↑σ̂zψkB↑), (6)

where σ̂z is the Pauli matrix and � = U�n/2 is the AFM gap,
which should be found self-consistently.

To find the gap, we solve the corresponding Shrödinger
equation and derive the expressions for four electron bands
Es(k) and eigenvectors v

(s)
iaσk

E
(1,4)
k = ∓

√
�2 + (tζk + t0)2,

(7)

E
(2,3)
k = ∓

√
�2 + (tζk − t0)2,

where ζk = |fk|. In sublattice A for layer 1, the spin-up wave
functions υ

(s)
1A↑k are

υ
(s)
1A↑k = 1

2

[
1 − �/E

(s)
k

]1/2
. (8)

The self-consistent equation for the gap is

n1A↑ = n

2
+ �

U
=

4∑
s=1

∫
dk
VBZ

∣∣υ(s)
1A↑k

∣∣2



(
μ′ − E

(s)
k

)
, (9)

where μ′ = μ − Ux/2, 
 is the Heaviside step function, and
VBZ is the volume of the Brillouin zone. The total number of
electrons (per site) n is related to μ according to

n = 1

2

4∑
s=1

∫
dk
VBZ



(
μ′ − E

(s)
k

)
. (10)

At half-filling, n = 1, x = 0, and μ′ = 0. The lower two
bands are filled while the upper two are empty. Upon electron
doping, x > 0 (hole doping, x < 0), μ′ abruptly changes to the
new value μ′ > � (μ′ < −�). Substituting the wave functions
υ

(s)
1A↑k into Eq. (9), one obtains

1 = U

4t

∫ 3

0
dζ ρ0(ζ )

[
1 − 
(|μ′|/t −

√
δ2 + (ζ + ζ0)2)√

δ2 + (ζ + ζ0)2

+ 1 − 
(|μ′|/t −
√

δ2 + (ζ − ζ0)2)√
δ2 + (ζ − ζ0)2

]
, (11)
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where δ = �/t , ζ0 = t0/t , and ρ0(ζ ) is the dimensionless
density of states ρ0(ζ ) = ∫

dk δ(ζ − ζk)/VBZ. Equation (10)
implies

|x| = 1

2

∫ 3

0
dζ ρ0(ζ )[
(|μ′|/t −

√
δ2 + (ζ + ζ0)2)

+ 
(|μ′|/t −
√

δ2 + (ζ − ζ0)2)] . (12)

By solving Eqs. (11) and (12) we obtain �(x) and μ(x).
This can be done analytically if �0 
 t,t0 (�0 is the gap at zero
doping). If �0 is small, the value of |μ′| ∼ �0 is also small,
and we can omit 
-functions in the first terms in Eqs. (11) and
(12). From these, we derive

2ρ0(ζ0) ln(�0/�) ∼= 2ρ0(ζ0)asinh(δζ/δ),

|x| ∼= ρ0(ζ0)δζ, (13)

where δζ =
√

(μ′)2 − �2/t . By solving Eqs. (13), we obtain

�=�0

√
1−|x|/xc, (14)

μ=�0[sgn (x)−x/2xc]+Ux/2, (15)

where the critical doping xc
∼= �0t0/π

√
3t2 (the analytical

expression for �0 in the limit �0 
 t,t0 was found in
Ref. 13). We see from Eq. (14) that the value of the
gap decreases with doping, and � = 0, if |x| � xc. The
curves �(x) are symmetric for electron (x > 0) and hole
(x < 0) doping. Next-nearest-neighbor hopping breaks this
symmetry. However, for the parameters characteristic of
graphene systems, the asymmetry of �(x) does not exceed
1–2%. The critical doping xc as function of U is shown in
Fig. 2. Strictly speaking, Eqs. (14) and (15) are not valid for
�0 � t,t0. However, numerical calculations demonstrate that
Eq. (14) holds true with very high accuracy for any ratio of
�0/t .

FIG. 2. (Color online) (x, U ) phase diagram. Solid (red) lines
show the boundary of the uniform AFM state xc. For large U , our
mean-field calculations are not quantitatively valid. To emphasize
this, the dotted lines plot xc for U > 9 eV. The dashed (blue) lines
show the boundary of the phase-separated state. The inset shows the
magnified phase diagram for 5 eV < U < 6 eV.

FIG. 3. (Color online) Chemical potential μ vs doping x for the
homogeneous state, U = 7 eV [solid (blue) line]. The horizontal (red)
line shows the Maxwell construction, shaded areas are equal: S1 = S2.

In addition to the usual AFM order parameter, more exotic
possibilities are considered in the literature. For example,
doping suppresses the AFM gap, inducing a canted state,17

in which the angle between the magnetization vectors in
different magnetic sublattices differs from 180◦. However,
our direct numerical calculations of the free energy show that
such canted state is unstable for any doping. Furthermore, the
doped AA-BLG is a typical system with imperfect nesting
and, therefore, a helical AFM state can be induced in it.18 This
possibility is analyzed below.

Phase separation and metal-insulator transition. The
chemical potential μ versus doping obtained from Eqs. (11)
and (12) is shown in Fig. 3. Note that ∂μ/∂x < 0, if |x| is small
(this result does not depend on the sign of x). In particular, from
Eq. (15) it follows that ∂μ/∂x < 0, if U/t < π

√
3t/t0, which

is valid for our choice of parameters. Thus, the compressibility
κ ∼ ∂x/∂μ is negative, indicating the instability of the ho-
mogeneous phase toward phase separation upon doping. From
Fig. 3, there are two stable phases with different doping: x0 = 0
and x1 > 0. The value of x1 can be found using the Maxwell
construction,19 according to which the shaded areas in Fig. 3
are equal: S1 = S2. The calculated values of x1 are shown by
the (blue) dashed lines in Fig. 2 for different Us. For the case
shown in Fig. 3, x1 < xc, and the uniform system separates into
AFM insulator and AFM metal. For smaller U , the situation
changes: x1 > xc, and the coexisting phases are AFM insulator
and paramagnetic (PM) metal (see the inset in Fig. 2).

If the doped system were to remain uniform, even small
doping would cause a transition from the insulating magnetic
phase to a metallic phase, magnetic or not. However, the
instability of the uniform phase and the ensuing phase
separation delays the transition to the conducting phase until a
finite critical concentration of dopants is reached. Because of
this phase separation, the doped charge segregates into clusters
inside the insulating AFM matrix. The precise structure of
such phase depends on a variety of factors: impurities and
defects in the sample or the substrate, the long-range Coulomb
repulsion that arises due to local charge-neutrality breaking,20

surface tension at the phase boundaries,20,21 and electron-
phonon interactions.22 Charge conservation implies that the
concentration p of the metallic phase is p = |x|/x1. The
percolative M-I transition occurs if p exceeds some threshold
value p∗, which is usually about 0.5 for two-dimensional (2D)
systems, and the corresponding threshold value of doping can
be estimated as |x∗| ∼ 0.5 x1.

121401-3



RAPID COMMUNICATIONS

SBOYCHAKOV, RAKHMANOV, ROZHKOV, AND NORI PHYSICAL REVIEW B 87, 121401(R) (2013)

Discussion. The most direct and controllable way to switch
AA-BLG from AFM insulator to metal is doping the system
with electron or holes, which could be attained by using appro-
priate dopants (e.g., NO2,3 Ca, K23), choosing the substrate and
applying a gate voltage,24,25 or combining these factors. Our
analysis predicts that for interaction and hopping parameters
values typical for graphene systems, phase separation exists
in the doping range 0 < x < x1, where x1 ∼ 0.5–1.5%. Thus,
the M-I transition occurs at x∗ ∼ 0.25–0.75%. For graphene
systems, the doping levels ∼1% are within the reach of current
experimental techniques such as the adsorption of NO2 gas
molecules.3,26 Moreover, even higher dopings, necessary to
reach the van Hove singularity, were achieved.23 These results
suggest that the M-I transition we discuss in this paper can be
realized experimentally.

As mentioned above, we did not include the helical
AFM state in our considerations. Such simplification may be
justified. Indeed, the helical AFM phase is mathematically
equivalent to the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO)
state in superconductors,27,28 which is very sensitive to
disorder29 and experimentally difficult to observe. Further,
even if the helical state survives disorder, the phase separation
and the M-I transition remain nonetheless: In such a situation
the electrons segregate into insulating commensurate AFM
and metallic helical phases28,30 with the critical concentration
x∗ being slightly different from the values estimated above. At
the same time, the mathematical description18 of the helical
AFM is fairly involved and cumbersome. Thus, we believe
that at the present stage of this research our simplification of
the M-I transition is warranted.

The above calculations are restricted to the mean field ap-
proximation. To what extent does the mean field theory offer a
reliable description of the system? This question was discussed
in Ref. 31 for the usual BCS model and for the BCS-like models
with finite spin polarization in Refs. 32–34. It is generally
agreed that for weak interaction the mean field calculations
are accurate in these situations. In the intermediate-coupling

regime the mean field results remain qualitatively correct.
Since the superconducting systems investigated in these papers
are mathematically equivalent to the AFM, both doped and
undoped, we may conclude that our results are at least
qualitatively correct even for moderately high U . Currently,
numerical many-body approaches (functional renormalization
group35,36 and Monte Carlo35,37) demonstrated their usefulness
for studies of monolayer and bilayer graphene. These methods
may be used as alternatives to the mean field approach.

If we want to generalize the formalism for finite T , we must
remember that in 2D at T > 0 no long-range AFM order exists.
However, the short-range AFM order survives up to tempera-
tures T ∗(x) ∼ �(x). Indeed, following the approach described
in Refs. 13,38–40, we obtain the estimate of the crossover
temperature in our model T ∗(x) ∼ TMF(x) ≈ 0.6�(x), where
TMF(x) is the mean-field transition temperature.40 Thus, the
crossover temperature is higher than 100 K even if U is as
small as 5 eV.

The phase separation can also be destroyed if the tempera-
ture exceeds a certain threshold value TPS. To calculate TPS we
have to replace 1 − 
(μ′ − Ek) by f (−Ek − μ′) − f (Ek −
μ′) in Eq. (11) and 
-functions by the Fermi distributions in
Eq. (12) [f (ε) is the Fermi distribution function]. Then, we
derive μ = μ(x,T ) as a function of doping and temperature.
If T > TPS, the function μ(x,T ) increases monotonously
with x. Our numerical analysis shows that TPS � 100 K, if
U > 5.5 eV.

In conclusion, antiferromagnetic order, a metal-insulator
transition, and phase separation are predicted for the doped
AA-stacked graphene bilayer. These effects can be observed
at temperatures up to 100 K or even higher.
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J. González, and E. Rotenberg, Phys. Rev. Lett. 104, 136803 (2010).

24T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V.
Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S.
Novoselov, Nat. Commun. 2, 458 (2011).

25S. Kim, I. Jo, D. C. Dillen, D. A. Ferrer, B. Fallahazad, Z. Yao,
S. K. Banerjee, and E. Tutuc, Phys. Rev. Lett. 108, 116404
(2012).

26Y.-C. Lin, C.-Y. Lin, and P.-W. Chiu, Appl. Phys. Lett. 96, 133110
(2010).

27P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964); A. I. Larkin
and Yu. N. Ovchinnikov, Sov. Phys. JETP 20, 762 (1965); L. G.
Aslamazov, ibid. 28, 773 (1969).

28D. E. Sheehy and L. Radzihovsky, Ann. Phys. 322, 1790 (2007).
29S. Takada, Prog. Theor. Phys. 43, 27 (1970).
30A. L. Rakhmanov, A. V. Rozhkov, A. O. Sboychakov, and F. Nori,

Phys. Rev. B 87, 075128 (2013).
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