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Vibrationally mediated transport in molecular transistors
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We investigate the steady-state electronic transport through a suspended dimer molecule coupled to leads. When
strongly coupled to a vibrational mode, the electron transport is enhanced at the phonon resonant frequency and
higher order resonances. The temperature and bias determine the nature of the phonon-assisted resonances,
with clear absorption and emission peaks. The strong coupling also induces a Frank-Condon-like blockade,
suppressing the current between the resonances. We compare an analytical polaron transformation method to
two exact numerical methods: the Hierarchy equations of motion and an exact diagonalization in the Fock basis.
In the steady state, our two numerical results are an exact match and qualitatively reflect the main features of the
polaron treatment. Our results indicate the possibility of a new type of molecular transistor or sensor where the
current can be extremely sensitive to small changes in the energies of the electronic states in the dimer.
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I. INTRODUCTION

Electron transport through real, and artificial, suspended
molecular systems has revealed a rich tapestry of physical
effects.1–8 Nanomechanical systems offer the promise of
observing quantum effects in massive objects,9–11 which can
be cooled, driven, measured, and manipulated using electron
transport.7,12–21 Single-molecule electronics offers similar
promises, with the benefit of stronger coupling of vibrational
and oscillatory modes to the transport process and a large
range of practical applications.22–34 Current efforts on single-
molecule electronics include the exploration of the electronic
level structure and its effect on electronic transport together
with the development of electronic devices and applications.35

Since the performance of molecular electronic devices
depends on electron transfer between molecules, it ultimately
requires a good understanding of coherent transport and
dynamics. Molecular electronics has a variety of predecessors
in chemistry and chemical reactions, known as electron-
transfer reactions.36,37 One particular example, the donor-
bridge-acceptor (DBA) system, has been studied for a long
time and used to probe the mechanisms of charge transfer.38

In this system, the donor molecule donates an electron to
the acceptor via the third nonrigid or rigid molecule called
a “bridge” (i.e., redox reaction). In the laboratory it is possible
to construct a molecular electronics device by attaching elec-
trodes to the donor and acceptor molecules of a mixed-valence
dimer and apply a bias voltage to cause electron transport.
Aviram and Ratner39 made the first metal-DBA-metal system
in analogy to p-n junctions. The transfer rate of incoherent
transfer can be explained within the well-known Förster and
Dexter theory,40–43 and until recently, coherent transport had
been regarded to play only a small role in charge-transfer
dynamics of molecules. However, this view has been changed
in the last decade and some experiments indicate that coherent
transport is indeed important.44,45

In a slightly different context, recent experiments in pho-
tosynthetic complexes have shown that excitonic coherence
lasts surprisingly long at nonzero temperatures: up to 300 fs at
room temperature.46–48 It has recently been proposed49,50 that

the vibrational modes in the protein environment may also
play a role in the observed oscillations, long coherence time,
and high transport efficiency. Therefore, an understanding of
the intricacies of both coherent electron transport and coherent
exciton transport transport in molecules, coupled to vibrational
modes, is vital.38,46,51–57

In this paper, we examine a model of electron transport
through a two-site system coupled linearly to a single vibra-
tional mode. Motivated by recent progress in single-molecule
experiments, we study the case where the electron-phonon
coupling can be strong (non-perturbative) and where the
phonons can have a lifetime much longer than the electronic
transport process. Throughout we use the language of a single
mixed-valence dimer molecule coupled to electronic leads.
One electrode (source) is attached to one site of a dimer
molecule (donor) and another electrode (drain) is attached
to the other site (acceptor). This system is analogous to the
DBA system, but instead of incoherent transport, we include
the possibility of coherent electron transport and analyze
steady-state dynamics and current-noise power spectra.

We begin with a semianalytical treatment based on a
polaron transform, analogous to a single-mode version of the
traditional “noninteracting blip approximation”(NIBA),58,59

which can give us some insight on a regime not easily
accessible with numerical methods (nonequilibrium transport,
undamped vibrational mode, and strong coupling). Such an
approach has been used elsewhere to study the transport
through single and double quantum dots,13,14,60,61 photosyn-
thetic complexes62 (and similar, though slightly different,
techniques were used in),49,50,63 and molecules. Our derivation
follows in the same vein as these earlier works. We follow
this with two exact numerical treatments, one based on the
hierarchical equations of motion64,65 with a Lorentz bath; the
other, an exact diagonalization of the Hamiltonian in the Fock
basis.

Using these various methods we show that under certain
conditions the vibrational mode coupling can strongly enhance
electron transport in a selective manner, suggesting the
possibility of using vibrationally assisted electronic transitions
as a highly sensitive transistor.
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II. HAMILTONIAN

Consider a dimer molecule [denoted henceforth the left (L)
and right (R) sites] with each site coupled to a lead (fermionic
reservoir) so that the dimer functions as a bridge. A vibrational
mode, e.g., a flexural or dilational mode of the molecule (or
bridge in the D-B-A system), is coupled to the electrons in the
left and right sites of the dimer. The idea of strong coupling to
one vibrational mode is not far-fetched:33,61 Such coupling
has been shown experimentally in some nano–electronics
devices.66–70

The Hamiltonian of this system, which is analogous to the
Hubbard-Peierls model in the large on-site repulsion limit and
with spin suppressed, can be written as

H = H0 + HT + HV ,

where

H0 = Hmol + Hosc + Hleads,

HT = Htunn + Hcouple, (1)

HV = VLa
†
LdS + VRd

†
DaR + VLd

†
SaL + VRa

†
RdD, (2)

Hmol = 1
2εLa

†
LaL + 1

2εRa
†
RaR, (3)

Hosc = h̄ωmb†b, (4)

Hleads =
∑

k

(
h̄ωS

k d
†
s,kds,k + h̄ωD

k d
†
D,kdD,k

)
, (5)

Htunn = Tc(a†
LaR + a

†
RaL), (6)

Hcouple = gL(b† + b)a†
LaL − gR(b† + b)a†

RaR. (7)

Here H0 is the free Hamiltonian of the dimer Hmol, the
oscillator Hosc, and the source and drain reservoirs Hleads

attached to the left (right) sites, with resonant frequencies
ωL, ωR , ωm, ωS

k , and ωD
k , respectively. Also, Tc is the

transmission coefficient, and gL(R) is the electron-vibrational-
mode coupling coefficient. The annihilation (creation) op-
erators for the electron in the molecules are aL(R)(a

†
L(R));

for the lead reservoirs, aS(D)(a
†
S(D)); and for the oscilla-

tor, b(b†). The interaction Hamiltonian has three parts:
the lead electrode-molecule coupling HV , electron tunnel-
ing between the two sites in the dimer molecule Htunn,
and linear coupling between the dimer and the vibrational
mode Hcouple. The coupling between the electrons and the
vibrational mode effectively modifies the frequency of the
electrons on the left and right sites of the molecule as
ωL(R) → ωeff

L(R), where ωeff
L(R) = ωL(R) + gL(R)(b† + b), while

the tunneling barrier is unaffected by the coupling.
Here, for brevity, we adopt the notation

s ≡ a
†
LaR and s† ≡ a

†
RaL. (8)

In the limit of large Coulomb repulsion to double occupation (a
term not explicitly included in the Hamiltonian for simplicity),
only a single electron occupies the entire molecule dimer at
once. For the moment, we retain the notation for the general
case, but soon we will explicitly use this assumption.

The above Hamiltonian is the most general and exact
form. To find quasianalytical results, this Hamiltonian can be
transformed using the polaron transformation to eliminate the

interaction term, but it in turn modifies the tunneling term HT ,

HT = Tc(s†X† + sX), (9)

where

X ≡ exp[z(b̂ − b̂†)], (10)

X† ≡ exp[−z(b̂ − b̂†),] (11)

with z = g/ωm, g = gL = gR . Note that we have ignored a
constant energy shift induced by this transformation.

The dynamics of the system can be analyzed through the
master equation, where the coherent electron transport through
the molecules is associated with the off-diagonal operators s,
s†. In the next section we explicitly give details of the master
equation.

III. MASTER EQUATION

To obtain the master equation, we switch to the interaction
picture. In this picture a

†
LaL and a

†
RaR are unchanged since

they commute with the noninteracting Hamiltonian:

a
†
LaL(t) = nL(t) = nL, (12)

a
†
RaR(t) = nR(t) = nR. (13)

For the term HT , we define new operators that
group the electron tunneling terms and vibrational mode
operators,

s̃ (t) = p exp(iεt)Xt, (14)

s̃†(t) = p† exp(−iεt)X†
t , (15)

where ε ≡ εL − εR . Then

HT (t) = Tc[s̃(t) + s̃†(t)]. (16)

In the interaction picture, the equation of motion is

dρ (t)

dt
= − i

h̄
[Hint (t) ,ρ (t)]

= − i

h̄
[HT (t) + HV (t) ,ρ (t)] , (17)

and the density matrix can be obtained by iterations. By
keeping terms to second order in the couplings to the the
source and drain, and making the standard Born-Markov
approximation, the density matrix ρ (t) can be approxi-
mated as ρ (t) � ρDO

0 (t) ⊗ ρres
0 . Then, after tracing out the

leads, the master equation can be written in the Lindblad
form,

dρDO (t)

dt
= − i

h̄
[HT (t),ρDO]

+ �L

2
(1 − fS)D[a†

L] + �L

2
fSD[aL]

+ �R

2
(1 − fD)D[a†

R] + �R

2
fDD[aR], (18)

where

D[a†
i ] ≡ a

†
i aiρ

DO (t) − 2aiρ
DO (t) a

†
i + ρDO (t) a

†
i ai, (19)

D[ai] ≡ aia
†
i ρ

DO (t) − 2a
†
i ρ

DO (t) ai + ρDO (t) aia
†
i , (20)

and fS and fD are the Fermi distribution functions for the
left and right reservoirs, respectively, fS = [eh̄β(εL−μL) + 1]−1,

075422-2



VIBRATIONALLY MEDIATED TRANSPORT IN MOLECULAR . . . PHYSICAL REVIEW B 87, 075422 (2013)

and fD = [eh̄β(εR−μR) + 1]−1. In all the subsequent results we
choose an infinite bias so that fs = 1, fd = 0. Since we are
interested in the strong-coupling limit, one may also argue that
the perturbative coupling to the leads should be derived after
diagonalization of the combined electronic/vibrational system.
This is an interesting avenue for future work.

IV. EXPECTATION VALUES

At this point the molecule-vibrational mode coupling is
still described exactly. To achieve an analytical solution it is
convenient to rewrite the master equation as a closed set of
equations for the expectation values of the various molecule
operators, following the formulation used by Brandes61 to
describe quantum dots coupled to a bath of oscillators. To
do so we need the following commutators:

[nL(t),HT (t ′)] = Tc[s̃(t) − s̃† (t)], (21)

[s̃(t),HT (t ′)] = Tce
iε(t−t ′){nLX

†
t ′Xt − nRX

†
t ′Xt }, (22)

[s̃† (t) ,HT (t ′)] = Tce
iε(t−t ′){nRXt ′X

†
t − nLXt ′X

†
t }. (23)

Using these we write the following coupled integral equations
for the expectation values of n̂L, n̂R , s̃, s̃†:

〈n̂L〉t − 〈n̂L〉0 = − i

h̄

∫ t

0
dt ′[Tc(〈s̃(t)〉 − 〈s̃†(t)〉)

+�L〈nL〉 − �LfS ], (24)

〈n̂R〉t − 〈n̂R〉0 = i

h̄

∫ t

0
dt ′[Tc(〈s̃(t)〉 − 〈s̃†(t)〉)

+�R〈nR〉 − �RfD], (25)

〈s̃〉t − 〈s̃〉0 = − i

h̄

∫ t

0
dt ′eiε(t−t ′)Tc

×{〈nLXtX
†
t ′ 〉t ′ − 〈nRX

†
t ′Xt 〉t ′ }

+ (�L + �R)

2

∫ t

0
dt ′eiε(t−t ′)〈s̃(t ′)X†

t ′Xt 〉,
(26)

〈s̃†〉t − 〈s̃†〉0 = − i

h̄

∫ t

0
dt ′e−iε(t−t ′)Tc

×{〈nRX
†
t Xt ′ 〉 − 〈nLXt ′X

†
t 〉}

+ (�L + �R)

2

∫ t

0
dt ′e−iε(t−t ′)〈Xt ′X

†
t s̃

†(t ′)〉.
(27)

This is still exact, but intractable. To make progress one
assumes that the molecule operators and the oscillator ones
are separable, so 〈nLXtX

†
t ′ 〉t ′ can be written as

〈nLXtX
†
t ′ 〉t ′ = 〈nL〉(1 − e−βωB )〈e−nβωB XtX

†
t ′ 〉

≡ 〈nL〉F , (28)

with β = kBT . We have also assumed that the vibrational
mode is in equilibrium due to contact with the thermal bath at
temperature T . The other properties of the mode are ensconced
in the two-time boson correlation functions F . In Appendix A
we give an analytical form for F in the limit of an undamped
single mode. Then one can, in principle, solve the above
equations of motion for an arbitrary molecule-vibron coupling

strength (which includes non-Markovian properties of this
interaction).

The polaron transformation method is powerful in that it
allows us to gain simple analytical forms in some cases, and
in general “plug-in” arbitrary bath correlation functions for F ,
although we need to be mindful of the regime where the method
is valid. Some works specify that it gives qualitatively correct
results for small Tc, while a comparison to the NIBA58 suggests
that it is very accurate for ε = 0 or ε 	 Tc,g. For the case of
a single mode, which we consider here, understanding when
the results are accurate can be challenging, as we discuss in
the next section. Generally, we do find them to be qualitatively
correct, though additional back-action effects arise in the exact
numerical treatments.

Finally, before showing explicit results, we make an
additional assumption. The above equations allow for double-
electron occupation of the dimer molecule. Allowing such
occupation is interesting but prevents us from obtaining ana-
lytical results. Thus, as mentioned earlier, we impose another
condition equivalent to the notion of Coulomb blockade in
quantum dots. This is valid if the molecule is small and the
bias not too large (i.e., this Coulomb repulsion is the largest
energy scale). In this case only one electron can inhabit the
dimer at a time and sequential tunneling occurs.

Rather than explicitly including this effect with a nonlinear
repulsion against double-site occupation in the Hamiltonian,
we can simply replace the fermionic operators with projectors
onto the single-electron states,

nL = |L〉〈L|, nR = |R〉〈R|, (29)

with

nL + nR + |0〉〈0| = 1, (30)

where |0〉〈0| is the no-electron state. Similarly, s = |L〉〈R|,
s† = |R〉〈L|. The combinations of operators in the Lindblad
terms describing the coupling to the leads and Eqs. [(24)–
(27)] are subtly altered by this change, to preserve the reduced
Hilbert space. We do not give explicit details here, as the
derivation is equivalent to the previously studied model of
a double quantum dot coupled to a phonon bath,61,71 except
where the single-mode-correlation function is replaced by the
spectral function for a particular bath model. For completeness
we give the altered equations of motion in Appendix B. It is
these equations of motion, under this additional assumption,
which give us the results in the next section.

V. RESULTS

A. Current

The expectation value of the current from the source to the
left molecule is IL (t) = −e�L (1 − fS) 〈nL〉, that from the
right molecule to the drain is IR (t) = −e�R (1 − fD) 〈nR〉,
and that from the left molecule to the right molecule is IL (t) =
−eTc(〈s̃ (t)〉 − 〈s̃† (t)〉). In the steady state these three currents
are the same and can easily be evaluated from the expectation
values of the molecule operators described above.

The most straightforward method to solve such equations
is to explicitly Laplace transform the equations of motion first
and then find the coefficient of the Laplace parameter 1/z as
z → 0 in the Laurent expansion of the expectation values.71 We
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FIG. 1. (Color online) (Top) The current IR/e, as given by the
polaron transformed results, through the molecule as a function of
the molecular energy bias ε/ωm = (εL − εR)/ωm. The solid (red) line
represents the uncoupled case, while the dashed lines are for different
magnitudes of the coupling to the vibrational mode: z = g/ωm

[z = 0.1, long-dashed (black) line; z = 0.5, short-dashed (blue) line,
with a thermal occupation of the vibrational mode of N = 0.05].
Under this polaron transformation assumption, and for a completely
undamped vibrational mode, we see extremely strong vibrational
emission resonances in the current. (Bottom) The current IR/e for
no coupling [solid (red) line], for coupling z = g/ωm = 0.3, and for
several choices of the thermal occupation of the vibrational mode
[N = 0.01, long-dashed (black) line; N = 1, short-dashed (blue)
line]. As we raise the thermal temperature of the mode, absorption
resonances occur, and the linewidth of the emission resonances
becomes broadened. In both plots we set �L = �R = 0.1, Tc = 0.1,
and ωm = 1.

can also use the full z-dependent forms to find the current-noise
spectrum, as outlined in Sec. V B. As an example, we explicitly
solve here for the current using the F function described in
Appendix A. As discussed earlier, this allows us to investigate
the unusual limit of strong coupling of the transport process
to an undamped single mode. Note that, in all of the following
results, we set h̄ = 1, e = 1, and typically ωm = 1, except in
the noise power results.

The top plot in Fig. 1 shows the current as a function of
the energy difference between the left and the right molecules
(scaled with the resonant frequency of the vibrational mode)
for various vibrational mode coupling strengths [z = 0.1,
long-dashed (black) line; z = 0.5, short-dashed (blue) line]
and without the mode coupling [solid (red) line] with a thermal
occupation of the vibrational mode of N = 0.05. The bottom
plot in Fig. 1 shows the current for different temperatures

FIG. 2. (Color online) (Top) The current IR/e through the
molecule as a function of the molecular energy bias ε/ωm and vibronic
coupling strength z = g/ωm, with thermal occupation N = 0.05.
(Bottom) The current IR/e for coupling z = g/ωm = 1 as a function
of ε and thermal occupation N . In both plots, white indicates a
large current and purple represents zero current, and these results are
from the polaron treatment and, again, for �L = �R = 0.1, Tc = 0.1,
ωm = 1.

(N = 0.01, long-dashed (black) line; N = 1, short-dashed
(blue) line] while keeping the coupling strength constant at
z = 0.3.

When ε is much larger than the tunnel coupling, the elec-
trons cannot tunnel between the left and the right molecules
and the current approaches 0. With the vibrational mode
coupling “on”, the current peaks when the energy bias ε equals
the vibrational mode resonant frequency and its multiples
(as also observed in the case of quantum dots coupled
to a single-phonon mode).13 Positive ε spikes correspond
to phonon-emission-assisted transport and negative ε spikes
correspond to phonon absorption. In Fig. 2 we see that
increasing the coupling strength narrows the lower emission
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peaks and broadens the higher peaks. The bottom plot in
Fig. 2 shows how raising the temperature broadens and raises
the absorption peaks. In addition, between peaks there is a
strong suppression of the current, akin to the Franck-Condon
blockade. If we directly observe, around the first resonance,
the steady-state occupations of the various states, we find that
this blockade effect strongly localizes the electrons in the left
molecule.

The amplitudes of the absorption peaks strongly depend
on the temperature. Expanding the expression for the current
around the first absorption resonance, we find

I abs
max =

(
�−1

L + �R

4T 2
c

+ 1 + 2N

�R(1 + N )

)−1

. (31)

In contrast, the height of the emission peaks is only weakly
dependent on the thermal occupation, and exactly at the
resonant point, the maximum is not dependent on the coupling
strength or the order, ε = nω, of the resonance. For low
temperatures the height of the resonance is proportional to
the zero-bias current:

I emi
max = Iε=0(1 + Iε=0), (32)

Iε=0 = 4T 2
c

�R + 4T 2
c

(
2�−1

R + �−1
L

) . (33)

However, the width around the resonance is strongly dependent
on both the coupling strength and the order nω of the resonance
peak. In addition, the properties of each resonance peak are
almost entirely defined by the appropriate term retained in the
sum in Eq. (50). Thus, overall, we can say that in between
resonances there is a strong suppression of the current due to
the strong coupling to the vibrational mode, and exactly on
resonance (for emission) the transport channel is completely
transparent. This represents a unique kind of vibrationally
mediated transistor, where the transport can be exquisitely
sensitive to small changes in the energies of the electronic
states in the dimer.

The fact that the height of the peaks is independent of the
coupling strength is surprising. Under exactly what regime are
these results valid? Recall that we made two approximations
in the derivation; we assumed that the electronic and bosonic
operators were separable and that the bosonic correlation
functions were entirely described by their thermal equilibrium
state, so that

〈nLXtX
†
t ′ 〉t ′ = 〈nL〉(1 − e−βωB )〈e−nβωB XtX

†
t ′ 〉. (34)

This implies a neglect of the back-action onto the single-mode
dynamics. In addition, we assumed that the dynamics of the
bosonic system were not damped (though this can be included
via numerical evaluations of the correlation function). These
two approximations can be interpreted in the following way:
that we have coupled the electron transport to a semiclassical
oscillator that is capable of emitting and absorbing energy at
very specific frequencies. The fact that we neglect back-action
does indicate that a quantitative difference should arise from
the exact solution. In the final section we compare these results
to two exact numerical models. In addition, as mentioned
earlier, the set of approximations made here is, at least in the
many-mode case, formally equivalent to the noninteracting
blip approximation.58,59

B. Noise spectrum

The current-noise power spectral density is a useful and
easy way, with this formalism, to gain some insight into
the transient dynamics. The current-noise power has three
components: particle currents through the left molecule SL (ω),
those through the right molecule SR (ω) and the charge-noise
spectrum SCN (ω):72

S (ω) = α2SL (ω) + β2SR (ω) − αβω2SCN (ω) . (35)

The coefficients α and β, with α + β = 1, depend on the
capacitances between junctions and the molecule. Here we
focus on the contribution from the right particle current, which
can dominate if β 	 α. This contribution can be obtained from
the MacDonald formula72,73 and

SR(ω) = 2ωe2
∫ ∞

0
dt sin(ωt)

d

dt
[〈n2(t)〉 − (t〈I 〉2)]

= 2eI {L〈n̂i(t),n̂j (t + τ )iω〉
+L〈n̂i(t),n̂j (t + τ )〉−iω}. (36)

The steady state of SR (ω) can be calculated as

SR (ω) = 2eI {1 + �R [n̂R (−iω) + n̂R (iω)]} . (37)

The frequency-dependent n̂R (iω) is again easily extracted
from the Laplace transform of Eqs. (24) and (25). However, as
noted in Ref. 61 the validity of the noise spectrum formulation
with the polaron transformation treatment is ambiguous and
it can easily produce nonphysical results. Figure 3 show
the spectral density with both no coupling [solid (red) line]
and weak coupling for two different vibrational frequencies
ωm [ωm = 1, long-dashed (black) line; ωm = 2, long-dashed
(blue) line] for Tc = 0.2, �L = �R = 0.1, and N = 0.05.
There is a clear large resonance from the bare Rabi oscillations
of the electron tunneling between molecules at ω = 2Tc = 0.4,
as well as additional resonances at ω = ωm.

FIG. 3. (Color online) Current-noise power Fano factor FR (ω) =
SR (ω) /2eIR , for �L = �R = 0.1, Tc = 0.1, z = 0, 0.3, and ωm =
1, 2, and N = 0.05. There are two resonances, ω = 2Tc and ω = ωm,
as well as an additional higher resonance at 2ωm. The latter two
resonances are indicated by the two large (blue) circles.
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VI. NUMERICAL COMPARISON: EXACT SOLUTION
AND THE HIERARCHY EQUATION

For a small thermal occupation N and a reasonable
coupling strength z and by the inclusion of damping of the
vibrational mode (or an effective multimode environment),
we can solve the molecule-vibration coupling exactly with a
variety of different numerical approaches. Here we use the
Hierarchy equation of motion for a Lorentz bath spectral
density recently introduced by Ma et al.64 Essentially, we take
our original equation of motion but write the interaction with
the vibrational mode as a bath of oscillators. We then assume
that this bath has a Lorentz spectrum,

J (ω) = 1

π

λγ

(ω − ωm)2 + γ 2
, (38)

where λ is equal to the square of the molecule-vibron coupling
strength λ = g2, ωm is the fundamental frequency of the
vibronic excitation, and γ is the broadening or damping of the
vibronic mode. We then follow the steps in Ref. 64 to reach
the following hierarchical equation of motion (again setting
h̄ = 1):

∂

∂t
ρ�n(t) = −(L + n · μ)ρ�n(t) − i

2∑
k=1

V ×ρ�n+�ek
(t)

− i
λ

2

2∑
k=1

nk[V × + (−1)kV 0]ρ�n−�ek
(t). (39)

The superoperator notation introduced in this equation is
V ×� = [V,�] and V 0� = {V,�}, where V is the electronic
operator that describes the coupling to the Lorentz bath, which
in this case is V = nL − nR . Here, �n is a two-dimensional
index with positive-integer elements identifying both the true
system density matrix ρ(0,0) and the auxiliary operators which
encode the effect of the bath ρ(>0,>0). The other vectors are de-
fined as �e1 = (1,0), �e2 = (0,1), and �μ = (γ − iω0,γ + iω0).
L is the superoperator describing the coherent and incoherent
dynamics of the molecule transport. Note that, again, here
we assume a large double-occupation repulsion (Coulomb
blockade), so that the electronic and transport properties are
simply described by the single-electron-occupation projectors,
nL = |L〉〈L|, nR = |R〉〈R|, s = |L〉〈R|, and

L[�] = −i

[
ε

2
(nL − nR) + Tc(s + s†), �

]

− �L

2
D [SL] − �R

2
D[S†

R], (40)

where SL = |0〉〈L|, SR = |0〉〈R|, and D is as defined in
Eqs. (19) and (20).

The tier of the hierarchy in this method must be truncated
at some reasonable value, �n = (Nc,Nc). Typically this is
done by increasing Nc until convergence is found. If λ is
increased or γ is decreased, the Nc necessary for convergence
rises (representing the increased occupation of the bath and
the increase in the associated degrees of freedom). The
hierarchical equations of motion are solved by setting ρ(0,0) to
the desired molecule initial state, setting all auxiliary density
matrices to zero, ρ(>0,>0) = 0, and employing direct numerical
integration. Here we are primarily interested in steady-state
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FIG. 4. (Color online) (Top) The current IR/e as given by the
exact numerical treatment for z = 0.3. The solid (red) curve is
for γb = 0.005 and the dashed (blue) curve is for γb = 0.0025.
We find that as we reduce the vibrational mode, damping current
qualitatively behaves like the polaron treatment results. However,
this is an additional overall reduction in magnitude not predicted
by the polaron results. (Bottom) The current IR/e as a function of
damping for ε = ωm, for three values of coupling strength. We see
that the three curves have similar maxima but are suppressed when
γb is reduced (the z = 0.1 curve is also suppressed for γb < 0.001).

results so we integrate until the system probabilities become
stationary. The steady state can also be found by finding
the null vector of the matrix defining these equations of
motion.

To check the validity of this method we also directly
diagonalize the equation of motion (without the polaron
transform and with an additional Lindblad damping of the
vibrational mode with rate γb = γ /2) in the Fock basis and
integrate the resulting coupled equations of motion. We find
that, given convergence, the results for the two numerical
methods in the steady state match exactly. Comparing to the
polaron results we see some similarities and some differences.
In the top plot in Fig. 4 we see that the numerics, like
the polaron treatment, predict equal height emission peaks
for the different resonances as γb becomes small. However,
as γb is decreased further there is also a reduction in the
overall current magnitude. This is an additional localization
of the electron due to the strong coupling to the vibration not
captured by the polaron treatment. This phenomenon is more
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clearly shown in the bottom plot in Fig. 4, where we show
the current versus the vibrational mode damping at the first
resonance peak, ε = ωm. We see that for all coupling strengths
there is a common maxima following by a suppression of the
current as γb is reduced. This indicates that, for the purpose
of current enhancement, there is an optimal finite vibrational
mode damping.

In addition, the back-action lifts the off-resonance blockade
seen in the polaron treatment, resulting in a finite-leakage
current. For the parameters we investigate here, this does not
strongly affect the notion of using this kind of device as a
sensitive transistor because the contrast in the current between
on- and off-resonance remains high. However, in practice
there may also be additional mechanisms which decrease
this contrast. Possibilities include cotunneling and dissipation
channels, which may mask the resonance features.

VII. CONCLUSION

In conclusion, we have analyzed the properties of co-
herent electron transport through a dimer that is strongly
coupled to a vibrational mode. When the energy difference
between the electronic states in the two sites of the dimer is
larger than the tunneling coupling, the current is suppressed.
On the other hand, a semianalytical polaron treatment sug-
gests that, when this energy difference is near the vibra-
tional resonant frequency, an enhancement of the electron
transport appears as extremely sharp and equal-height cur-
rent resonances. This strong coupling also induces Frank-
Condon blockade, suppressing the current between the res-
onances. The vibrational mode temperature determines the
nature of the phonon-assisted transport. At low temper-
atures, phonon-emission-assisted electron transport is the
dominant feature. As the temperature is increased, phonon-
absorption-assisted electron transport also starts to play
a role.

We also examined two exact numerical treatments of the
same system. These two treatments were found to be identical
in the steady state and qualitatively agreed with the polaron
treatment. In addition, these results suggest that an additional
localization or current suppression mechanism appears for
very low vibrational mode damping, and thus there exists an
optimal finite damping.

Our investigation is primarily motivated by studies of
electron transport through single molecules. However, our
analysis is also applicable to artificial systems, in particular,
quantum dots in carbon nanotubes, where strong coupling can
occur. The connection to large systems like doubly clamped
semiconductor beams and cantilevers is more tenuous, as in
those cases we expect the coupling to be weak and thermal
phonon effects to dominate the transport properties.
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APPENDIX A: BOSON CORRELATION FUNCTIONS

Here we show how to derive the analytical form for the
correlation function of a single undamped oscillator mode.
This is equivalent to a recent derivation given in Ref. 60. We
start with a similarity transformation,

e−Mf
(
Â

)
eM = e−M

(∑
n=0

anÂ

)
eM

=
∑
n=0

ane
−MÂeM =

∑
n=0

anÃ = f
(
Ã

)
,

(41)

which suggests that one needs to consider only the transfor-
mation on each operator separately. Utilizing the interaction
picture of the boson operators and their commutation,

[−zb̂†eiωt ,zb̂e−iωt ] = z2, (42)

the X (t) and X† (t) operators become

X (t) = exp[−z(b̂†eiωt − b̂e−iωt )]

= exp(−zb̂†eiωt ) exp(zb̂e−iωt )

× exp
( − 1

2 [zb̂†e−iωt ,zb̂e−iωt ]
)

= exp −zb̂†eiωt exp zb̂e−iωt e− 1
2 z2

, (43)

X† (t) = e− 1
2 z2

exp(zb̂†eiωt ) exp(−zb̂e−iωt ), (44)

then XtX
†
t ′ becomes

XtX
†
t ′ = e−z2

e−zb̂†eiωt (
ezb̂e−iωt

ezb̂†eiωt ′ )
e−zb̂e−iωt ′

. (45)

Putting the operators in normal order by using

eiHT t/h̄Oe−iHT t/h̄ = O +
[

i

h̄
tHT ,O

]

+ 1

2!

[
i

h̄
tHT ,

[
i

h̄
tHT ,O

]]
+ · · · (46)

and after noting that e−Mf (Â)eM = e−zb̂
†
t ′ ezb̂t ezb̂

†
t ′ , with

f (Â) = ezb̂t , Â = ze−iωt b̂,

e−zb̂
†
t ′ (b̂e−iωt )ezb̂

†
t ′ = e−iωt (b + zeiωt ′ )

⇒ e−zb̂
†
t ′ ezb̂t ezb̂

†
t ′ = eze−iωt b exp[z2e−iω(t−t ′)], (47)

so that

ezb̂t ezb̂
†
t ′ = exp[z2e−iω(t−t ′)]ezb̂†eiωt ′

eze−iωt b, (48)

and we obtain

XtX
†
t ′ = exp[−z2(1 − e−iω(t−t ′))] exp[zb̂†(eiωt ′ − eiωt )]

× exp[−zb(e−iωt ′ − e−iωt )]. (49)

The correlation F can be arranged in a more convenient form:

F = (1 − e−βωB )
∞∑

n=0

〈n|e−βnωB XtX
†
t ′ |n〉

= (1 − e−βωB )e−z2(1−e−iωB (t−t ′))

×
∞∑

n=0

〈n|e−βnωB ezb̂†(eiωt ′ −eiωt )e−zb(e−iωt ′ −e−iωt )|n〉. (50)
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Let u = z(e−iωt ′ − e−iωt ), u∗ = z(eiωt ′ − eiωt ), and expanding
the exponents in a power series and using the property of
destruction operators will condense the form to the Laguerre
polynomial or order n:

〈n|eu∗b̂†e−ub̂|n〉 =
n∑

l=0

(−1)l

(l!)2

n!

(n − l)!
(|u|2)l = Ln(|u|2). (51)

Using one of its generating functions
∑

n=0 Ln

(|u|2) ξn =
e−N |u|2/(1 − ξ ) gives

F(τ ) = exp{−z2[(1 + N )(1 − e−iωτ ) + N (1 − eiωτ )]},
(52)

where τ = t − t ′. This form is still not easy to evaluate in the
integral form of Eq. (27). Therefore, we expand the exponential
part of Eq. (52) in terms of exp ±iωτ :

F (τ ) = e−z2(1+2N)
∞∑

s,p=0

(z2)s+p Ns (1 + N )p

s!p!
ei(s−p)ωτ . (53)

Physically, the s terms account for absorption and p for
emission of phonons60 with frequency ω. Writing

n = p − s = nemit − nab, (54)

p = s + n, (55)

we can rewrite

F (τ ) =
∞∑

n=−∞
exp −inωτ exp −z2 (1 + 2N )

(
1 + N

N

) n
2

× In(2z2
√

N (1 + N )), (56)

where In is the modified Bessel function of the first kind.
This form can be numerically evaluated. Similarly, the other

correlation functions are

〈X†
t ′Xt 〉 = 〈Xt ′X

†
t 〉 = F∗(τ ), (57)

〈X†
t Xt ′ 〉 = F (τ ) . (58)

APPENDIX B: EQUATIONS OF MOTION FOR THE
COULOMB BLOCKADE LIMIT

To obtain the analytical and numerical results we show
in the second half of this work, we imposed an additional
condition on our model, that of strong Coulomb repulsion
against double occupation of the dimer. In this case we replace
the operators with projectors onto a single-electron basis and
obtain the following slightly altered equations of motion:

〈n̂L〉t − 〈n̂L〉0 = − i

h̄

∫ t

0
dt ′[Tc(〈s̃(t)〉 − 〈s̃†(t)〉)

+�L(1 − 〈nL〉 − 〈nR〉)], (59)

〈n̂R〉t − 〈n̂R〉0 = i

h̄

∫ t

0
dt ′[Tc(〈s̃(t)〉 − 〈s̃†(t)〉) − �R〈nR〉],

(60)

〈s̃〉t − 〈s̃〉0 = − i

h̄

∫ t

0
dt ′eiε(t−t ′)Tc

×{〈nLXtX
†
t ′ 〉t ′ − 〈nRX

†
t ′Xt 〉t ′ }

− �R

2

∫ t

0
dt ′eiε(t−t ′)〈s̃(t ′)X†

t ′Xt 〉, (61)

〈s̃†〉t − 〈s̃†〉0 = − i

h̄

∫ t

0
dt ′e−iε(t−t ′)Tc

×{〈nRX
†
t Xt ′ 〉 − 〈nLXt ′X

†
t 〉}

− �R

2

∫ t

0
dt ′e−iε(t−t ′)〈Xt ′X

†
t s̃

†(t ′)〉. (62)
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