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Phase separation of antiferromagnetic ground states in systems with imperfect nesting
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We analyze the phase diagram for a system of weakly coupled electrons having an electron- and a hole-band
with imperfect nesting. Namely, both bands have spherical Fermi surfaces, but their radii are slightly different,
with a mismatch proportional to the doping. Such a model is used to describe the antiferromagnetism of
chromium and its alloys, pnictides, AA-stacked graphene bilayers, as well as other systems. Here we show
that the uniform ground state of this model is unstable with respect to electronic phase separation in a wide
range of model parameters. Physically, this instability occurs due to the competition between commensurate and
incommensurate antiferromagnetic states and could be of importance for other models with imperfect nesting.
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I. INTRODUCTION

Electron models having a band structure with imperfect
nesting are employed to analyze properties of several physical
systems. For example, such models are used to describe the
antiferromagnetism (AFM) in Cr and its alloys,1,2 supercon-
ducting iron pnictides and iron chalcogenides,3–6 AA-stacked
graphene bilayers,7,8 and other systems.9

Postulating a spatially homogeneous AFM ground state,
a phase diagram for models with imperfect nesting can be
constructed. A typical (x,T ) phase diagram is schematically
shown in Fig. 1. This diagram is split into three areas. The
first is the paramagnetic state at temperatures higher than
the Néel temperature TN(x). If T < TN(x) the system is in
one of two magnetically ordered states. The commensurate
AFM state exists at relatively low doping (where the nesting
is good) and higher temperatures, while the incommensurate
AFM state appears at higher doping and lower temperatures
(see Fig. 1). Of course, in the commensurate phase the spatial
variation of the order parameter is commensurate with the
crystal lattice period. As for the incommensurate AFM, its
structure is characterized by the wave vector Q(x,T ). This Q
quantifies the smooth variation of the AFM order parameter in
real space over distances much longer than the lattice spacing.
Since Q is zero in the commensurate phase, the condition
Q(x,T ) = 0 defines the boundary temperature TQ(x) between
the commensurate and incommensurate AFM.

The phase diagram in Fig. 1 was obtained1 assuming that
the ground state of the system is uniform. However, this
assumption is not necessary valid: Below we demonstrate
that, depending on the doping and the temperature, the
homogeneous state may be unstable. To prove this we calculate
the chemical potential μ(x,T ) for the model Hamiltonian
of the itinerant AFM proposed by Rice.1 We observe that
∂μ/∂x is negative in a considerable portion of the (x,T ) plane.
The homogeneous state compressibility, therefore, is negative,
and such state is unstable with respect to electronic phase
separation.

It is not difficult to check a particular model for the
phase separation instability: An interval of dopings where free
energy is a concave function of doping is the signature of phase

separation. Yet, the phenomenon is sometimes overlooked due
to the fact that other important properties of a homogeneous
state bear little or no signature of the underlying instability.
For example, the single-particle gap of a homogeneous state
may be a smooth decreasing function of doping8 and raises no
suspicion that, in fact, the state is unstable. Thus, a separate
assessment of the thermodynamic stability is required.

In this study we will restrict ourselves to the Rice model.
However, the discussed mechanism for the phase separation
could be of importance to other systems with imperfect nesting.
For example, there are experimental indications that pnictides
and chalcogenides may experience such a phenomenon in
some regions of doping and temperature.10

This paper is organized as follows. In Sec. II we introduce
the model Hamiltonian and derive the equations describing
the homogeneous states of the model. The instability of the
homogeneous states is presented in Sec. III. The discussion
and conclusions can be found in Sec. IV.

II. MAIN EQUATIONS OF THE MODEL

We study the model proposed by Rice1 to describe the
incommensurate antiferromagnetism in chromium (see also
the review in Ref. 2). We mostly adhere to the notation of
Ref. 1. However, to comply with modern conventions, some
changes will be introduced. We also correct some misprints
present in the latter reference.

The model band structure has one spherical electron pocket
and one spherical hole pocket with different radii (imperfect
nesting), as well as another band or bands, which do not
participate in the magnetic ordering. All interactions are
ignored except the repulsion between the electrons in the
ordering pockets.

The system we study is three-dimensional. Its Hamiltonian
has the form

Ĥ =
∑

k,σ

α=a,b,c

εα(k)nα
kσ + V

V
∑
kk′q
σσ ′

a
†
k+qσ akσ b

†
k′−qσ ′bk′σ ′, (1)

where α is equal to either a (electron pocket), b (hole pocket),
or c (nonmagnetic bands). Also, a† (b†) are creation operators
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FIG. 1. (Color online) A typical phase diagram of a magnetic
system with imperfect nesting in the (x,T ) plane, where x is
the doping and T is the temperature. The solid (black) curve
represents the Néel temperature TN(x) separating the paramagnetic
(PM) and the antiferromagnetic (AFM) states. The dashed (red)
curve is the boundary TQ(x) between the commensurate (Q = 0)
and incommensurate (Q �= 0) AFM states. This phase diagram is
constructed for a finite density of states of nonmagnetic electrons
(n �= 0; see the text).

for the electron in the a (b) pocket, nα is the number operator,
V is the Coulomb interaction, and V is the volume. The
nonmagnetic noninteracting c band has finite density of states
Nr at the Fermi energy. The energy spectra for the electron and
hole pockets measured relative to the Fermi energy are taken
as (h̄ = 1)

εa(k) = vF (k−kFa) = vF (k−kF )−μ, (2)

εb(k+Q0) = −vF (k−kFb)=−vF (k−kF )−μ, (3)

where kF = (kFa + kFb)/2, μ = vF (kFa − kFb)/2 is the
chemical potential, and the wave vector Q0 connects the
centers of the electron and hole pockets in reciprocal space.
We confine ourselves to the weak-coupling regime: V Nm � 1,
where Nm = k2

F /2π2vF .
We treat Hamiltonian (1) with a mean-field approach. This

is admissible since mean-field approximations give accurate
results for weakly interacting electrons. The starting point of
our derivation is the case of perfect nesting, which corresponds
to μ = 0. Under this condition, the radii of the electron and
hole pockets are identical. If we translate the electron pocket
by the vector Q0, its Fermi sphere coincides perfectly with the
Fermi sphere of the hole pocket.

Mathematically, the Hamiltonian Eq. (1) is equivalent to
the BCS Hamiltonian. Indeed, if we perform the following
transformations,

bk → b
†
k, b

†
k → bk, (4)

the interaction constant V and the hole pocket dispersion
Eq. (3) change sign. The Hamiltonian for a and b bands
becomes identical to two copies of the BCS Hamiltonian. This
mapping is very useful since it allows us to use the familiar
BCS mean-field approach to study the Hamiltonian (1).

Performing standard BCS-like calculations, it is easy to
show that for μ = 0 the system is unstable to the ordering
with the AFM order parameter �0 = V

V
∑

k〈a†
k,σ bk+Q0,−σ 〉.

In the weak-coupling limit

�0 = εF exp(−1/NmV ) � εF , (5)

where εF = vF kF is the Fermi energy.
The order parameter �0 couples electrons with unequal

momentum. Consequently, in real space the order parameter
�0 corresponds to the rotation of the magnetization axis with
wave vector Q0. Since usually the a and b pockets are located
in the high-symmetry points of the Brillouin zone, the vector
Q0 is related to the underlying lattice structure. Thus, this order
may be called commensurate.

Now consider the case of nonzero μ. In such a situation
the electron and the hole Fermi spheres have different radii,
and do not coincide upon translation. However, the distance
between the translated spheres remains small if μ is small.

It is likely that �0 remains metastable for small nonzero μ.
Yet, one may try to optimize the energy further by treating the
translation vector Q1 = Q0 + Q as a variation parameter. The
new order parameter has the form

� = V

V
∑

k

〈a†
k,σ bk+Q1,−σ 〉. (6)

Unlike Q0, whose magnitude is of the order of the magnitude
of the primitive reciprocal lattice vectors, the vector Q is small:

|Q| ∼ |�|/vF � |Q0|. (7)

Thus, the order parameter � describes order with a slowly
rotating AFM magnetization axis. The real-space wavelength
of the axis rotation is equal to 2π/|Q|. This value is unrelated
to the underlying lattice. Therefore, it is natural to call such
order incommensurate.

If the transformation Eq. (4) is performed on a system
with nonzero μ, the Hamiltonian of our magnetic sys-
tem becomes the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO)
Hamiltonian11,12 of a superconductor in the finite Zeeman
field μBH = −μ. Moreover, the magnetic order parameter (6)
becomes a superconducting order parameter. Superconducting
order of this type was first studied by Fulde and Ferrel,11 while
Larkin and Ovchinnikov12 considered the order parameter
(�eiQ1r + �∗e−iQ1r). The latter order parameter periodically
passes through zero in real space. Below we will follow Rice1

and use the Fulde-Ferrel-type order parameter Eq. (6). The
Larkin and Ovchinnikov version, recently applied by Gor’kov
and Teitel’baum5 to study the coexistence of the AFM and
superconductivity in pnictides, will be discussed in Sec. IV.

Equilibrium parameters of the system can be derived by
minimization of the thermodynamic potential

� = −T ln[Tr e−(Ĥ−μN̂ )/T ], (8)

where N̂ is the operator of the total particle number, and kB =
1. To evaluate � in the mean-field approximation, we need the
eigenenergies of the mean-field Hamiltonian. These are

E1,2(k) = εb(k + Q1) + εa(k)

2

±
√

�2 +
[
εb(k + Q1) − εa(k)

2

]2

. (9)
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Then the grand potential � = �(�,Q,μ,T ) equals

� = 2�2

V
V − 2T V

∑
s=1,2

∫
d3k

(2π )3
ln(1 + e−Es (k,Q,�)/T )

−2T NrV
∫

ln(1 + e−(ε−μ)/T )dε. (10)

Here the first and the second terms are the contributions
of the ordering bands, while the third term corresponds to
the non-magnetic bands. To carry out the integration over
k, we expand the band energies in powers of |Q| and

δk = |k| − kF :

εb(k + Q1) + εa(k) ≈ 2μ + 2Qη, (11)

εb(k + Q1) − εa(k) ≈ 2vF δk + 2Qη, (12)

Q = vF |Q|
2

, (13)

where η is the cosine of the angle between k and Q.
Performing the integration, one finds the following expres-

sion for the difference of the grand potentials in the AFM state
(� �= 0) and in the paramagnetic state (� = 0):

δ� = �(�,Q,μ,T ) − �(0,Q,μ,T )

= k3
FV

π2εF

{
�2

(
ln

�

�0
− 1

2

)
+ Q2

3
+ μ2 + π2T 2

3
+ T

∫ ∞

0
dξ

∫ 1

−1
dη ln

[
f (Qη − μ − ε)f (μ − Qη − ε)

]}
, (14)

where ε =
√

�2 + ξ 2, and f (ε) = 1/[1 + exp(ε/T )] is the
Fermi function.

The equilibrium values of the gap � and the magnitude
of the structural vector Q are determined by minimizing
δ�. Thus, they are solutions of the equations ∂(δ�)/∂� =
0 and ∂(δ�)/∂Q = 0. Differentiating Eq. (14) we derive
straightforwardly

ln
�0

�
=

∫ ∞

0

dξ

2ε

∫ 1

−1
dη[f (ε + μ− Qη) + f (ε −μ+ Qη)],

(15)

2Q

3
= −

∫ ∞

0
dξ

∫ 1

−1
η dη[f (ε − μ+ Qη) + f (ε + μ− Qη)],

(16)

where �0 is given by Eq. (5). For fixed values of T and μ, this
system must be solved for � and Q.

Once � and Q are found, the total number of electrons
per unit volume n(μ) can be calculated. The latter quality is
the sum of the numbers of magnetic nm(μ) and non-magnetic
electrons nr (μ). The doping x is defined as the difference

x = n(μ) − n(0) = nm(μ) + nr (μ) − nm(0) − nr (0). (17)

Since μ,T � εF , we have for the nonmagnetic part

nr (μ) = nμ(0) + Nrμ. (18)

The number of electrons in the magnetic bands is given by

nm(μ) = 2

V
∑

k

[f (E1(k)) + f (E2(k))]. (19)

Thus, the doping is equal to

x

x0
= nμ

�0
+

∫ ∞

0

dξ

2�0

∫ 1

−1
dη[f (ε − μ + Qη)

− f (ε + μ − Qη)], (20)

where x0 = 4�0Nm and

n = Nr

2Nm

. (21)

Note that the integrals in Eqs. (15), (16), and (20) can
be evaluated exactly at T = 0. Thus, at zero temperature
the integrals are replaced by transcendental functions. The
corresponding equations were derived in Refs. 1 and 11
using somewhat different notation. Notice, however, that zero-
temperature expressions of Ref. 1 contain several misprints.
For example, Eq. (6) of Ref. 1 has an incorrect minus sign
between functions G [cf. Eq. (8) of Ref. 11, which shows the
correct plus sign]. Further, in the definition of r± a factor of
(1/2) must be placed in front of Q; see our Eq. (13).

III. INSTABILITY OF THE UNIFORM GROUND STATE

Now we are ready to construct the phase diagram of our
model as a function of temperature and doping. The three
coupled Eqs. (15), (16), and (20) are solved numerically.
These determine �(x,T ), Q(x,T ), and μ(x,T ). Using these
results we can calculate the Néel temperature TN(x), for
different values of n, as the lowest T where � = 0. The
transition temperature TQ between the commensurate and
incommensurate AFM corresponds to the highest doping at
which Q = 0. As a result, we obtain the phase diagram of the
type shown in Fig. 1.

However, constructing Fig. 1 we assumed a priori that the
ground state of the model is uniform. To check this assumption
we plot the dependence of the chemical potential on the doping,
for different temperatures. For different values of n the results
are shown in Figs. 2(a)–2(c). Curves μ(x) demonstrate three
important features at temperatures lower than T ∗ ≈ 0.317�0,
for any n. First, the derivative ∂μ/∂x is discontinuous at the
transitions from commensurate to incommensurate AFM,1 and
from incommensurate AFM to the paramagnetic phase. The
second major feature is that μ(x) has three different values
for a range of doping x at low T if n � 1, which means that
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FIG. 2. (Color online) Chemical potential μ versus doping x for
different values of n [see Eq. (21)]: n = 0 (a), n = 1 (b), and n = 3
(c). The different temperatures considered include T = 0 with solid
(black) curves 1, T/�0 = 0.1 with solid (red) curve 2, T/�0 = 0.2
with solid (blue) curve 3, and T/�0 = 0.35 with solid (green) curve
4. Dashed (orange) lines correspond to μ(x) in the paramagnetic
phase.

we have to choose the lowest energy solution.1 Thirdly, the
derivative ∂μ/∂x is negative at a finite range of doping.

This last peculiarity of ∂μ/∂x eluded the attention of previ-
ous studies; yet, it has very important ramifications. Negative
values of the derivative ∂μ/∂x mean that the compressibility,
κ ∝ ∂x/∂μ, is negative. This negative compressibility indi-
cates that the homogeneous state is unstable towards phase
separation. In the phase-separated state the system segregates
into two phases with different doping values. Let us denote
these values as x1 and x2, and the volume fractions of the
corresponding phases as p1 and p2, such that p1 + p2 = 1.
Then, the doping satisfies x = p1x1 + (1 − p1)x2, and p1 =
(x2 − x)/(x2 − x1).

The values x1 and x2 can be found using the Maxwell
construction (see, e.g., Ref. 13). Figure 3 illustrates the latter

FIG. 3. (Color online) Chemical potential μ versus doping x for
the homogeneous phase, T/�0 = 0.1 and n = 0 [solid (red) line].
The horizontal dashed (black) line shows the Maxwell construction,
with shaded areas S1 = S2.

concept: The horizontal dashed line is drawn in such a manner
that the areas of the shaded regions, S1 and S2, are equal:
S1 = S2.

Using the Maxwell construction, the boundary TPS(x)
between the homogeneous and phase-separated states is
calculated. This boundary is shown by the dashed (red) curves
in the (x,T ) phase diagrams drawn in Fig. 4, for different
values of n.

The phase with lower doping, x1, is the commensurate
AFM (Q = 0) while the phase with higher doping, x2, is the
incommensurate AFM (Q �= 0), as can be readily seen from
Figs. 2 and 3. Thus, here the phase separation occurs due
to the competition between two AFM states with different
structures. So, it is natural that the boundary temperature
TQ lies between two lines TPS separating the homogeneous
and inhomogeneous states (see Fig. 4). The phase separation
is absent for higher temperatures T > T ∗ ≈ 0.317�0. This
phase separation disappears simultaneously with the incom-
mensurate AFM phase. The area of the incommensurate AFM
phase in Fig. 4 decreases, when n (which is proportional
to the density of states in the nonmagnetic band) increases.
However, one must remember that in Figs. 2–4 the horizontal
scale changes when n changes.

IV. DISCUSSION

In the previous section we demonstrated that the incom-
mensurate AFM state of the Rice model1 is unstable toward
phase separation. This feature is likely to have important
consequences for the diverse set of materials where the nesting
degradation may be responsible for the destruction of the
magnetic phase: chromium and its alloys,2 pnictides and
chalcogenides,10 doped AA-stacked graphene bilayers,8 and
others. Here we would like to discuss the obtained results
and compare these with other published works.

Above we used the mapping between the Rice model
and the FFLO superconductor. However, usually, the phase
separation is absent from the phase diagram of the FFLO
superconductor. This has a very simple explanation: These
diagrams are plotted as a function of the temperature and
the Zeeman field (which is an analog of the chemical
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FIG. 4. (Color online) Phase diagram of the Rice model (Ref. 1)
for n = 0 (a), n = 1 (b), and n = 3 (c). The solid (black) curves rep-
resent the Néel temperature TN(x), which separates the paramagnetic
and AFM phases. The dotted (blue) curves are TQ(x), the boundary
between the commensurate (Q = 0) and incommensurate (Q �= 0)
homogeneous AFM phases. The dashed (red) curve, TPS(x), is the
boundary between the uniform and phase-separated (shaded areas)
phases.

potential μ in the Rice’s model). The field, being an intensive
thermodynamic quantity, does not allow for phase separation.
Instead, the system experiences a first-order transition as a
function of the Zeeman field.11 However, for cold atoms in an
optical trap it may be possible to control not the field, but the
polarization, which is an extensive quantity. In this case, phase
separation occurs.14

As we mentioned above, besides Eq. (6), it is possible
to consider other types of spatially inhomogeneous order
parameters.15,16 A particularly interesting possibility was
discussed in Ref. 5, where the known numerical results for
the two-dimensional FFLO superconductor17 with an order
parameter of the Larkin-Ovchinnikov type was applied to
study the Rice model. It was proposed5 that upon small doping,
the order parameter in real space forms domain walls. At a

domain wall the gap vanishes locally, which makes these walls
a preferred place for the accumulation of the doped charge. It
was demonstrated5,17 that the formation of these domain walls
becomes energetically favorable for

μ > μDW ≈ 0.655�0. (22)

The value of μDW is somewhat smaller than

μ2D
PS ≈ 0.7�0, (23)

which is the value of the chemical potential corresponding to
the phase separation in the two-dimensional Rice model at
T = 0. Since at low doping the energy can be approximated
by

E = E0 +
∫ x

0
μ(x ′)dx ′ ≈ E0 + μ(0)x, (24)

where E0 is the energy of the undoped state, we must conclude
that at low doping the phase-separated state is less favorable
than the phase with domain walls. However, the difference

μ2D
PS − μDW ≈ 0.05�0 (25)

is small, and in real systems the balance may be shifted by
factors unaccounted for by the present model (e.g., anisotropy,
Coulomb interaction, disorder). Thus, the possibility of phase
separation driven by the mechanism proposed in this paper
should be kept in mind when experimental data are analyzed.

The experimental observation of phase separation in su-
perconducting pnictides and chalcogenides, which may be
approximately described by the Rice model,1 was reported
in several papers.10 For example, Park and co-authors10 found
the coexistence of magnetic and nonmagnetic domains with a
typical size ∼65 nm. This observation is in general agreement
with our proposed mechanism. While our model predicts
the separation into two magnetic phases, the AFM order in
the incommensurate phase is weak, and the energy is close
to the energy of the paramagnetic phase. Thus, either the
AFM order parameter in the incommensurate phase is below
experimental sensitivity, or, being affected by factors outside
of our simple treatment, the weak phase itself is replaced
by the paramagnetic state. The latter scenario is quite likely,
given the small energy difference between the paramagnetic
and incommensurate AFM states. If the incommensurate
AFM is destroyed, phase separation occurs between the
undoped commensurate AFM and the paramagnetic states.
Such type of phase separation was discussed for AA-stacked
graphene bilayers,8 whose band structure corresponds to the
two-dimensional Rice model.

Let us briefly mention several complications not considered
here, which, nonetheless, may be present in experimental
systems and influence the resulting phase diagram. In exper-
iments, the electron and hole pockets may have nonidentical
nonspherical shapes and different Fermi velocities. How these
factors affect the phase separation is a subject of further
study. In the weak-coupling regime, Eq. (5), it is likely that
sufficiently small deviations from the idealized model will not
affect qualitatively the outcome of the calculations, provided
that V is not too weak.

Our calculations were performed in the weak-coupling
limit. Would the phase separation survive outside of this
regime? Note that in order to discuss the intermediate or
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strong-coupling regime, the Rice model is not a good starting
point. Rather, a multiorbital lattice Hamiltonian is a better
approach. For such models the phase separation is a common
phenomenon.18–20 Further, recent numerical studies of the
Hubbard model at intermediate and strong coupling21 reported
phase separation at finite doping. Thus, it is likely that even
for strong and intermediate interaction strengths it is possible
to find a region of the model’s parameter space where phase
separation occurs, although in such regimes the mechanism of
phase separation cannot be described in terms of Fermi surface
nesting.

To apply the theoretical results to experiments it is impor-
tant to consider the effects of disorder. We know that the FFLO
state is very fragile with respect to impurity scattering.22 Thus,
our incommensurate AFM, which is the mathematical analog
of the FFLO phase, is expected to be susceptible to microscopic
imperfections. Therefore, we conclude that disorder-induced
modifications to the phase diagram is an open question which
requires special attention.

The study of characteristic scales and geometry of the
phase-separated state is beyond the scope of this study
since it requires additional information on the properties of
the system, which are disregarded by the Rice model. For
example, even in the simplest approach to this problem,

the structure of the inhomogeneous state is governed by the
interplay between long-range Coulomb interaction and the
energy of the boundary between different phases.23 Thus, it
is reasonable to study the details of the phase-separated state
only if the particular physical system is specified in detail.

In conclusion, we have demonstrated that the uniform
ground state of the Rice model for an itinerant AFM with
imperfect nesting is unstable with respect to electronic phase
separation in a significant range of dopings and temperatures.
In this range, the uniform system segregates into two AFM
phases, one of which is the commensurate AFM, while the
second is the incommensurate AFM. It is argued that such
instability can occur in other models with imperfect nesting
because this effect is driven by the competition between phases
with different doping and different magnetic structures.
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