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We consider the violation of the Leggett-Garg inequality in electronic Mach-Zehnder inteferometers. This setup
has two distinct advantages over earlier quantum-transport proposals: Firstly, the required correlation functions
can be obtained without time-resolved measurements. Secondly, the geometry of an interferometer allows one
to construct the correlation functions from ideal negative measurements, which addresses the noninvasiveness
requirement of the Leggett-Garg inequality. We discuss two concrete realizations of these ideas: the first in
quantum Hall edge-channels, the second in a double quantum dot interferometer.
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I. INTRODUCTION

Bell inequalities set bounds on the nature of the corre-
lations between multiple spatially-separated entities within
local hidden variable theories.1,2 In contrast, Leggett-Garg
inequalities (LGIs) set bounds on the temporal correlations
of a single system,3,4 and are derived under the assumptions
of macroscopic realism (MR) and noninvasive measurability
(NIM).5

Bell and Leggett-Garg inequalities are related in that their
assumptions both imply the existence of a classical prob-
ability distribution that determines experimental outcomes.
The probability amplitudes of quantum mechanics allow for
violation of these inequalities: With Bell, the violation is due
to entanglement between the systems; with Leggett-Garg, the
violation occurs due to the superposition of system states and
their collapse under measurement.

The simplest LGI, henceforth referred to as the LGI, reads

K ≡ C21 + C32 − C31 � 1, (1)

where Cαβ = 〈Q(tα)Q(tβ)〉 is the correlation function of the
dichotomous variable Q = ±1 at times tα and tβ . Since the
first experimental violation6 of this inequality with weak
measurements of a superconducting qubit, the Leggett-Garg
inequality has been experimentally probed in systems as
diverse as photons,7–9 defect centers in diamond,10 nuclear
magnetic resonance,11 and phosphorus impurities in silicon.12

Whilst the subjects of these studies may not be macroscopic,
the LGI performs a useful role for microscopic systems as
an indicator that the device is operating beyond classical
probability laws. Moreover, if one accepts that the alternative
to classical probabilities is quantum mechanics, the LGI
provides a decisive indicator of the “quantumness” of a
system.13

In this paper, we are interested in the violation of the
LGI in quantum transport, and in particular, in electron
interferometers. Although there has been much work on
Bell inequalities in electron transport, e.g., Refs. 14–23, the
LGI has only relatively recently been considered in this
setting.24,25 Specifically, the charge flowing through a confined
nanostructure, e.g., double quantum dot (DQD), has been
shown to violate an inequality similar to Eq. (1) out of

equilibrium.24 Furthermore, the moment-generating function
of charge transferred through a device has also been shown to
be subject to a set of LG-style inequalities, which are violated
for various quantum dot models. The violation of LGIs in
excitonic transport has also attracted recent interest.26,27

There are several difficulties that make the investigation
of the LGI in electronic transport challenging in practice.
Ostensibly, the measurement of Eq. (1) requires time-resolved
measurements where the time between successive measure-
ments is smaller than the decoherence time of the system.
For the double quantum dot of Ref. 24, for example, this
decoherence time is of the order of 1 ns,28 which makes
the necessary time-resolved measurements very challenging
(but, in principle, possible29). Furthermore, for the violation of
Eq. (1) to be a meaningful indicator of nonclassical behavior,
it must be ensured that the measurements are noninvasive.
This “clumsiness loophole”30 that allows violations of Eq. (1)
to be associated with invasiveness of measurement, along
with possible circumventions, has been the subject of much
discussion.3,27,31

The transport setups we consider here are based on
the electronic Mach-Zehnder Interferometer (MZI), and can
overcome both of these problems.32 The basic idea is that an
electron traveling through a MZI can take one of two paths, and
this path index defines the variable Q = ±1. Unidirectional
passage of the electron through the system allows us to map the
time indices of Eq. (1) onto positions within the interferometer.
As we show below, this removes the need for time-resolved
measurements.

We consider two realizations of the MZI in which measure-
ments of Q are performed in two different ways. In the first,
the MZI is formed from quantum Hall edge channels, a setup
which has been realized experimentally33–42 and also attracted
a large degree of theoretical attention.43–57 By interrupting the
edge channels at various points and diverting electron flow
to current meters, we show that K can be obtained from
measurements of mean currents alone. Furthermore, due to
the spatial separation of the Q = +1 and Q = −1 channels,
our detectors interact with only one of the two Q states at
any given time. Thus, our scheme provides a natural way
to implement ideal negative measurements, as advanced by
Leggett and Garg as a way to satisfy the NIM criterion.3

235447-11098-0121/2012/86(23)/235447(10) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.86.235447


CLIVE EMARY, NEILL LAMBERT, AND FRANCO NORI PHYSICAL REVIEW B 86, 235447 (2012)

The second setup we consider is a MZI with a quantum
dot (QD) in each arm. This geometry is similar to several
experiments,58–62 the difference here being that the dots are fed
by two tunnel-coupled leads63 rather than just one. The QDs
are monitored by quantum point contacts, whose transmission
is sensitive to the charge state of the QD.64–69 In contrast with
the first setup, electrons are not diverted out of the MZI at
any point, and the influence of the detectors occurs as a pure
dephasing effect. The three correlation function in Eq. (1)
are obtained through a combination of mean currents, both
through the MZI and the quantum point contacts, and zero-
frequency noise measurements, which cross-correlate current
fluctuations in the MZI and quantum point contacts. As in the
previous scheme, we construct an ideal negative measurement
scheme with this setup.

Both of these techniques exploit a combination of super-
positions of paths through an interferometer combined with a
gathering of “which-way” information to violate the LGI. The
first setup is a particularly simple realization of the LGI, and
is by no means restricted to transport, but could be used, e.g.,
with photons, atoms, or molecules.

The paper proceeds as follows. In Sec. II we describe the
basics of testing the LGI in a MZI. Section III describes how
this may be translated into experiments with quantum Hall
effect edge channels. Finally, Sec. IV considers the alternative
DQD-QPC geometry.

II. MACH-ZEHNDER INTERFEROMETER

We begin by describing an abstract version of our MZI
scheme to outline the basic ideas. The MZI is a two-channel
interferometer with two beamsplitters that divide the MZI into
three zones which we label: 1, the input ports; 2, the arms of the
interferometer; and 3, the output ports (see Fig. 1). We inject
one electron at a time into the MZI, and the path taken by the
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(b) (c)
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FIG. 1. (Color online) The Mach-Zehnder interferometer with
three different detector configurations for the noninvasive measure-
ment of the LGI of Eq. (1). Electrons are injected into the 1+ port.
(a) Complete MZI configuration with detectors only at the final
outputs 3±. With this setup we can measure the probabilities P D

3±(1)
and construct C31. (b) An additional detector is inserted into the
MZI + arm. With this configuration we can measure probabilities
P D

2+(0) and P D
3±;2+(1,·). (c) A detector in the − arm allows us to obtain

P D
2−(0) and P D

3±;2−(1,·). Combining the results of (b) and (c) allows
us to construct correlation functions C21 and C32.

electron will be the degree-of-freedom under test with Q = +1
when the electron is located in the upper channel of the MZI,
and Q = −1 the lower. Since the electron passes sequentially
through the three zones, we can map a measurement of Q at
time tα to a “which-way” measurement at any point in the
region α of the interferometer. In particular, Q1 and Q3 are
measured at the input and output ports, and Q2 is measured by
placing detectors in the arms of the interferometer at 2±, where
2 refers to the zone, and ± the upper or lower channel. In this
section we assume that we have ideal single-electron detectors
that “click” on detecting an electron, which is then removed
from the system (i.e., the detectors act essentially as electronic
analogues of photodetectors). More realistic measurements in
terms of currents are discussed in Sec. III.

A. Ideal negative measurements

A detector placed in one of the arms interacts strongly
with electrons in that path (they are completely removed from
the MZI) and has no effect on electrons in the other. With
a detector placed at Q = +1, say, the absence of a detector
response (combined with MR and ideal detectors) allows us to
infer the state of the system (Q = −1) without any disruption.
This is exactly the form of detector required to perform an
ideal negative measurement as envisioned in Ref. 3.

To make the measurement scheme as simple as possible, let
us inject electrons into the 1+ port, such that the initial state is
known. 70 We do not need to measure in zone 1 and there is no
question about the NIM of Q1. The correlation function C21

and C31 boil down to measuring 〈Q2〉 and 〈Q3〉, respectively.
Let us define P D

α±(n) as the probability that the detector
placed at position α± either detects (n = 1) or fails to detect
(n = 0) the electron. Since no further measurements are made
past point 3, it is irrelevant whether we measure noninvasively
or not at point 3. Placing detectors at 3±, we measure the
probabilities P D

3±(1), and the C31 correlation function can
simplify be expressed as

C31 = P D
3+(1) − P D

3−(1). (2)

The setup for this measurement is shown in Fig. 1(a).
Since, in measuring C21, no further measurements are

made after region 2, it is also not necessary to measure C21

noninvasively. We can measure 〈Q2〉 (and thus C21) by running
the experiment once with a detector in channel 2+ , and once
in 2− [Figs. 1(b) and 1(c)] and writing

C21 = P D
2+(1) − P D

2−(1). (3)

It is perhaps instructive to discuss how to obtain this quantity
using the ideal negative measurement technique and measure
C21 in terms of the probabilities of absence of detector clicks.
With the detector at 2+, we can equate the probability that
no electron is detected, P D

2+(0), with the probability that the
electron travels the path 2−. Swapping the detector to the
other arm, we measure P D

2−(0) and infer the probability that the
electron takes path 2+. Whence, we obtain the noninvasively
measured

C21 = P D
2−(0) − P D

2+(0). (4)

Since P D
2±(0) = 1 − P D

2±(1), Eq. (3) and Eq. (4) give the same
result.
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We now consider C32, where it is essential that we measure
Q2 noninvasively, since a subsequent measurement is per-
formed. On the face of it, measuring C32 requires a correlation
measurement between two detectors. This, however, is not the
case, as we now show.

Let us begin by placing one detector at 2+ and another one
at 3+ [Fig. 1(b)]. We can then obtain the four probabilities,
P D

3+,2+(n,n′), that the detectors at 3+ and 2+ give the results
n,n′ = 0,1, respectively. Of these, the one we are interested
in is P D

3+,2+(1,0), since this allows us to infer (noninvasively)
the probability that the electron took path 2− to detector 3+.
Moreover, we do not actually need to actively detect at 2+,
since, if the electron reaches the 3+ detector, it is clear that it
has not entered channel 2+ (because the detector there would
have removed the electron from the system).71 With all four
probabilities, P D

3q,2q ′ (1,·), obtained in this noninvasive way, we
can construct

C32 = −
∑

q,q ′=±
qq ′P D

3q,2q ′ (1,·), (5)

where we have replaced the measurement value at position 2
with a dot to indicate that we do not actually have to measure
there (the value is guaranteed to be zero).

In this way we obtain all the required correlation functions,
measured noninvasively where necessary. Although we have
concentrated on the simplest case here, the above noninvasive
techniques are extensible to the case where the input state is
unknown and all Cαβ must be measured in a noninvasive way,
or to more complicated LGIs.11

B. Leggett-Garg Inequality

The action of the MZI can be specified by two beamsplitter
scattering matrices sX; X = A,B. With aαq the annihilation
operator for an electron in channel αq, the beamsplitter input-
output relations read(

a2+
a2−

)
= sA

(
a1+
a1−

)
;

(
a3+
a3−

)
= sB

(
a2+
a2−

)
. (6)

Parameterizing the scattering matrices as

sX =
(

cos( 1
2θX) sin( 1

2θX)ei 1
2 φX

− sin( 1
2θX)e−i 1

2 φX cos( 1
2θX)

)
, (7)

we obtain the correlation functions

C21 = cos θA; (8)

C31 = cos θA cos θB − sin θA sin θB cos φ; (9)

C32 = cos θB, (10)

such that the LG correlator reads

K(θA,θB,φ) = cos θA + cos θB − cos θA cos θB

+ sin θA sin θB cos φ, (11)

with φ = 1
2 (φA − φB) being the phase difference accumulated

between the two paths. This is a familiar expression. If we
identify θA = �τ1 and θB = �τ2, then Eq. (11) is exactly
that obtained for a qubit evolving under the Hamiltonian
H = 1

2�σx measured in the σz basis at times t1, t2 = t1 + τ1,

FIG. 2. (Color online) Quantum Hall edge-channel realization
of the MZI setup for measurement of Leggett-Garg inequality. The
MZI setup is similar to that of Ref. 33 but with two extra detectors
(2±). These additional detectors can be isolated from the circuit
by closing off the QPCs between them and the edge channel. The
configuration shown has the detector at the 2+ position active such
that transmission to beamsplitter B via channel 2+ is blocked, and the
detector at 2− is pinched off. This detector combination corresponds
to that of Fig. 1(b).

and t3 = t2 + τ2. The properties of Eq. (11) are discussed
in Sec. III.

III. QUANTUM HALL EDGE-CHANNELS

Quantum Hall edge channels have been shown to allow
a direct translation of the MZI into electronic transport
experiments,33–39,41 and Fig. 2 shows a sketch of the quantum
Hall geometry needed to realize our proposal. Each channel
in the MZI is realized with a single edge channel and the
electronic beamsplitters are realized by quantum point contacts
(QPCs). Backscattering is suppressed between edge channels
such that transport is unidirectional. This setup is the same
as the MZIs of experiment except for the addition of extra
contacts to the arms of the interferometer. These contacts are
connected to the edge channels via adjustable quantum point
contacts, such that the detectors can be coupled into and out
of the MZI as required. This method of coupling probes to the
MZI arms has been realized in Ref. 41. Port 1+ is raised to a
voltage +V and electrons are injected into this channel. The
output ports (detectors) are all grounded. When the correlation
function C31 is being measured, the detectors at 2± are not
required and are isolated from the MZI by closing their QPCs
(Fig. 2 shows detector 2− closed off in this way). To measure
the remaining correlation functions, the detectors at 2± are,
one then the other, connected into the MZI by opening up their
respective QPCs. In Fig. 2, the detector at 2+ is connected
into the circuit and fully prevents electrons in channel 2+
from reaching the outputs 3±.

A. Current measurements

Let 〈Iαq〉 be the mean stationary current flowing into output
αq, given that when α = 3, the detectors at positions 2± are
closed off. Further, let 〈I3q;2q ′ 〉 be the current flowing at output
3q when the output at 2q ′ is open. Since, in the linear regime,
the current operator for each output is Iαq = G0V a

†
αqaαq , with

G0 = e2/h the conduction quantum,72 these mean currents
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are proportional to the probability that an electron travels in
the corresponding channel. The correlation functions required
for the LGI can then be constructed, as with the CHSH
inequality,16,17,73 as

Cα1 = 〈Iα+〉 − 〈Iα−〉
〈Iα+〉 + 〈Iα−〉 ; (12)

C32 = −∑
qq ′〈I3q;2q ′ 〉∑〈I3q;2q ′ 〉 . (13)

Division by the sum of detector currents removes proportion-
ality factors and, if all detectors are identical, also removes
detector inefficiencies. Writing the scattering matrices as

sX =
(

rX t ′X
tX r ′

X

)
, (14)

we obtain the correlation functions

C21 = |rA|2 − |tA|2;

C31 = |rBrA + t ′BtA|2 − |tBrA + r ′
BtA|2; (15)

C32 = |rA|2{|rB |2 − |tB |2} − |tA|2{|t ′B |2 − |r ′
B |2}.

With scattering matrices as in the previous section, the LG
parameter K obtained from current measurements is the same
as Eq. (11). This quantity is plotted in Fig. 3(a). A maximum
violation of Kmax = 3

2 is obtained for parameters θA = θB =
π/3 and φ = 0.

The violation of the LGI in this setup arises because the
measurements at 2± remove electrons from the interferometer
arms, preventing interference between the two paths. The
presence of this interference in C31 combined with its absence
in C32 leads to the violation.

0 0.5 1 1.5 2
φ/π
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1.4

K
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Δ = π/2
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Δ = 3π/2
Δ = 2π
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ϕ/π
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K
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FIG. 3. (Color online) (a) LG correlator K(θA,θB,φ) of Eq. (11)
as a function of the beamsplitter angle θ = θA = θB for three values of
the phase φ = 0,π/4,π/2. The shaded blue region indicated violation
of the LG inequality (K > 1). The maximum violation, Kmax = 3

2 ,
occurs for φ = 0 and, e.g., θ = π/3. (b) The influence of dephasing.
Shown is the LG correlator K of Eq. (16) maximized over θA/B as a
function of the phase φ. Results shown for values of the dephasing
parameter 
/π = 0, 1

2 ,1, 3
2 ,2. Violations of the LG are only observed

for cos φ > 0.

B. Dephasing

Dephasing in edge-channel interferometers is a much-
studied topic.35–39,41,42,44–48,52–57 While it is clear that electron-
electron interactions are ultimately responsible,74 the details
depend on the specifics of the particular realization. Here we
take a very simple approach and phenomenologically account
for the effects of dephasing by allowing the phase φ to
fluctuate. We replace φ → φ + δφ in Eq. (11) and integrate
δφ over a flat distribution in the range −
/2 < δφ < 
/2.
The resulting LG parameter with dephasing reads

Kdeph = cos θA + cos θB − cos θA cos θB

+f (
) sin θA sin θB cos φ. (16)

Here, f (
) = 2
−1 sin(
/2) is the visibility of the AB
oscillations, defined as

f = 〈I3+(φ = π )〉 − 〈I3+(φ = 0)〉
〈I3+(φ = π )〉 + 〈I3+(φ = 0)〉 , (17)

evaluated with beamsplitter angles θA = θB = π/2. If all
angles are freely variable, then the maximum value of the
LGI function is

Kdeph
max (
) = 1 + f (
){1 + f (
)}

1 + f (
)
, (18)

obtained for cos θA = cos θB = [1 + f (
)]−1. Within this de-
phasing model then, any nonzero visibility implies a violation
of the LGI since the LG correlator K

deph
max exceeds the classical

value for all f �= 0. For small visibilities, f � 1, we have
K

deph
max (
) ≈ 1 + f 2(
). In the opposite limit, (1 − f ) � 1,

we have K
deph
max (
) ≈ 3

4 {1 + f (
)}.
One interesting feature occurs if we assume that the phase

φ is fixed (e.g., we are not able to vary the magnetic field) and
maximize over θA/B [see Fig. 3(b)]. Provided that cos φ > 0,
the maximum value is

K
deph
max(θA/B )(φ,
) = f (
) cos φ + 1

1 + f (
) cos φ
, (19)

found by setting cos θA = cos θB = [1 + f (
) cos φ]−1. If,
however, cos φ � 0, the maximum value is just the classical
value, K

deph
max(θA/B ) = 1, found by setting cos θA = cos θB = 1.

This reversion to the classical value occurs when the scalar
product between the axis of the rotation of beamsplitter B and
that of beamsplitter A becomes negative.

C. Multichannel case

The above scheme is easily modified to include multiple
channels. We take the same geometry as before but assume
that each lead supports M channels. The M channels of
the upper lead are all associated with qubit state Q = +1;
the M channels in the lower lead, with state Q = −1.
The scattering matrices of Eq. (14) are thus generalized to
2M × 2M matrices with M × M blocks, rX, tX, r ′

X, and t ′X.
Assuming a large source-drain voltage, such that all channels
are equally populated, the correlation functions read:

C21 = 1

M
Tr{RA − TA};

C32 = 1

M
Tr{R†

A(RB − TB) + T
†
A(R′

B − T ′
B)};
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C31 = 1

M
Tr{R†

A(RB − TB) − T
†
A(R′

B − T ′
B)}

+ 1

M
Tr{rAt

†
A(t ′B

†
rB − r ′

B

†
tB) + tAr

†
A(r†Bt ′B − t

†
Br ′

B)},
(20)

with RA = r
†
ArA, TA = t

†
AtA, etc. The second term in the

expression for C31 arises from interference between the paths.
In the single channel case, these results reduce to those
of Eq. (15).

An important observation can be made about the multi-
channel case by considering the special case that the scattering
matrices preserve the channel index, i.e., we essentially have
M independent interferometers. In this case, the LG parameter
reads K = 1

M

∑M
m=1 K (m), where K (m) is the LG parameter for

channel m. If we could tune by hand all the parameters of the
scattering matrices, then the maximum violation of Kmax = 3

2
can be reached. However, in an experiment, there will typically
only be a few controllable parameters and this could make
violations hard to observe. Let us assume that we can adjust
the parameters such that one of the K (m) is maximized,
m = 1, say. Whether we see a violation or not very much
depends on what happens with the parameters of the other
channels. If these parameters are all roughly similar to those of
channel 1, then violations should still be observed. Generically,
however, this will not be the case, and the K (m) for the other
channels will take unrelated values in the range from −3 to 3

2 .
The negative values are particulary troublesome as they will
tend to overwhelm any positive contribution to the violation
from other channels. This lack of controllability means that
multichannel geometries are best avoided if violations of the
LGI are sought.

IV. DOUBLE QUANTUM DOT INTERFEROMETER

The above MZI scheme functions by having the detectors
remove electrons from the interferometer arms. In this section
we study a second MZI realization which leaves the electrons
within the system and the effects of measurement are only felt
through dephasing. This second setup is shown in Fig. 4. As in
the foregoing, the basic structure is of two (single-channel)
leads that are joined at two beamsplitters. Beamsplitters

FIG. 4. (Color online) Sketch of a Mach-Zehnder interferometer
with a quantum dot in each arm. The charge state of each QD can
be monitored by the currents flowing through QPCs next to the dots.
Here only the QPC monitoring the dot + is active, such that the
correlation function to be measured is as in Fig. 1(b).

between non-edge-channel leads can be realized by tunnel
junctions, as in the recent experiments by Yamamoto et al.63

In each arm of the interferometer there is a QD and alongside
each QD is a QPC charge detector. When connected to a
voltage supply, the current flowing through the QPCs serves as
a readout of the occupation of their respective QDs. Note that
although similar detectors were used in, e.g., Refs. 75 and 76,
the way in which they are used here is different.

A. Model

We first consider the system without detectors. Our MZI
model is related to that of, e.g., Refs. 77 and 78, but with
different leads. Far from the junctions, we describe the four
leads as noninteracting Fermi reservoirs with Hamiltonian
Hres = ∑

ωkαqc
†
kαqckαq with k the wavenumber of the elec-

tron, and where α = 1,3 and q = ± specify the lead (we
set h̄ = 1 and ignore spin). We assume that there is but a
single orbital of relevance in each dot and that the DQD
system is in the strong Coulomb blockade regime, such that
it is restricted to just three states: “empty,” |0〉; or with one
excess electron in either the upper or lower dots, |+〉 = d

†
+|0〉

and |−〉 = d
†
−|0〉, respectively. Assuming the dot levels are

detuned by an energy ε from one another, the dot Hamiltonian
reads HS = 1

2ε
∑

q qd
†
qdq . In the following, we set ε = 0 for

simplicity.
We assume that the effect of the beamsplitters is to modify

the amplitudes with which the leads couple to the QDs. So, for
example, an electron in lead 1+ tunnels into a superposition of
upper and lower dot states, with the details of the superposition
being determined by the scattering matrix sA. The tunnel
Hamiltonian connecting lead and dots therefore reads

HT =
∑

k

(C†
k1 · s

†
A · d + C†

k3 · sB · d + H.c.), (21)

where sA,B are scattering matrices, assumed to be energy
independent, d = (d+,d−) is a vector of dot operators, and
C†

kα = (Tα+c
†
kα+,Tα−c

†
kα−) are vectors of lead operators with

tunnel matrix elements Tαs , also assumed to be energy
independent. The corresponding sequential tunnel rates are
�αq = 2π |Tαq |2�αq , where �αq is the density of states of
reservoir αq, also assumed constant.

In the infinite-bias limit, the system can be described by
a quantum master equation of Lindblad form.79–81 Let us
introduce the super-operator notations J [d]ρ = dρd† and
A[d]ρ = − 1

2 {d†d,ρ},82–84 and introduce the operators

d̃1q = √
�1qeq · sA · d; d̃3q = √

�3qeq · sB · d, (22)

with unit vectors e+ = (1,0) and e− = (0,1). With introduction
of counting fields χαq to facilitate the calculation of current
statistics (see, e.g., Refs. 80 and 85), the χ -resolved master
equation for the DQD system reads

ρ̇(χ ) = −i[HS,ρ] +
∑
αq

(eiχαqJ [d̃αq] − A[d̃αq])ρ. (23)

The QDs are monitored by QPCs in a setup similar to the
single dot in an interferometer in the experiment of Ref. 65. In
including the detectors in our theory, we follow Gurvitz.64,67
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When dot q is unoccupied, the Hamiltonian for QPC Dq reads

HDq =
∑
ks

ωD
ksqa

†
ksqaksq + �q

∑
k

a
†
kLqakRq + H.c, (24)

where ωD
ksq is the energy of an electron in state k on side s =

L,R of the the QPC, and �q is the coupling amplitude between
the two sides (assumed energy independent). When dot q is
occupied, we assume that this Hamiltonian is modified such
that the coupling constants shift to different values, �q → �′

q .
In the limit of large bias across the QPC, the detector at location
q gives rise to an extra Liouvillian

WDq(χDq) = eiχDqJ [d̃Dq] − A[d̃Dq], (25)

which adds to the DQD Liouvillian. Here, d̃Dq = √
γ ′

q |q〉〈q| +√
γq(1 − |q〉〈q|) with γq the rate of electron transfer through

the QPC q when its dot is empty, and γ ′
q the rate when the dot

is occupied. The counting field χDq here allows us to calculate
the statistics of the detector currents. Microscopically, the rates
are γq = 2π |�q |2ρLqρRqVDq and γ ′

q = 2π |�′
q |2ρLqρRqVDq ,

with ρsq the density of states of the QPC reservoir sq and VDq

the applied voltage. Detectors may be decoupled or coupled
from the MZI-QD system by adjusting the QPC voltages such
that the differences between the amplitudes �q and �′

q is either
zero (decoupled) or finite (coupled). Here, we only couple at
most one detector to the system at a given time. Furthermore,
we assume balanced detectors such that with the D+ detector
coupled we have γ+ = γ , γ ′

+ = γ ′, and γ− = γ ′
− = 0, and

when the D− detector is coupled we have γ− = γ , γ ′
− = γ ′,

and γ+ = γ ′
+ = 0,

B. Current, correlation functions and probabilities

Our approach to measuring the LGI with this setup is similar
to that with the quantum Hall edge channels with the main
exception being how C32 is obtained. We inject electrons into
the + channel of lead 1 and close the 1− channel: �1+ → �L

and �1− → 0. For simplicity, we set the output rates equal:
�3+ = �3− = �R .

To obtain C31, we switch off the QPC detectors and measure
the output currents at 3±. Arranging the elements of the density
matrix into a vector in the basis (00, + +, − −, + −, − +),
the stationary state of the DQD system reads

ρstat = 1

2�
(2�R,�L(1 + cos θA),�L(1 − cos θA),

− eiφA/2�L sin θA, − e−iφA/2�L sin θA), (26)

with total width � = �L + �R . Here, we have assumed the
same scattering matrices as in Eq. (7). The total current flowing
is 〈I 〉tot = 〈I 〉1+ = �L�R/�, which is divided between the
output ports as

〈I 〉3± = 〈I 〉tot

2
(1 ± cos θA cos θB ∓ cos φ sin θA sin θB).

Constructing C31 as in Eq. (12) we obtain

C31 = cos θA cos θB − cos φ sin θA sin θB, (27)

which agrees with that of Eq. (9).
Next we can obtain C21 by turning on the QPC detectors

one at a time. As shown in Ref. 64, the mean current
flowing through the QPC can be used to extract the mean

current flowing through the corresponding dot. With a detector
coupled to dot q, the current through the detector is

〈IDq〉 = 〈I 〉tot

2�R

[
γ

(
1 + 2

�R

�L

)
+ γ ′ + q(γ ′ − γ ) cos θA

]
.

The current flowing through the QPC when the DQD is empty
is 〈I 0

Dq〉 = γ , such that the difference is

〈
IDq〉 = 〈IDq〉 − 〈
I 0
Dq

〉
= γ ′

q − γq

2�R

〈I 〉tot (1 + q cos θA) , (28)

which is proportional to the probability that an electron takes
the path 2q. Assuming balanced detectors, we obtain

C21 = 〈
ID+〉 − 〈
ID−〉
〈
ID+〉 + 〈
ID−〉 = cos θA, (29)

as in Eq. (12).
Whereas these two correlation functions can be determined

with just mean-current measurements, to determine C32 we
need to consider current cross correlations. Let us first imagine
that we can measure the current through dot q. Then, in the
limit �L → 0, such that there is only ever at most one electron
in the interferometer at a given time, the zero-frequency noise
correlator

S3q ′2q ≡ 1
2

∫
dt〈{I3q ′ ,I2q}〉c, (30)

where 〈. . .〉c denotes the cumulant average, is proportional to
the joint probability, P3q ′2q , that the electron travels through
dot q and ends up at output 3q ′. This result follows in the same
way as in Ref. 16, the difference here being that we correlate
the position of a single electron in subsequent regions, as
opposed to the correlation of two spatially-separate electrons.
Measuring all four such correlators, we obtain the probabilities

P3q ′2q = S3q ′2q∑
r ′r S3r ′2r

. (31)

From these directly-obtained probabilities, we construct the
ideal-negative-measurement ones as

P INM
3q ′2q = P3q ′ − P3q ′2q, (32)

where q = −q and the total probability at output 3q ′ is
obtained from the currents

P3q = 〈I3q〉∑
r〈I3r〉 . (33)

These relations follow from charge conservation and the
unidirectional nature of the transport.

The QPC detectors couple not to the current flowing through
the dots, but rather to their occupations. In terms of the zero-
frequency correlation function between current fluctuations in
the QPC and those in one of the 3± ports,

S3q ′Dq ≡ 1

2

∫
dt〈{I3q ′ ,IDq}〉c, (34)

the required probabilities read

P3q ′2q = 〈
IDq〉S3q ′Dq∑
r ′r〈
IDr〉S3r ′Dr

. (35)

This can be understood as follows. Whereas S3q ′2q correlates
two delta-function peaks corresponding to the passage of the
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electron through the regions 2 and 3, S3q ′Dq correlates a delta
function in region 3 with a signal of finite duration in region
2, which corresponds to the finite time for which the dot is
occupied. This mean occupation time is proportional to the
inverse of mean current through the dot, which can be obtained
(up to a proportionality constant) from the mean detector
current 〈
IDq〉.

Calculating these probabilities, we find that in the limit
�L → 0, the third correlation function reads

C32 = cos θB, (36)

in accordance with Eq. (10). Since, in the �L → 0 limit,
all three correlation functions are identical with their ideal
counterparts, the LGI for this setup is identical to that of
Eq. (11). In the way that we have described the QPC detectors
here, it does not make any difference whether we calculate K

using the ideal negative measurement probabilities or the direct
ones since, in our theoretical description, the QPC detectors
act as ideal detectors and only influence the system through
their dephasing effect. Experimentally, the ideal negative
measurement protocol should be used, and actually, the
comparison between the case with ideal negative measurement
and that without would give an interesting method for studying
to what extent the QPC measurements are noninvasive. Let
us just add that, whilst the above results were derived in
the symmetric case with �R+/�R− = 1 and with balanced
detector rates, if these ratios are unequal but known, then the
difference can be accounted for by weighting the terms in the
correlation functions accordingly.

C. Dephasing

A simple way to include the effects of dephasing in this
model is to “leave the detectors switched on” when calculating
C31. With empty and occupied rates γdephase and γ ′

dephase, the
measured K function has the form of Eq. (16), with the
function f (
) replaced by

f =
[

1 + {(γ ′
dephase)1/2 − (γdephase)1/2}2

2�R

]−1

. (37)

The ideal no-dephasing case has f = 1, whereas f = 0 gives
the classical limit. To obtain strong violations of the LGI
therefore requires that the difference in rates γ ′

dephase and
γdephase is small compared with the tunnel rate �R .

D. Detection errors

Just as the direct relation between the Bell inequalities and
noise measurements of, e.g., Refs. 16 and 17 relies on the
weak-tunnel limit,18–21 so it is here that our measurements are
only isomorphic with those required by the LGI in the �L → 0
limit. Away from this limit, there exists the possibility that
our measurements mistakenly correlate subsequent electrons,
rather than the same electron with itself.

The LGI quantity can be calculated using the currents
and zero-frequency noise, as described above, away from the
�L → 0 limit to assess the error. Assuming for simplicity that
the detector is faster than the system dynamics γ ′ − γ � �L/R

(although the general case can easily be investigated too), we

obtain for the LG correlator

K ′ = 1

(�L − �R)�R

{[−(�L +�R)2 + �L(�L + 3�R) cos2 θA]

× cos θB + (�L − �R)�R[2 cos θA sin2(θB/2)

+ cos φ sin θA sin θB]}. (38)

This expression is again maximized with cos φ = 1, but, unlike
the �L → 0 case, the maximizing angles θA and θB are not
equal. If we assume that �L/�R � 1, we can expand to
leading order (γ ′ − γ → ∞) to obtain

K ′ = K + 3
�L

�R

cos θB sin2 θA + O

((
�L

�R

)2
)

,

where K is the �L → 0 value. We can also calculate the
corresponding quantity in the classical limit [this we do by
calculating C31 in limit (γ ′

dephase − γdephase) → ∞]. In this
case, we obtain Ccl

31 = cos θA cos θB , and the expansion of
B ′ = C21 + C32 − Ccl

31 for small �L gives

B ′ = B + 3
�L

�R

cos θB sin2 θA + O

((
�L

�R

)2
)

, (39)

where B = cos θA + cos θB − cos θA cos θB is the classical
value in the ideal case which, when maximized gives Bmax = 1,
the bound of Eq. (1). Maximizing B ′ over the angles, we obtain
a value bigger than unity. To lowest order then, classical and
quantum LG correlators are affected in the same way. Figure 5
shows the maximum values of both quantum and classical
correlators.

Thus, assuming that we know the ratio of �L/�R from
current and noise measurements, the effects of a finite
tunneling rate �L can be included in the assessment of whether
LGI is violated or not. The conservative approach is to say
that the quantity (K ′

max − 3
2 ) represents a systematic error in

the measurement, and assuming that this error works against
us, we can only conclude that we violate the LGI when the
measured value of K exceeds unity by an amount equal to this

0 0.05 0.1 0.15 0.2
ΓL/ΓR

1

1.5

2

K
’ m

ax

quantum,  K’max
classical bound,  B’max

FIG. 5. (Color online) The maximum value K ′
max (blue solid line)

and the corresponding classical value B ′
max (black dashed line) away

from the �L → 0 limit. Both are higher than their ideal �L → 0
values. A symmetric system was assumed and the fast detector limit
(γ ′ − γ )/�R → ∞ taken.
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error. Alternatively, one can say that since one knows how the
classical bound behaves at finite �/�R , we can simply use
B ′

max of Eq. (39) as a bound. However, provided that we are in
the correct operating limit of �L/�R � 1, these modifications
will be very small, such that whether they are taken into
account or not will only effect the question of violation in
marginal cases.

V. CONCLUSIONS

We have considered the violation of the LGI in MZ
inteferometer geometries. The key to the violation is a
combination of the interference at the second beamsplitter and
the inhibition of this interference by the measurement process.
In the two proposals we have considered this inhibition occurs
in two different ways. In the first realization, we physically
interrupt transmission through one of the arms of the MZI,
obviously preventing interference. On the other hand, in the
DQD proposal, the detectors act in a more traditional way
and introduce dephasing between the paths. The difference
between these two approaches gives rise to two different
detection schemes. In the first, the LGI correlation functions
can be obtained with current measurements alone. In the
second, because electrons are not removed from the system, we
need the information about which path they have taken through
the interferometer. As we have shown, zero-frequency noise
measurements suffice for this.

In this MZ geometry both the state of the electron and
measurement time are mapped onto real-space coordinates—
the qubit states Q = ± are physically separate paths, and the
regions within the interferometer correspond to different time
instances. This mapping has several advantages for seeking
a violation of the LGI in transport. The mapping of the time
coordinate means that we do not need to make time-resolved
correlation measurements. Furthermore, the spatial separation
of the qubit degrees of freedom facilitates the realization of
ideal negative measurement, since it is relatively easy to couple
to just one of the qubit states when they are spatially distinct.

In this respect, increasing the separation of the detector arms
should decrease the plausibility of claims that detection in one
arm is, from a macro-realist point of view, influencing the
other.

The general principles described here can easily be ex-
tended to further systems. Within transport, for example,
our second scheme could also be realized with an edge-
channel MZI plus QPC detector channel without the quantum
dots.40,51–53 An alternative setting for the realization of our first
scheme might be the flying qubit experiment of Ref. 63, which
is essentially a MZI away from the quantum Hall regime.
Two challenges are obvious with this realization. Firstly, the
leads reported in the experiment have multiple channels,
which potentially gives rise to the problems discussed in
Sec. III C. The second problem is that of backscattering at
the beamsplitters and detectors, which has (justifiably) been
neglected here but probably can not be eliminated in setups
such as that of Ref. 63. A further interesting prospect is the
realization of the MZI in single-electron quantum optics.86–88

Applications away from electronic transport are also pos-
sible. The application of the first scheme in optics is obvious.
Indeed, a classical wave, once interpreted in terms of individual
photons, could be able to violate Eq. (1). Going further, the
same principles could be used to test the LGI with electrons in
free space, neutrons, atoms, and molecules, all of which have
had interference experiments in the MZI geometry conducted
on them.89,90 Of these, molecules offer the most exciting
prospect, as there the nature of the coherence being tested
could potentially be macroscopic, in line with the original
goals of Ref. 3.
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