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Coherent control of double-dot molecules using Aharonov-Bohm magnetic flux
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Bonding and antibonding states of artificial molecules have been realized in experiments by directly coupling
two quantum dots. Without a direct coupling between two nearby quantum dots, here we show that under a very
unusual condition (i.e., a large asymmetrical couplings to the leads at a large bias) continuous coherence control
of double-dot charge states can be achieved by changing the flux through a double-quantum-dot Aharonov-Bohm
(AB) interferometer. Using magnetic flux to control double-dot molecular-state coherence is very robust against
charge noise. We explicitly present the flux-dependent real-time processes of molecular-state formation. In
contrast with the transport current, which has a 2π period, the quantum state of the double-quantum-dot molecule
has a 4π period in the AB flux.
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I. INTRODUCTION

It is important to tailor quantum states, especially, to control
the coherent phase between two superposition states. In the
past decades, artificial atoms and molecules in solid-state
systems, such as superconducting Josephson junctions1 and
semiconductor quantum dots (QDs)2–4 have provided novel
platforms for exploring such quantum-coherent effects. Due
to the tunability of various electronic couplings, double-
quantum-dot (DQD) systems, which are archetypes of arti-
ficial molecules, have attracted considerable attention because
they can serve as qubit systems for quantum information
processing.5,6 The two DQD charge states with one electron
residing in either of the two dots are defined as the compu-
tational basis of the DQD charge qubit. Coherence arising
from superpositions between such charge qubit states, called
DQD molecular states in this paper, is of primary interest.
It can be achieved by directly coupling the two quantum
dots. The tunability of such direct interdot coupling has been
experimentally demonstrated7,8 and the charge coherence has
also been observed in various experiments.3,4,9–12 However,
the tunnel coupling between the charge states is implemented
via voltage gates, which is susceptible to charge noises.13–15

In this paper, we show that for a uncoupled DQD in an
Aharonov-Bohm (AB) interferometer, by solely tuning the
AB flux, the coherent control of the DQD charge states can
be realized. Controlling the charge coherence via magnetic
fields could circumvent charge noise. Magnetic fluxes have
been utilized to investigate the coherence of electron transport
through a single QD in AB interferometers.16 Combining
an interdot tunnel coupling with a magnetic flux has also
been studied theoretically17–19 and experimentally.20–23 In
particular, controlling the DQD molecular states through AB
phases has been of recent experimental interest.20 Besides
the charge noise induced from voltage gates, coupling the
DQD to electrodes also causes decoherence.24–26 Although
the tunnelings to the electrodes may be turned off to avoid the
electron-reservoirs-induced decoherence, such tunnelings are
indispensable for the AB effect. Thus, controlling the charge
coherence of the uncoupled DQD through the AB flux is very
robust against charge noises but it still faces the challenge of
the electron-reservoir-induced decoherence.

In this paper, we consider an uncoupled DQD embedded
in an AB interferometer, as shown in Fig. 1. In contrast
to previous theoretical studies, which focused on quantum
transport,27–32 here we directly exploit the quantum coherence
between the charge qubit states in this DQD molecule.
Usually charge coherence control is performed with symmetric
couplings to leads via electric gate fields. However, for the
quantum dot Aharonov-Bohm interferometer, the symmetrical
coupling causes the phase localization as we have shown in
the recent publication,33 which hinders the coherence control
in the usual way. We find that under a very unusual condition,
namely using a large asymmetric coupling to the leads, in
strong contrast to the usual condition of the coherent control
with symmetric couplings, one is able to control charge
coherence via magnetic flux at a large bias. By analyzing the
detailed decoherence through the AB flux, the time-resolved
formation processes of various molecular states with different
AB fluxes are explicitly presented. Furthermore, we find that
the period of the DQD molecular states is 4π in the AB
flux. Instead, the transport current, obtained by averaging
the DQD states, has a period of 2π . The coherence of the
DQD molecular states and the coherence of electron transport
flowing through the DQD therefore manifest themselves
fundamentally different with respect to the AB flux.

The paper is organized as follows. In Sec. II, we describe the
double-dot AB interferometer and solve exactly the reduced
density matrix of the double dot. In Sec. III, we explore the
coherence controls of the DQD molecular states via the AB
flux. In Sec. IV, the real-time processes of the DQD molecular
state formations are presented in different pictures. And the
discussion and conclusion are given in Sec. V.

II. MODEL SYSTEM AND ITS EXACT SOLUTION

To focus on the influence of the AB flux on the quantum
state of the artificial molecule we consider only polarized
noninteracting electrons. The total Hamiltonian of the system
is conventionally28 given by H = Hs + HE + HT, in which
Hs = ∑

i Eia
†
i ai describes an uncoupled DQD and HE =∑

αk εαkc
†
αkcαk is the Hamiltonian for the leads with α = L(R)
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FIG. 1. (Color online) Schematic diagram of a pair of uncoupled
quantum dots in an Aharonov-Bohm interferometer.

labeling the source (drain) lead, and HT = ∑
jαk[Vjαc

†
αkaj +

H.c.] depicts the coupling between the central dot system
and the leads. Here a

†
i (ai) and c

†
αk (cαk) are the electron

creation (annihilation) operators for the electronic levels i

and k in the dot system and the lead α, respectively. The
tunneling amplitudes harbor the applied magnetic flux � via
VjL = V̄jLe−iφjL and VjR = V̄jReiφjR with the relation φ1L −
φ2L + φ1R − φ2R = φ ≡ 2π�/�0, where φ = 2π�/�0 and
�0 = h/e is the flux quantum. The line widths induced by
tunneling are then given by �α = 2π |Vjα|2�α , where �α is
the density of states in the lead α. The DQD molecular states
descried in terms of the reduced density matrix are governed
by the following exact master equation:26

d

dt
ρ(t) = −i[Hs,ρ(t)] +

∑
iα

[L+
iα(t) + L−

iα(t)]ρ(t), (1)

whereL±
iα(t) are the superoperators describing the dissipations

and fluctuations induced by the tunnel coupling to the
electrodes (for details see Ref. 26). Denoting the state of the
empty DQD by |0〉, one electron on the first and the second dots
by |1〉 and |2〉, respectively, and the state of both dots occupied
by |3〉, the density matrix ρ(t) can be generally expressed as

ρ(t) =

⎛
⎜⎝

ρ00(t) 0 0 0
0 ρ11(t) ρ12(t) 0
0 ρ21(t) ρ22(t) 0
0 0 0 ρ33(t)

⎞
⎟⎠, (2)

where ρij = 〈i|ρ|j 〉 with i,j = 0,1,2,3. The QDQ molecular
state, featured as one electron in the DQD shared between the
two charge states of the DQD molecule, is embedded in the
central 2 × 2 block matrix of Eq. (2).

To see how molecular states in this DQD are formed in time,
we solve the master equation (1) with the initial preparation
of the empty DQD, namely, ρ00(0) = 1 and ρij (0) = 0, for all
i �= 0, j �= 0. The exact solution from the master equation for
each matrix element gives

ρ11(t) = v11(t) − det v(t),

ρ22(t) = v22(t) − det v(t),
(3)

ρ12(t) = v12(t), ρ21(t) = v21(t),

ρ00(t) = det[I − v(t)], ρ33(t) = det v(t),

with I being an identity matrix and

v(t) =
∫

dω

2π
u(t,ω)

∑
α

fα(ω) �α

(
1 e±iφ/2

e∓iφ/2 1

)
u†(t,ω)

(4)

is a 2 × 2 hermitian matrix, where fα(ω) is the Fermi
distribution function of the reservoirs, the upper (lower) sign
is for α = L (R), and u(t,ω) = ∫ t

t0
dτeiω(t−τ )u(τ ) with

u(τ ) = exp

[
−

(
iE1 + � �c(φ)
�∗

c (φ) iE2 + �

)
τ

]
. (5)

Here we have defined �c(φ) = � cos(φ/2) + iδ� sin(φ/2)
with � = �L+�R and δ� = �L−�R . The functions u(t) and
v(t) are indeed the spectral and correlation Green functions
in the Schwinger-Keldysh nonequilibrium Green function
theory.34 The AB flux φ, the coupling asymmetry δ�, the non-
degeneracy δE = E1 − E2, and the nonequilibrium dynamics
from the electron tunnelings all influence the consequent
quantum states of the DQD molecule.

On the other hand, we can rewrite the DQD molecular state
[i.e., the central block matrix of Eq. (2)] as

ρq(t) = 1
2 [I + r(t) · σ ] − 1

2 [ρ00(t) + ρ33(t)]I , (6)

where σ = (σx,σy,σz) consists of the Pauli matrices and r(t) =
(rx,ry,rz) with

rx = 2Reρ21(t), ry = 2Imρ21(t), rz = 2[ρ11(t) − ρ22(t)],

(7)

being the polarization vector for the molecular states. So
the coherence dynamics of DQD molecular state formations,
described by the off-diagonal matrix element ρ12 of the
reduced density matrix, can also be visualized through the
motion of the polarization vector with the Bloch sphere. Also,
the leakage out of the one-electron state space can be easily
seen from the term proportional to the probability of the empty
and the doubly occupied states, ρ00(t) + ρ33(t).

III. COHERENT PHASES CONTROLLED
BY THE AB FLUX

The coherence between the two charge states of the DQD
molecule is characterized by the off-diagonal element ρ21.
To develop a clear picture of the coherence of the DQD
molecular state, let us first look at the off-diagonal matrix
element ρ12(t) in Eq. (3) in the steady-state limit (t � �−1) at
zero temperature. The general solution is

ρ21 = 1

2
(rx + iry)

= 1

2π

[
tan−1

(
eV

2�+(φ)

)
+ tan−1

(
eV

2�−(φ)

)]

×
[
δ�

�
cos

φ

2
− i sin

φ

2

]
+ δE

4πγ (φ)

[
1

�+(φ)

× tan−1

(
eV

2�+(φ)

)
− 1

�−(φ)
tan−1

(
eV

2�−(φ)

)]

×
{

1

�

[
(�2−δ�2) sin

φ

2
− δ�δE cos

φ

2

]
− iδE sin

φ

2

}
,

(8)
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where γ (φ) =
√

�2 cos2(φ/2) + δ�2 sin2(φ/2) − δE2 and
�±(φ) = 2−1[� ± γ (φ)]. Here, we have also applied a bias,
μL = eV/2 = −μR . The full complexity of decoherence is
revealed through Eq. (8). Due to severe decoherence in
such a system, it has been analytically proven33 and also
numerically demonstrated later35 that the coherent phase ϕ

(in the off-diagonal matrix element ρ21 = |ρ21|eiϕ) between
the two DQD charge qubit states can only take the values
of 0, ±π/2 or π for arbitrary flux. This applies for the
often-used condition of degeneracy δE = 0 and symmetric
coupling δ� = 0. Such decoherence-induced localization of
the coherent phase hinders the manipulation of the coherent
phase of molecular states. Remarkably, when the DQD couples
largely asymmetrical to the left and the right leads (δ� �= 0),
we find that the coherent phase ϕ can be continuously tuned
by AB fluxes.

To achieve typical molecular states, the DQD is set at
degeneracy (δE = 0). Then the second term in Eq. (8) vanishes.
Equations (3) and (8) show that the formation of molecular
states is essentially determined by the applied bias and the
coupling asymmetry to the source and the drain. The basic
setup of zero bias (which is commonly used for examining
quantum transport) leads to ρ21 = 0 (where the DQD is in
equilibration with the reservoirs) and is not of interest here.
With a large bias eV � �, we find

ρ21 =
{

1
2

[
(δ�/�) cos φ

2 − i sin φ

2

]
if φ �= 0,

1
4 (1 + δ�/�) if φ = 0.

(9)

Equation (9) clearly shows the controllability of the coherent
phase between the two charge states of the DQD molecule
through the AB flux. It also explicitly reveals the necessity
of the asymmetry in the couplings δ� �= 0. In the case of
symmetric coupling δ� = 0, Eq. (9) shows that the real part
vanishes for φ �= 0 so that the coherent phase ϕ is localized
at π/2, except for φ = 0, where the coherence phase is
restricted to 0, as pointed out by the authors of Ref. 33.
This result has recently been reproduced using the exact
numerical path-integral method35 where the e-e interaction
was also included. However, with the larger asymmetry δ�, the
coherence amplitude |ρ21| linearly increases and the coherence
phase is continually driven by the AB flux, as seen from
Eq. (9).36 By setting δ� � �, we obtain ρ ≈ |ψ(φ)〉〈ψ(φ)|,
where

|ψ(φ)〉 = 1√
2

[|1〉 + exp(−iφ/2)|2〉]. (10)

A continuous transition from the symmetric molecular state
|ψ(0)〉 = (|1〉 + |2〉) /

√
2 to the antisymmetric molecular state

|ψ(±2π )〉 = (|1〉 − |2〉) /
√

2 is achieved by changing the AB
flux, as shown in Fig. 2 (and the interpretation given in the
figure caption). Interestingly, we also find that the period of
the state of the DQD molecule is 4π , rather than the usual 2π

in the AB flux.
The physics behind this coherence tunability is as follows.

The coherence between the charge states |1〉 and |2〉 is related
to the molecular basis |±〉 = 1√

2
(|1〉 ± |2〉) via Reρ21 =

1
2 (ρ+,+ − ρ−,−) and Imρ21 = Imρ+,−. With a symmetric
geometry of the system δE = 0 and δ� = 0, neither of the
molecular states |±〉 is preferred. This results in ρ+,+ = ρ−,−

FIG. 2. (Color online) Control of the coherent phase of the DQD
molecule by the AB flux. The explicit solution of ρ21 in the steady-
state limit is shown by the “blue diamonds” on the central panel.
Each diamond corresponds to an AB flux value, taken from φ = 0 to
φ = ±2π with π/8 steps. The wave functions on the DQD molecules
are illustrated for various values of the AB flux. A DQD is indicated
by two circles with centers connected by a dashed line (no interdot
coupling) below the diagrams for φ = −3π/2. Both the real (red)
and the imaginary (blue) parts are shown, so one sees how the AB
flux changes the coherent phase between the two charge states. Other
parameters are δE = 0, eV = 6� at kBT = �/20, which are also used
in the following figures, unless specified.

so that Reρ21 = 0. Therefore the phase of ρ21 can only be
±π/2 (i.e., the phase localization shown in previous work33).
In the case that φ = 0 (or φ = 2π ), the state |−〉 (or |+〉)
becomes decoupled from the electron reservoirs, and electrons
can only occupy the opposite molecular state |+〉 (or |−〉). The
corresponding phase of ρ21 is then 0 (or π ). On the other hand,
when φ = 0, the occupation of the antisymmetric state |−〉 =
(|1〉 − |2〉)/√2 becomes a constant of motion.37 Turning on the
flux φ �= 0 breaks such symmetry and consequently changes
the electron states abruptly. Therefore ρ21 changes abruptly
across φ = 0 as indicated in Eq. (9).

IV. REAL-TIME PROCESSES OF
MOLECULAR-STATE FORMATIONS

The full information of the quantum state of the DQD
molecule at finite temperature is depicted by the time-
dependent reduced density matrix. In Fig. 3, we plot the
evolution of the full reduced density matrix of the DQD
molecule. Initially, the DQD is prepared in an empty state,
ρ00(0) = 1 as shown by Figs. 3(b1), 3(c1), and 3(d1) and
r(0) = 0 given in Fig. 3(a1) (where the length of the red strip
is zero). After injecting electrons from the left and the right
reservoirs, ρ00 decreases [see Figs. 3(b1) to 3(b3)] while the
electron occupation and coherence increase with time [see
Figs. 3(b1) to 3(b3), Figs. 3(c1) to 3(c3), and also Figs. 3(d1)
to 3(d3)]. The coherent phase ϕ between the charge states has
been fixed shortly after the electron injection [see Figs. 3(a1) to
3(a4) and also Figs. 3(d2) to 3(d4)]. Then |r(t)| grows in time
with fixed ϕ, and finally a stable molecular state, ρ ≈ |ψ〉〈ψ |,
where |ψ〉 = (|1〉 + e−iφ/2|2〉)/√2, is reached in a short time,
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FIG. 3. (Color online) Typical process for forming molecular states. The dashed black line in (a1) to (a4) is the trajectory taken by r(t)
from t = 0 in (a1), starting from the origin, to t = 3/� in (a4), where it almost touches the surface of the sphere. The red strip in each plot
is the trajectory up to the corresponding time points, as shown above the spheres. From the trajectory, we see the coherent phase ϕ [which is
the angle made by r(t) with rx axis] has been fixed after the electron is injected into the DQD. Plots (b1) to (b4) display the real part of the
reduced density matrix of the DQD system, while the imaginary part is plotted in (c1) through (c4). The coherent phase ϕ between the two
charge states is better visualized through the vector plots (d1) to (d4). Every arrow represents an element of the reduced density matrix ρij ,
whose horizontal projection stands for the real part and the vertical projection stands for the imaginary part. The AB flux here is φ = −π/2.

of about 3�−1. Note that due to possible leakage, see Fig. 3(b3)
where ρ00 has a small finite value, the DQD is not in a perfect
pure state. But the situation can be optimized by changing the
bias and the coupling asymmetry, as shown by Eq. (9).

To better understand the role played by the AB flux, we
show the time evolutions of ρ21 in Fig. 4 under various values of
φ. Figures 4(a1) and 4(a2) show the process of coherence gen-
eration for a strong asymmetric coupling (with δ� = 0.9�).
The rate of approaching steady-coherent-molecular states is
only weakly dependent on the flux. The stable molecular states
are soon reached after a few �−1. This is totally different
from the symmetric coupling (δ� = 0), as shown by the
authors of Refs. 33 and 35, where Reρ21 displays the severe
flux-dependent decays due to the decoherence induced by the
large electron transport in the symmetric coupling. Therefore,
the larger coupling asymmetry can strongly suppress the
decoherence from the electron transitions, and makes the
coherence control of the QDQ molecule feasible.

V. DISCUSSIONS

The general solution shows that the quantum state of the
DQD molecule has a period of 4π in the AB flux. It is an

FIG. 4. (Color online) The full coherence time evolutions of ρ21,
(a1) and (a2), in the large asymmetrical coupling (δ� = 0.9�),
compared with the phase localization, (b1) and (b2), in the sym-
metrical couplings (δ� = 0), the letter was shown in our previous
work (Ref. 33), as well as in Ref. 35.
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intrinsic property of this pseudospin system, independent of
the coupling geometry and the bias configurations. Besides,
we can calculate the tunneling current to reservoir α = L,R

within the same framework:26 Iα(t) = e
∑

i trs[L+
iα(t)ρ(t)].

The steady-state transport current I = 1
2 (IL − IR) has been

calculated32

I (φ) =
∫

dω

2π
[fL(ω) − fR(ω)]T (ω,φ), (11)

where the transmission coefficient is given by

T (ω,φ) = (�2 − δ�2)
[
ω2 cos2 φ

2 + 1
4δE sin2 φ

2

]
[ω2 + �2+(φ)][ω2 + �2−(φ)]

. (12)

By taking δ� = 0 it reproduces the result of the authors of
Ref. 28. Equation (12) clearly shows that the transport current
has a period in the AB flux of 2π . This 2π period, as a
feature for the coherence of transport, is well known and
has been observed in experiments.16,22,23 The 4π period, a
nontrivial character of the quantum state of the DQD molecule,
requires further experimental investigation. Note that although
the coherent phase of the off-diagonal density matrix element
is gauge dependent, the AB flux dependence of the coherence
phase and its periodicity are both independent of the gauge
choice.

In summary, we have demonstrated the unusual conditions
for the coherence control of DQD artificial molecules using
AB fluxes. We have analyzed the AB flux-dependent coherence
controlling through the exact solution of the master equation.

When a large bias is applied with a strong asymmetry in cou-
plings to the source and the drain, coherent control by the AB
flux can be achieved. The decoherence induced by the electron
tunnelings can be efficiently suppressed. We also find that the
period of the quantum state of the DQD molecule in the AB
flux is 4π , in contrast with the 2π periodicity of the transport
current. The revelation of the underlying quantum coherence
of the molecular states is thus beyond the usual transport
measurement. The verifications of these molecular states
would rely on a suitable quantum-state-tomography protocol
for further investigations. We hope that this theory for DQD
molecules could inspire new experiments on coherence control
of molecular states via AB fluxes, and become also useful for
the quantum emulation38 of artificial molecular processes.
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