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We study, theoretically and experimentally, disorder-induced resonances in randomly layered samples and
develop an algorithm for the detection and characterization of the effective cavities that give rise to these
resonances. This algorithm enables us to find the eigenfrequencies and to pinpoint the locations of the resonant
cavities that appear in individual realizations of random samples for arbitrary distributions of the widths and
refractive indices of the layers. Each cavity is formed in a region whose size is a few localization lengths. Its
eigenfrequency is independent of the location inside the sample and does not change if the total length of the
sample is increased by, for example, adding more scatterers on the sides. We show that the total number of
cavities Ncav and resonances Nres per unit frequency interval is uniquely determined by the size of the disordered
system and is independent of the strength of the disorder. In an active amplifying medium, part of the cavities
may host lasing modes whose number is less than Nres. The ensemble of lasing cavities behaves as distributed
feedback lasers, provided that the gain in the medium exceeds the lasing threshold, which is specific for each
cavity. We present the results of experiments carried out with single-mode optical fibers with gain and randomly
located resonant Bragg reflectors (periodic gratings). When the fiber was illuminated by a pumping laser with
an intensity high enough to overcome the lasing threshold, the resonances revealed themselves by peaks in the
emission spectrum. Our experimental results are in good agreement with the theory presented here.
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I. INTRODUCTION

Anderson localization of waves in one-dimensional (1D)
random media is associated with an exponential decrease in
the wave amplitude inside the disordered locally transparent
sample, which results in an exponentially small typical
transmittance Ttyp ∝ exp(−L/lloc) � 1 (where L is the length
of the sample and lloc is the localization length). Another
manifestation of Anderson localization is the existence of
resonant frequencies where the transmission increases dras-
tically, sometimes up to unity. These frequencies correspond
to the quasilocalized eigenstates (modes or disorder-induced
resonances) characterized by a high concentration of energy
in randomly located points inside the system.

Even though 1D localization has been intensively studied
during the past few decades1 (see also Refs. 2 and 3 and
references therein), most of the analytical results were obtained
for mean quantities, i.e., for values averaged over ensembles of
random realizations. These results are physically meaningful
for the self-averaging Lyapunov exponent (inverse localization
length), which becomes nonrandom in the macroscopic limit.2

For non-self-averaging quantities (field amplitude and phase,
intensity, transmission, and refection coefficients, etc.), a

random system of any size is always mesoscopic, and
therefore, mean values have little to do with measurements
on individual samples. This is most pronounced when it
comes to the disorder-induced resonances whose parameters
are extremely volatile and strongly fluctuate from realization to
realization.4,5 In particular, ensemble averaging wipes out all
information about the frequencies and locations of individual
localized states within a particular sample, even though these
data are essential for applications based on harnessing micro-
and nanocavities with high-Q factors.

A. Disorder-induced cavities and resonances

Nowadays, photonic crystals are believed to be the most
suitable platforms for the creation and integration of optical
resonators into optical networks. To create an effective
resonant cavity that supports localized high-Q modes in a
photonic crystal (PC), it is necessary to break periodicity, i.e.,
to introduce a defect in a regular system. As fluctuations of the
dielectric and geometrical parameters are inevitably present in
any manufactured periodic sample, it could create a serious
obstacle in the efficient practical use of PCs. Therefore, con-
siderable efforts of researchers and manufacturers go into the
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control of fluctuations. Alternatively, if rather than combating
imperfections of periodicity, one fabricated highly disordered
samples, they could be equally well harnessed, for example,
for creating tunable resonant elements. This is because 1D
random configurations have a unique band structure that,
for some applications, has obvious advantages over those
of a PC.6 Contrary to periodic systems, resonant cavities
inherently exist in any (long enough) disordered sample or can
be easily created by introducing a nonrandom element (for
example, homogeneous segment) into an otherwise random
configuration. The effective wave parameters of these cavities
are very sensitive to the fine structure of each sample and can
be easily tuned either by slightly varying the refractive index in
a small area inside the sample or, for example, by changing the
ratio between the coupling strength and the absorption. This
makes shifting the resonant frequency (and thereby locking
and unlocking the flow of radiation), coupling modes, and
creating quasiextended states, etc., possible7,8

It has been shown9 that each localized state at a frequency
ω = ωres could be associated with an effective high-Q-factor
resonance cavity composed of an almost transparent (for this
frequency) segment bounded by essentially nontransparent
regions (effective barriers). Wave tunneling through such a
system can be treated as a particular case of the general
problem of the transmission through an open resonator.10 The
distinguishing feature of a disorder-induced cavity is that it
has no regular walls (the medium is locally transparent in each
point), and high reflectivity of the confining barriers is due
to the Anderson localization. Moreover, different segments of
the sample are transparent for different frequencies, i.e., each
localized mode is associated with its own resonator.

B. Random lasers

If the medium inside such a cavity is amplifying, the
combination of the optical gain and the interference of
multiply scattered radiation creates a coherent field and gives
rise to multifrequency lasing with a sharply peaked lasing
spectrum. Random lasers (RLs) are the subject of increasing
scientific interest due to their unusual properties and promising
potential applications.11–17 Unlike conventional lasers where
any disorder is detrimental, in a random version, scattering
plays a positive role in increasing the path length and the
dwell time of light in the active medium. So far, most studies,
both experimental and theoretical, have concentrated on three-
dimensional (3D) disordered systems and chaotic cavities.
One of the grave drawbacks of 3D random lasers is their
inefficient pumping, which is hampered by the scattering of the
pumping radiation in the random medium. A one-dimensional
RL, which is free from this disadvantage, can be realized
either as a random stack of amplifying layers18 or as a set
of Bragg gratings (BGs) randomly distributed along a doped
optical fiber.19 In the last case, the wavelength of the pumping
laser is shifted from the Bragg resonance of the gratings, and
the fiber is excited homogeneously along the whole length of
the sample. Both these methods noticeably reduce the lasing
threshold as compared to the 3D random lasing systems.
Because the frequencies of the modes and the locations of
the effective cavities randomly vary from sample to sample,
in most cases, they are described statistically.20–24 However,

usually, we deal with a specific random sample, and it is
important to know how many modes and at which frequencies
they can be excited in a given frequency range where these
modes are localized inside this sample, etc.11

Another field of research, in which this information was
crucial, recently arose after it had been realized that Anderson
resonances could be used to observe cavity quantum elec-
trodynamics effects by embedding a single quantized emitter
(quantum dot) in a disordered PC waveguide.25,26 In those
experiments, the efficiency of the interaction between radiation
and disorder-induced cavities depends strongly on the location
of the source inside the random sample. Indeed, all QED effects
are well pronounced when the emitter with a given frequency
is placed inside the effective cavity, which is resonant at this
frequency, and could be completely suppressed otherwise.

In this paper, we develop an algorithm that enables detecting
all cavities and finding their locations and eigenfrequencies
for any individual sample with given geometry and optical
parameters. It is shown that, in the case of uncorrelated
disorder, the number of disorder-induced resonances per unit
frequency interval is independent of the strength of the
fluctuations and is uniquely determined by the size of the
random sample. The results have been checked experimentally
using RLs based on a single-mode fiber with randomly
distributed resonant Bragg gratings developed in Ref. 19.

II. DISORDER-INDUCED CAVITIES AND RESONANCES

In Refs. 6, 7, 9, and 10, it has been shown that, for a
quantitative description of the wave propagation through a
disordered sample, it is advantageous to consider it as a
random chain of effective regular resonators with given Q

factors and coupling coefficients. The typical size of each
resonator is on the order of the localization length lloc, and
their centers are randomly distributed along the sample.
For manufacturing RLs and for the ability to tailor their
properties, it is important to know the location of the resonant
cavity for each eigenfrequency.11 To this end, a criterion is
necessary, which enables determining whether a given area of
a disordered sample is either a resonant cavity or a strongly
reflecting (typical) random segment.

To derive such a criterion for randomly layered media, we
consider a disordered sample consisting of N homogeneous
layers with thicknesses dj and dispersionless refractive indices
nj (j = 1,2, . . . ,N ) that are statistically independent and are
uniformly distributed in the intervals (d0 − δd,d0 + δd) and
(n0 − δn,n0 + δn), respectively. (The effects of correlation
between the thicknesses of the adjacent blocks have been
considered in Refs. 27– 29.) In a system with uncorrelated
layers, the interface between the j th and the (j + 1)-th layers
is located at a random point zj and can be characterized by
complex transmission tj and reflection rj coefficients, which
are also randomly distributed in the corresponding intervals.
The numeration is chosen from left to right so that zj < zj+1. It
is assumed, thereafter, that the optical contrast between layers
is small. Therefore, all Fresnel reflection coefficients rj are
also small,

|rj | � 1, (1)
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FIG. 1. (Color online) Schematic of closed trajectories in a
randomly layered sample.

and, consequently, 1 − |tj |2 � 1. For the sake of simplicity,
these coefficients will be assumed to be real. The generaliza-
tion for complex valued rj and tj is straightforward.

In what follows, it is convenient to turn to the optical
lengths, i.e., to replace the thicknesses dj and the coordinates
zj by

d̃j = njdj , z̃j =
∑
i<j

nizi, (2)

where nj is the refraction index of the j th layer. Note that, in
these notations, the wave number has the same value k̃ = k =
ω/c in all layers.

To distinguish between an effective resonator and a Bragg
reflector, a proper physical quantity representative of distinc-
tive properties of these objects has to be found. To do this,
let us consider a wave that propagates rightward from a point
z̃ = z̃j + 0 [right side of the interface between the (j − 1)-th
and the j th layers] where its amplitude is A

(+)
j0 (thereafter,

superscripts (+) and (−) denote the amplitudes of the waves
propagating to the right or to the left, respectively). After
traveling through the j th layer, the wave is partially reflected
back from the interface between the j th and the (j + 1)-th
slabs. The transmitted part extends through the (j + 1)-th
layer and is partially reflected from the next interface, etc.
(see Fig. 1).

If the scattering at the interfaces between layers is weak,
Eq. (1), the amplitude Ã

(−)
j of the total field reflected from the

Ns layers and returned back to the point z̃ = z̃j + 0 can be
calculated in the single-scattering approximation and is equal
to

Ã
(−)
j = r

(+)
j (k) A

(+)
j0 , (3)

where

r
(+)
j (k) =

Ns∑
m=1

rj+m exp[2ik(z̃j+m − z̃j )], (4)

and k = ω/c is the wave number. The amplitude Ã
(+)
j =

r
(−)
j (k) A

(−)
j0 is introduced in the same way, with the left

reflection coefficient r
(−)
j (k),

r
(−)
j (k) = −

Ns∑
m=0

rj−m exp[2ik(z̃j − z̃j−m)]. (5)

In Eq. (5), it is taken into account that the reflection coefficients
rl and rr for waves that are incident on the same interface from
the left or from the right have opposite signs: rl = −rr . The
field of all waves that made a closed path and returned back

after consequent reflections from the Ns layers located on the
right and the Ns layers located on the left from the j th layer
has an amplitude A

(+)
j1 . In the general case, A(+)

j1 is not equal to

the initial amplitude A
(+)
j0 , and the difference is

δA
(+)
j = A

(+)
j0 − A

(+)
j1 ≡ A

(+)
j0 [1 − �j (k)], (6)

where

�j (k) = r
(+)
j (k) r

(−)
j (k). (7)

The function �j (k) is an important characteristic, which
uniquely determines the resonant properties of any one-
dimensional wave system. In particular, the eigen-numbers
can be found as poles of the Green’s function, i.e., as the roots
of the equation,30,31

�j (k) − 1 ≡ r
(+)
j (k) r

(−)
j (k) − 1 = 0. (8)

In the case of a closed resonator,

�(k) = exp(2iπn), n = 1,2,3, . . . ,

i.e., arg �(k) = 2πn, and Re �(k) = 1. For an open resonant
cavity, the roots kres of Eq. (8) are complex kres = kR + ikI . If
the Q factor of a resonator is large enough, then kR � kI , and

Re �(kR) = 1 − kR�/Q > 0, (9)

Im �(kR) � 0, (10)

where � is the resonator length.
Note that Eq. (10) also is fulfilled when arg �(k) = πn,

which is the Bragg reflection condition. In this case, in contrast
to a resonant cavity, sgn{r (+)(k)} = −sgn{r (−)(k)}, and the real
part of �(k) is negative Re �(k) < 0.

These properties of the quantity �(k) are quite general
and can be used to characterize randomly layered systems,
in particular, to detect effective resonant cavities inside them.
Indeed, when for a segment of 2Ns layers centered at a point z̃j

inside a long (N � Ns) disordered sample the imaginary part
of �(k) is zero at some k = ω/c, this area is either a resonant
(at the frequency ω) cavity or a localization-induced resonant
Bragg reflector. What it is, indeed, is determined by the sign
of the real part of �: In a resonator, Re � > 0, whereas, for a
Bragg grating, Re � < 0.

The last condition is easy to understand if we notice that
r

(+)
j (k) is the (−2k)-Fourier harmonics of the function,

F
(+)
j (z) =

Ns∑
m=1

rj+mδ[z̃ − (z̃j+m − z̃j )], (11)

and r
(−)
j (k) is the (+2k)-Fourier harmonics of the function,

F
(−)
j (z) =

Ns∑
m=0

(−rj−m)δ[z̃ − (z̃j−m − z̃j )]. (12)

This means that r
(+)
j (k) and r

(−)
j (k) are Bragg reflection

coefficients from Ns slabs located to the right and to the left
of the j th layer, respectively.

Since our prime interest here is disorder-induced resonators
for which |r (±)

j | ∼ 1 and because, in the localized regime, the
reflection coefficient from a typical region is close to unity
when its length is on the order (and larger) of the localization
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length, for further calculations, we have to choose Ns =
lloc/d0 ≡ Nloc. It is important to stress that each resonator
is formed in an area of the size of a few localization lengths
and is practically unaffected by the outer (to this area) parts
of the sample. This means that the eigenfrequency of an
effective cavity is independent of it location inside a sample
and does not change if the total length of the sample is
increased, for example, by adding more scatterers at its edges.
When the thicknesses of the layers are uncorrelated and the

mean thickness d̃j = d̃0 is large compared to the wavelength
kd̃0 � 2π , the localization length is determined by the mean
value of the local reflection coefficients rj .32 To prove this
statement, note that the functions r

(±)
j (k), Eqs. (4) and (5),

are sums of Nloc uncorrelated random complex numbers
and, therefore, can be described in terms of a random walk
on the plane (Re r,Im r) with the single step equal to |rj |.
Then, the mean absolute value |r (±)

j (k)| is the mean distance

from the origin after Nloc steps: |r (±)
j (k)| = |rj |

√
Nloc ∼ 1, and

therefore,

Nloc � (|rj |)−2. (13)

The characteristic scale of the variation in r
(±)
j (k) along the

sample measured in a number of layers is on the order
of Nloc � 1. Thus, the coefficients r

(±)
j (k), and hence, the

quantities �j (k) are smooth random functions of j , i.e., of
the distance along the sample. As the length N of a sample
is large enough N � Nloc, the number of regions where
Re �j (k) > 0 is approximately equal to the number of regions
where Re �j (k) < 0. The characteristic size of these areas
is the localization length. Therefore, the expected number of
cavities Ncav, resonant at a given wave number k is as follows:

Ncav � L̃

2lloc
. (14)

In order to estimate the number of resonances Nres in a
given interval �k of the wave numbers (in a given frequency
interval �ω = c �k), it is necessary to estimate the cavity
“width,” δkres in the k domain. To do this, we note that the
variation δk in the wave number leads to a variation δϕj in
ϕj ≡ arg �j (k),

δϕj = δk
dϕj

dk
= Im

{
1

�j (k)

d�j (k)

dk

}

= δκ

[
Im

1

r
(+)
j (k)

dr
(+)
j (k)

dk
+ Im

1

r
(−)
j (k)

dr
(−)
j (k)

dk

]
. (15)

The resonant wave number kr is defined by the condition (10),
therefore, the second resonance appears in a small vicinity of
the same layer j when the variation in arg �j (k) approaches
2π : δϕj � 2π . It is easy to see that the largest contribution to
δϕj comes from the layers that are the most distant from the
j th layer,

Im
d

dk
[ln r

(±)
j (k)] ∼ ∣∣̃zj − z̃j±Nloc

∣∣ ∼ Nlocd̃0 = lloc. (16)

Thus, δϕj (k) ∼ 2 δk lloc and the characteristic interval δkres

between resonant wave numbers localized around an arbitrary

point z̃j can be estimated as

δkres � π

lloc
. (17)

In Ref. 9, this result has been obtained for modes located
around the center of the sample.

Equations (14) and (17) allow estimating the number of
resonances Nres in the given frequency interval �ω = c �k in
the sample of the length N ,

Nres = Ncav
�k

δkres
� N �k d̃0/2π. (18)

The number of cavities Ncav and the spacing between
the resonances δkres are inversely proportional9 to lloc, i.e.,
it increases when the strength of the scattering increases.
Therefore, from Eq. (18), it follows that Nres does not depend
on the localization length. In other words, the number of reso-
nances (and, therefore, the number of peaks in the transmission
spectrum and the number of regions with enhanced intensity)
in a given frequency interval is proportional to the size of the
random system and is independent of the strength of disorder.

An important point is that Eq. (18) gives the total number of
disorder-induced resonances existing along the whole length
of a random system in a given range �k. When random lasing
is concerned, each sample is an active medium, and a new
parameter—the specific gain rate g—should be involved. In
evaluating the number of lasing modes, this parameter has to be
compared with the lasing threshold g

(j )
c of each cavity, which

is different for different ones. In Ref. 9, as has been shown and
mentioned in the Introduction above, each disorder-induced
resonator occupying an area zj−Ns

� z � zj+Ns
is built of

strongly reflecting (as a result of Anderson localization)
effective barriers that confine an almost transparent (for the
given resonant wave number k) region. Reflection coefficients
of the left and right (from the center) parts of this structure
are large, which means that the normalized amplitudes f

(±)
∓2k

of the ±2k harmonics of the distributions F
(±)
j [Eqs. (11) and

(12)] of the scatterers in these parts of the j th cavity are large
|f (±)

∓2k| ∼ 1. However, the value f2k of the amplitude of the 2k

harmonics of the distribution Fj (z) = F
(+)
j (z) − F

(−)
j (z) of the

scatterers along the whole cavity can be small or even equal to
zero. Indeed, since

f2k = f
(+)
−2k

∗ + f
(−)
2k = r (+)∗ − r (−),

|f2k|2 = |r (+)|2 + |r (−)|2 − 2 Re �(k),

and

|r (+)| ∼ |r (−)| ∼ 1,

the value of |f2k| is small when Re �(k) is close to unity. For
given values of |r (+)| and |r (−)|, the smaller the amplitude |f2k|,
the greater Re �(k). In the extreme case, the amplitude |f2k|2
turns to zero, i.e., the 2k harmonics is completely suppressed.
This happens when the amplitudes f

(±)
∓2k have equal absolute

values but opposite signs, i.e., are shifted in phase by π . Thus,
the (positive) value of Re �(k) can be treated as a measure
of the amplitude of the 2k harmonics of the cavity and of
the phase shift between the 2k harmonics of its left and right
parts.
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In a real random sample, the 2k harmonics of the spatial
distributions F

(±)
j (z) of the scatterers are not equal to zero in

any effective cavity and for any k (any frequency ω), includ-
ing the resonant ones. These harmonics provide distributed
feedback (DFB) as it occurs, for instance, in a conventional
(not random) semiconductor DFB laser (see, e.g., Ref. 33).
As in a conventional DFB laser with regular Bragg grating
(regular periodic spatial distribution of the scatterers), in a
disorder-induced cavity, a lasing mode is excited when the
gain rate g of the medium exceeds the value g

(j )
c of the

threshold of the cavity. The difference between these two
cases is that the whole periodic grating is characterized by
a single value of gc, whereas, different parts of a random
configuration have their own different thresholds g

(j )
c , whose

values are minimal into the cavities. In just the same way
as the phase shift between two identical halves of the regular
grating causes a decrease in the threshold in conventional DFB
lasers,33 the phase difference between complex amplitudes
f

(−)
2k and f

(+)
−2k reduces the lasing threshold of the 2k-resonant

random cavity. From the considerations presented in the
previous paragraph, it follows that the information about g

(j )
c

is also contained in the quantities �j : The greater Re �j (k)
is for a given cavity, the smaller is its threshold g

(j )
c . Thus,

only those cavities whose thresholds g
(j )
c are less than the

medium gain g [i.e., the values Re �j (k) exceed the critical
value �c], contribute to the formation of the lasing spectrum.
Therefore, the number of lasing modes (number of lines in the
lasing spectrum) is definitely smaller than the total number of
cavities Nres.

To conclude this section, we note that the approach
presented above could be used in studying various wave sys-
tems, for example, terahertz tunable vortex photonic crystals.
Indeed, many calculations on this problem have already been
performed,34 including the role of disorder, but this is beyond
the scope of this paper.

III. NUMERICAL SIMULATIONS

To verify the results of the previous section, we have
calculated the function �j (k) numerically for different ran-
dom samples and have found the distribution of the areas
with Re �j (k) > 0 and Re �j (k) < 0 along each sample for
different wave numbers. These distributions have been mapped
on the coordinate-wave-number plane in Fig. 2.

Then, the eigenvalues kres have been determined from
Eq. (8), and spatial distributions of the intensity created inside
the samples by the incident waves with the corresponding
resonant frequencies (ωres = ckres) have been found and have
been compared with the map. To facilitate this comparison,
we take into account that the intensity pumped by the incident
wave into a cavity depends on its location inside the sample:
It decreases exponentially as the distance of the cavity from
the input end increases.9,35 As an example, the intensity
distributions along the same sample, illuminated by the same
wave, either from the left Il(j ) (blue curve) or from the right
Il(j ) (red curve) ends are shown in Fig. 3(a).

In both curves shown in Fig. 3, the intensity in the closest to
the input cavity is far above the intensity inside the more distant

FIG. 2. (Color online) Mapping of �j (k) and the normalized
resonant intensities Is(j,k) on the coordinate-frequency plane. The
units on the x axis are normalized to the localization length.
In the black areas Re �j (k) > 0, the gray color corresponds to
Re �j (k) > 0. Approximately half of the full length of any line
k = ω/c = constant is occupied by black areas where the cavities
are located. The yellow (light gray) color marks the regions where
|arg �j (k) − 2π | < 0.05. The regions with a strong concentration of
the wave field where Is(j,k) > 1/2 are marked in green (dark gray).
As can be seen, practically all of them are located in the cavities
(black areas) as predicted here. Inset: enlarged view of the selected
area with three (a–c) resonances.

one. Therefore, we have introduced the normalized quantity,

Is(j ) =
[

Il (j )
max{Il (j )} + Ir (j )

max{Ir (j )}
]

max
{[

Il (j )
max{Il (j )} + Ir (j )

max{Ir (j )}
]} , (19)

which is symmetric with respect to the direction of incidence
and reveals all resonators equally well, independent of their
positions Fig. 3(b).

In Fig. 2, regions where Re �j (k) > 0 and Re �j (k) < 0
are marked by black and gray, respectively, the normalized
intensity Is(j,k) is shown by the green color. The yellow color
marks the regions where |arg �j (k) − 2π | < 0.05. One can
see that any horizontal cross section k = constant contains
approximately the same number of black and blue regions, and
practically all resonances are located in black areas associated
with cavities as predicted.

Examples of the spatial distributions of Re �j (blue curves)
for three resonant frequencies marked by a–c in Fig. 2 are
presented in Fig. 4 along with the corresponding distributions
of the intensity (red curves). Shown in Fig. 5, cross-correlation
functions C(l) = ∑

j Re �jIj−l of those two types of curves
reveal a strong correlation between the normalized intensity
and Re �. One can see that the cavities are well detected by
the Re � > 0 criterion.

Figure 6 demonstrates that, in accordance with Eq. (18),
the number of resonances in a given frequency interval is
independent of the strength of disorder (of the values of the
local reflection coefficients rj ) and of the variance in the
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di

FIG. 3. (Color online) (a) Spatial distributions of the intensity
generated by a wave incident from the left (thin blue curves) and
right (thick red curves) sides of the sample; (b) intensity normalized
in accordance with Eq. (19). The incident wave generates a resonance
(peak in the intensity) only in the cavity closest to the edge it is coming
from. The distribution of the normalized intensity is independent of
the direction of incidence and clearly reveals all cavities resonant at
a given frequency.

fluctuations of the thicknesses dj and is completely determined
by the size of the sample.

This rather counterintuitive result is also supported by the
numerical simulations presented in Fig. 7 where the locations
of the resonant cavities in the coordinate-frequency plane are
shown (marked in black) for two samples. The samples are
geometrically identical, i.e., have the same spatial distribution
of the scatterers, and differ only in the amplitudes of their
reflection coefficients so that the localization length in the
upper picture is twice larger than in the lower panel. When
comparing both images in Fig. 7, it is easy to see that, in passing
from one picture to another, the sizes of the black areas in the
x direction increase, whereas, the distances between them
along the y axis decrease in the same proportion so that, in
keeping with Eq. (18), Nres remains the same, meaning that
there is no dependence of the number of resonances on the
localization length.

IV. EXPERIMENTS WITH ACTIVE RANDOM SAMPLES:
NUMBER OF LASING MODES

The experimental detection of disorder-induced cavities
and resonances is a challenging task in optics. Although
the intensity distribution cannot be measured directly, the

an
d

an
d

an
d

di

FIG. 4. (Color online) Spatial distributions of Re �j (thin blue
curves) and of the normalized intensity (thick red curves) for three
resonant wave numbers marked by a–c in the inset in Fig. 2. One
can see that each resonance is localized in the area where Re �j is
positive and takes a maximal value.

resonances, in principle, can be revealed by transmission ex-
periments at different frequencies. However, although resonant
transmission in lossless systems is essentially higher than at
typical frequencies, it is much stronger affected by absorption,
which is proportional to the exponentially large intensity
inside the resonators. In microwave experiments6,7 where the
absorption length was much larger than the total length of the
system (single-mode waveguide), the transmission was below
the noise level even at centrally located resonances. This fact
was of little concern in that case because the microwave probe
could be inserted in different points inside the waveguide.
In fiber-optic systems, however, this is not possible. With
long optical fibers to make the transmission measurable, it
might be necessary to compensate for the absorption by, for
example, introducing amplification. When the amplification is
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FIG. 5. (Color online) Cross-correlation functions C(l) =∑
j Re �jIj−l of the normalized intensity and Re � for three resonant

wave numbers marked by a–c in the inset in Fig. 2. The curves reveal
a strong correlation between the normalized intensity and Re �.

sufficiently large, all resonances manifest themselves as sharp
lines in the transmission spectrum.

Experimental studies of resonances in disordered optical
fibers with active elements is also of interest for a better
understanding of the physics of RLs because, in amplifying
media, all resonant modes are potential candidates for lasing.
The ability to monitor and to tailor their parameters, especially
the total number, eigenfrequencies, and locations is critical to
fulfill this potential.

Random one-dimensional cavities can be created in optical
fibers by the introduction of randomly positioned reflectors in
the form of Bragg gratings.36 To create such structures, we
have used commercial Er/Ge co-doped fibers (INO, Quebec
City, Quebec, Canada) that are single modes at 1535 nm.
Erbium is the active element, and germanium doping provides
a kind of photosensitivity that can be used to locally change
the refractive index. The Bragg gratings were fabricated by
exposing the fiber to UV light (244 nm) from a frequency-
doubled argon-ion laser through a periodic mask whose
spatial period is 1059.8 nm. Each one of the fabricated
gratings had a length of approximately 5 mm. The random
distances between the gratings were statistically independent
and uniformly distributed in the interval d0 ± 0.8 mm where

FIG. 6. (Color online) Number of resonances Nres as a function of
the averaged local reflection coefficient (strength of disorder) 〈|r|〉.
It is easy to see that, as predicted by the theory, the number of
resonances in a given frequency interval grows linearly with the size
of the sample and is independent of the strength of the disorder.
Parameters of the numerical simulations: kd̃0 = 10.0, �k d̃0 = 0.1.
Each point is obtained by averaging over 103 random samples.

the mean distance between gratings d0 was approximately
5 mm.

The fabricated Bragg gratings have a narrow reflection
spectrum (its full width at half maximum is about 0.17 nm)
centered at 1535.3 nm with a maximum reflectivity of about
0.07–0.08. Under these conditions, the estimated localization
length is found to be about five to six gratings. We notice
that variations in the mask alignment, recording exposure,
and fiber tension during the writing process caused small

FIG. 7. Distribution of the resonant cavities in the coordinate-
frequency plane for two geometrically identical samples with differ-
ent strengths of the scattering and, thus, with different localization
lengths. Top: 〈|rj |〉 = 0.2; bottom: 〈|rj |〉 = 0.15. The distances
between the black tick marks under each picture are equal to the
corresponding localization lengths.
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FIG. 8. (Color online) Schematic of the experimental setup. In (a),
we illustrate the configuration of the laser. The wavelength-division
multiplexing (WDM) device permits the separation of the pump
(980 nm) and lasing radiation (1550 nm). In (b), we show the
arrangement used to measure the reflection spectrum of the grating
array during the fabrication process.

variations in the central wavelength of the gratings and on the
sharpness of their reflection spectra. As a result, the half-width
of the reflection spectrum of an array of 31 gratings is about
0.27 nm.

The optical arrangement employed to fabricate the gratings
and to measure the reflection spectra of the arrays is illustrated
in Fig. 8. Laser action was obtained by end pumping the
system with 980-nm radiation from a semiconductor laser.
A WDM was used to separate the pumping wavelength from
the radiation emitted by the laser (see Fig. 8). Measurements of
the gratings transmission/reflection coefficients with a spectral

FIG. 9. Top: experimental reflection spectrum from an array of 14
gratings. Bottom: experimental (black points) and theoretical (dotted
line) dependence of the number of resonances Nres on the number of
gratings Ng . The theoretical dependence is calculated using Eq. (18)
and the parameters of the experiments.
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FIG. 10. (Color online) Emission spectra of the samples with 7,
14, 20, and 31 gratings for 20-mW (green) and 40-mW pumping
powers. Both values are well above the lasing threshold. The vertical
lines mark the spectral positions of the emission lines.

resolution of 0.001 nm were carried out in the spectral range
of 1520–1580 nm, using a tunable semiconductor laser (New
Focus Velocity 6300) with a coherence length of a few meters.
As illustrated in the figure, new gratings were fabricated in the
sequence, beginning from the pumping end of the fiber.

To explore the dependence of the total number of res-
onances Nres on the size of the system, we measured the
frequency spectrum of the reflection coefficient on samples
with different numbers of reflectors and made use of the fact
that each resonance manifested itself as a sharp drop in the
reflectivity. Black points in Fig. 9 represent the total number
of the resonances detected in the arrays of different numbers of
gratings Ng (different lengths of the samples L = Ngd0, d0 =
5 mm) in the wavelength range (1534.8–1535.6 nm). The
theoretical prediction Eq. (18), Nres = 1.67Ng (dotted line),
is in excellent agreement with the experimental data.

In Fig. 10, we present the results of the measurements of
the emission spectra of the RL fiber containing 7, 14, 20,
and 31 randomly distributed Bragg gratings for two values of
the pumping power: 20 mW, denoted by the continuous-line
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FIG. 11. (Color online) Emission spectra of the sample with 22
gratings generated by the fixed pumping power (40 mW) at different
moments in time.

curves and 40 mW, denoted by the dashed-line curves. With
these pump levels, the systems were above threshold in all
cases. For the measurements, we used a spectrum analyzer
with a resolution of 0.01 nm.

From Fig. 10, one can see that, in the considered frequency
range, the emission spectrum contains several peaks that reveal
the presence of resonant modes. As the number of gratings
grows, so does the number of resonances: There are two peaks
for the RL with 7 gratings and seven peaks for the sample
with 20 gratings. For the RL with seven gratings, the two
peaks maintain their positions and relative intensities as the
pump power increases. For systems with a higher number of
gratings, the competition between modes produces temporal
fluctuations in the relative strengths of the emission lines;
these fluctuations also depend on the pump power. Although
the relative intensity in the peaks can change with the pump
power, their spectral positions (indicated by the vertical lines
in the figure) remain fixed.

Another interesting feature that can be observed in Fig. 10
is that, once an emission line appears in a system with a low
number of gratings, it is likely to reappear in a system with a
higher number of gratings. One can see, for example, that the
emission lines observed in the system with seven gratings are
also present in the systems with more gratings.

The curves shown in Fig. 11 represent spectra of the
radiation emitted by a random laser with 22 gratings, measured
in 1-s intervals. Even at constant pumping power, the number
of well-defined lasing modes and their emission intensity
fluctuate in time. The emission frequencies, however, remain
fixed; one can see that they always coincide with one of the
vertical lines of the figure. The observed fluctuations in the
intensity of the spectral lines could not be caused by relatively
small (∼5%) fluctuations in the intensity of the pumping
laser and apparently were associated with nonlinear effects.
Indeed, despite the relatively low power of the emission, the
field inside the high-Q cavities can be strong enough (due to
resonance) to generate a Kerr-type nonlinearity. These effects
are of importance, for example, in distributed Bragg reflector
fiber lasers that are longer than 20 cm.37,38

FIG. 12. Number of resonances measured in the wavelength
range of λ ± �λ = 1.5 × 10−4 ± 0.85 × 10−8 cm (black points) as
a function of the number of Bragg reflectors. Since the total length
of the sample is proportional to the number of gratings, the figure
actually presents the dependence on the size of the random system.

The black points in Fig. 12 denote the number of lasing
modes measured in the wavelength range of λ ± �λ =
1535.3 ± 0.3 nm in samples with different numbers of gratings
Ng (and different lengths of the system; L = Ngd0, d0 =
5 mm). These numbers were obtained by adding all the
emission lines present in the emission spectra over an extended
period of time. The amount of the lasing modes growths
linearly with the length of the system, although, in accordance
with the theoretical reasoning above, it is always less than the
total number of the effective resonant cavities in the sample
(Fig. 9).

V. SUMMARY

To conclude, eigenmodes (resonances) of a randomly
layered long (L � lloc) sample are localized in disorder-
induced effective cavities of the size on the order of the
localization length that are randomly distributed along the
sample. An algorithm for finding this distribution in an
individual configuration with arbitrary (random) parameters
was developed based on the calculation of the function �j (k)
in Eq. (7). It was shown that a cavity of an effective size of a
few localization lengths in which a mode with k = kres can be
localized exists around the j th layer when Im �j (kres) = 0 and
Re �j (kres) > 0. In the case of uncorrelated disorder and weak
scattering, the spacing between the eigenlevels and the number
of cavities Nres in a given frequency interval does not depend on
the strength of disorder and are uniquely determined by the size
of the sample. The frequency of each resonance is independent
of the coordinate of the effective cavity in which it is located.
The number of lasing modes also depends on the ratio between
the threshold values g

(j )
c of the individual cavities and the

gain g in the medium and is less than Nres. The theoretical
predictions and numerical results are in reasonable agreement
with the experimental data obtained by measuring the emission
spectra of the random laser based on the single-mode fiber with
randomly distributed Bragg gratings.
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