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Amplitude spectroscopy of two coupled qubits
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We study the effect of a time-dependent driving field with a high amplitude on a system composed of two
coupled qubits (two-level systems). Using the rotating-wave approximation (RWA) makes it possible to find
simple conditions for resonant excitation of the four-level system. We find that the resonance conditions include
the coupling strength between the qubits. Numerical simulations confirm the qualitative conclusions following
from the RWA. To reveal the peculiarities of resonant transitions caused by the quasilevel motion and crossing
in a periodic driving field, we use Floquet states, which determine the precise intermediate states of the system.
Calculating the quasienergy states of the multilevel system makes it possible to find the transition probabilities and
build interference patterns for the transition probabilities. The interference patterns demonstrate the possibility
of obtaining various pieces of information about the qubits, since the positions of transition-probability maxima
depend on various system parameters, including the coupling strength between the qubits.
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I. INTRODUCTION

Recently much attention has been focused on the spec-
troscopy of Josephson-junction superconducting circuits with
a weak link which can be considered as “macroscopic atoms,”
with sizes of the order of tens or hundreds of micrometers.1,2

Single Josephson-junction qubits are characterized by rela-
tively long relaxation times (tens of microseconds), which
allows their consideration as one of the most promising ele-
ments for the realization of quantum information processors.3

Spectroscopic investigations of artificial “Josephson atoms”
are carried out at sufficiently low temperatures in the mi-
crowave and millimeter-wave regions, since the spectral lines
of Josephson junctions are located in that spectral region.
However, practical measurements are not simple because
stable tunable microwave sources are not easy to produce in
this range. Measurement difficulties are connected with the
frequency dependence of the dispersion and damping, as well
as with strict requirements to impedance control tolerances
which limit the application of broadband spectroscopy.

In this regard several groups have used amplitude
spectroscopy,4–8 which obtains information by means of the
response function “sweep” over the signal amplitude and some
control parameter (an applied magnetic flux or a bias). This
method may be applied to systems with crossing energy levels
between which the transitions can be realized by changing
external parameters. The frequency of such a driving field
can be orders of magnitude lower than the distance between
levels. This means that the system evolves adiabatically, except
for the immediate vicinity of quasicrossing levels, where
Landau-Zener quantum coherent transitions and Stückelberg
interference can be observed9–12 (see Ref. 13 for an overview).
The main advantage of this type of spectroscopy is that
the system is investigated in wide ranges of the amplitude
change. Thus, in alternating fields, multiphoton processes and
Landau-Zener transitions, also observed in Ref. 14, take place.

For a driven two-level system, drastic effects on the tunnel-
ing rate arise from quasienergy crossing and anticrossing.15,16

At certain amplitudes of the driving field, dynamical

localization and trapping of the system into nonlinear res-
onance can take place.17–25 As the parameters are changed
when the level approaching and level crossing take place, the
effects of band-to-band tunneling (Landau-Zener transitions)
can occur. In the language of wave functions, an interference of
different zone states, predicted by Stückelberg,11 is possible.
As applied to qubits these effects have been discussed recently
in numerous works.26–41

Coupled qubits have also been created (see, e.g., Refs. 42–
50). In these works the basic parameters of qubits and coupling
constants have been measured, and also some relaxation
characteristics of coupled qubits have been studied. Rabi
spectroscopy of two coupled qubits both experimentally and
theoretically have been investigated in publications.44,45,47,49,50

Recently different schemes of controlled coupling between
two or more qubits have been proposed.48,51–53 However, at
present there are no studies of the way the coupled qubits
behave in strong fields. Meanwhile, the extension of the
amplitude spectroscopy method makes it possible to obtain
much information about coupled multiqubit clusters.

The goal of this work is to describe quantum-mechanical
phenomena in a system of coupled qubits from the point
of view of quasienergy states at different parameters of
multilevel systems. It is possible to control the magnetic fluxes
(biases) which penetrate the circuits and we take these bias
parameters to be dependent on time.42–50 Although generally,
for spectroscopic investigations, the response dependence on
the frequency is studied, we focus our attention here on
the response dependence on the signal amplitude and the
control parameters. Our approach differs from the one used in
Refs. 55 and 54, where the density matrix equation was used
to determine the steady-state populations of coupled qubits.
We assume here that the qubits are relevant for quantum
information processing only in the case when they have
negligible dissipation. In this case, to analyze the dynamics
of the system it is most natural to proceed directly from
the Schrödinger equation, which allows us to understand the
dynamics and to identify features of the evolution of systems
in strong alternating fields.
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First, we investigate the nonlinear time dynamics of the
coupled qubits by using the rotating-wave approximation
(RWA). In this approximation the system exhibits generalized
Rabi resonances where the role of the coupling parameter may
be investigated. Second, for high-field amplitude excitations
we apply the quasienergy representation to understand the
influence of the driving field on the transition probabilities
and the population of the energy levels. Using the RWA and
numerical calculations of quasienergy levels as a function
of the driving field, we are able to demonstrate that the
effect of the quasienergy avoided crossing leads to drastically
increased transition probabilities between the qubit steady
states. Finally, we develop a numerical method for calculating
the transition probabilities in the quasienergy representation
and build interference patterns for the transition probabilities.
The quasienergy basis allows us to analyze the influence of

phase fluctuations on the observable effects that have not been
studied in previous works. As we demonstrate in the following,
the peaks of the transition probabilities between the directly
coupled states shift if the interqubit coupling changes, but the
indirectly coupled states in the peak positions are not affected
by the interqubit coupling. This effect can be observed in
experiments using the technique of amplitude spectroscopy. It
is demonstrated that Landau-Zener-Stückelberg interferome-
try or amplitude spectroscopy may be considered as a tool to
obtain the coupling parameter by seeing the shift in the peak
of the resonances (the population maxima).

II. EQUATION OF MOTION OF COUPLED QUBITS

The main features of coupled qubit system behavior can be
understood in the framework of the Hamiltonian,

H = −1

2

⎛
⎜⎝

ε1 + ε2 + J �2 �1 0
�2 ε1 − ε2 − J 0 �1

�1 0 −ε1 + ε2 − J �2

0 �1 �2 −(ε1 + ε2) + J

⎞
⎟⎠ , (1)

where εi is the control parameter of qubit i (i = 1, 2), �i is the
corresponding tunneling matrix element, and the parameter J

quantifies the strength of the interaction between the qubits.
The form of the Hamiltonian differs from that in Refs. 44, 54,
and 55 only by a simple redefinition of parameters.

Near the half-flux quantum point, each flux qubit experi-
ences a double-well potential and the tunneling energy through
the potential barrier separating the wells becomes �i . The
wells correspond to currents of magnitude Ii circulating in
opposite directions along the loop, and the above Hamiltonian
is actually written in this circulating current basis. Following
Refs. 43 and 44, in a constant field the control parameters εi

can be expressed in terms of the bias fi = �ext
i /�0 (�ext

i is
the flux threading the qubit loop (magnetic flux), penetrating
circuit i, �0 is the flux quantum) by the relation

εi = ε0
i

(
fi − 1

2

)
, (2)

where ε0
i = 2|Ii |�0. The parameters εi and �i deter-

mine the spectrum of the uncoupled qubits (J = 0): Ei =
± 1

2

√
ε2
i + �2

i . The ferromagnetic or antiferromagnetic inter-
action between the qubits is characterized by the coupling
strength J = ±|J |. With the help of an additional supercon-
ducting circuit it is possible to realize ferromagnetic as well
as antiferromagnetic interactions between the qubits.48 For a
planar circuit the antiferromagnetic interaction is determined
by the expression |J |

2 = M12I1I2, where M12 is the mutual
inductance.

The state of the system can be represented by four
amplitudes Cα(t), α = 1, . . . ,4, so that |�〉 = ∑

Cα(t)|α〉,
where |α〉 is the basis of the time-independent Hamiltonian,
Eq. (1). The spectrum Eα and eigenvectors |α〉 of Hamiltonian
(1) are not difficult to find.

To study the time-dependent evolution of the coupled qubits
we use the eigenstates of the Hamiltonian, Eq. (1), as the basis,
since expanding in this basis is a well-controlled procedure.
Let us now consider the case when the control parameters
ε1,2 are time dependent. For the case of coupled qubits, we
introduce a driving field of the form

ε1(t) = ε10 + A1 cos(ω1t + θ1),
(3)

ε2(t) = ε20 + A2 cos(ω2t + θ2).

For simplicity, we only discuss the case where driving fields of
only one frequency ω = ω1 = ω2 are applied to the system and
the two fields have the same phase shift θ = θ1 = θ2. In this
paper, we also assume that the system is subject to a sequence
of synchronized pulses of alternating fields whose duration is
much longer than the period of the field. At the same time, we
take into account the fluctuations in the arrival times of pulses
and their durations against a fixed period of the field.16

We solve the time-dependent Schrödinger equation to
determine the resonant conditions of the qubits,

ih̄
∂

∂t
|�(t)〉 = H (t)|�(t)〉. (4)

We perform the canonical transformation

|�(t)〉 = U (t)|�(t)〉, (5)

where the unitary matrix U (t) = exp [iS(t)/2h̄], with

S(t) = φ1(t)

(
I 0
0 −I

)
+ φ2(t)

(
σz 0
0 σz

)
+ J t

(
σz 0
0 −σz

)

(6)
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and phases φ1,2(t) = ε(1,2)0t + A1,2

h̄ω
sin ωt . The transformed Hamiltonian H has the form

H (t) = −�1

2

∞∑
n=−∞

Jn

(
A1

h̄ω

)
×

⎛
⎜⎜⎝

0 0 e−i((ε10+J )/h̄+nω)t 0
0 0 0 e−i((ε10−J )/h̄+nω)t

ei((ε10+J )/h̄+nω)t 0 0 0
0 ei((ε10−J )/h̄+nω)t 0 0

⎞
⎟⎟⎠

− �2

2

∞∑
n=−∞

Jn

(
A2

h̄ω

)
×

⎛
⎜⎜⎝

0 e−i((ε20+J )/h̄+nω)t 0 0
ei((ε20+J )/h̄+nω)t 0 0 0

0 0 0 e−i((ε20−J )/h̄+nω)t

0 0 ei((ε20−J )/h̄+nω)t 0

⎞
⎟⎟⎠ , (7)

where the following relation for Bessel functions was used:

exp

(
i

A

h̄ω
sin ωt

)
=

∑
n

Jn

(
A

h̄ω

)
exp (inωt). (8)

From Eq. (7) it follows that the resonance conditions are given
by ε10 ± J + nh̄ω ≈ 0, ε20 ± J + nh̄ω ≈ 0, and à population
trapping is controlled by the two conditions Jn( A1

h̄ω
) = 0 and

Jn( A2
h̄ω

) = 0. It is evident that in this case the resonance
conditions depend on the coupling constant. In the RWA in
the Hamiltonian, Eq. (7), fast-oscillating components can be
neglected with the exception of those for which the resonance
conditions are satisfied. Then the Hamiltonian describing the
slow dynamics will have the simple matrix form from which
we can find, in general, the four quasienergies.

It should be noted that the obtained results are valid in
the framework of the RWA17 and cannot describe the system
dynamics at an arbitrary-amplitude time-dependent field. To
leave the framework of the RWA limitations we apply the
numerical solution of the Schrödinger equation in the next
section. Recent studies beyond the RWA can be found in
Refs. 26,27, and 31–33.

III. QUASIENERGIES AND TRANSITION AMPLITUDES
IN A STRONG DRIVING FIELD

To obtain results for high-field amplitudes a quasienergy
representation is used. This representation gives the precise
intermediate system state in a periodically driven field with
an arbitrary amplitude and allows us to detect the peculiarities
of resonant transitions caused by the motion and crossing of
quasilevels when the field changes.

A. Quasienergies of multilevel systems

Let us consider the Hamiltonian of a multilevel system and
let us take it to be periodic with period T = 2π/ω:

H (t) = H (t + T ). (9)

According to Floquet’s theorem, the general solution of the
Schrödinger equation can be decomposed into the complete
set of functions

|�k(t)〉 = |�k(t)〉e−iQkt/h̄, |�k(t + T )〉 = |�k(t)〉, (10)

where the functions |�k(t)〉 are the solutions of the equation(
H (t) − ih̄

∂

∂t

)
|�k(t)〉 = Qk|�k(t)〉, (11)

and the real parameter Qk is called the quasienergy16,56 (k is
the quantum number determining the quasienergy).

The quasienergies Qk and eigenfunctions |�k(0)〉 at the
initial moment in time (which may be chosen arbitrarily)16 are
found by the solution

F (T )|�k(0)〉 = e−iQkT /h̄|�k(0)〉, (12)

where F (T ) = P̂ exp(−i
∫ T

0 H (t)dt/h̄), and P̂ is the chrono-
logical ordering operator. The value of the functions |�k(t)〉
at any moment in time are obtained from Eq. (11). Since
quasienergies are not uniquely defined, Q′

k = Qk + nh̄ω, we
depict them in the first “Brillouin” zone (0 < Qk < h̄ω).

Expansion of the periodic functions |�k(t)〉 in Fourier
series15,16,56 can be used to find the quasienergies. The
coefficients in the Fourier series in turn satisfy an infinite-
dimensional system of linear equations which is approximately
solved by a finite-dimensional approximation. In this work the
form of the functions Qk is found numerically. First, we do not
need to work with large submatrices; and second, this approach
allows us to obtain a controllable approximate solution.

An arbitrary wave function may be expanded in the
complete Floquet basis

|�(t)〉 =
∑

k

ck|�k(t)〉e−iQkt/h̄, (13)

where the coefficients ck are defined by the initial wave
function: ck = 〈�k(0)|�(0)〉. So the Floquet time-evolutional
operator can be found from Eq. (13):

F (t,0) =
∑

|�k(t)〉e−iQkt/h̄〈�k(0)|. (14)

Let us take the system to be initially in state |α〉, which is a
steady state of the time-independent Hamiltonian, Eq. (1). Let
us also suppose that the electromagnetic pulse has an unknown
phase. The transition probability into the excited state |β〉 of
the Hamiltonian Eq. (1), averaged over the relative phase, is
described by the expression

Pα→β(t) =
∑
k,l

e−i(Qk−Ql )t/h̄
∑

n

M
(n)
k (t)M∗(n)

l (t), (15)

where

M
(n)
k (t) = 1

T

∫ T

0
e−inωτ 〈β|�k(τ + t)〉〈�k(τ )|α〉dτ . (16)

Note that the sum with respect to n appears in Eq. (15) because
the Fourier expansion of the Floquet states was used in the
intermediate manipulations.
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Equation (14) manifests that in a strong field the system
evolution occurs through the intermediate quasienergy states of
qubits. It may be shown that the transition probability, Eq. (15),
in general contains strongly oscillating-in-time terms which
may be be canceled when the time interval t is long enough.
The exception is the contribution of the states with almost-
equal quasienergies. After averaging the expansion for the
probability, Eq. (15), by the time interval t , we find

P α→β =
∑

k

∑
n,n′

∣∣〈β∣∣�(n−n′)
k

〉〈
�

(n)
k

∣∣α〉∣∣2
, (17)

where the Fourier components are defined by the relation

∣∣�(n)
k

〉 = 1

T

∫ T

0
einωt |�k(t)〉dt. (18)

The transition probabilities for different harmonics can be
calculated according to Eq. (17). To do that we solve Eq. (11)
numerically and take the Fourier components according to
Eq. (18).

B. Numerical results for coupled qubits in a strong driving field

We now present numerical results of the coupled qubit
response in a strong driving field. We use the language of

FIG. 1. (Color online) (a) Energies Eα of Hamiltonian (1)
and (b) quasienergies Qk as functions of the control parameters
ε0 = ε20 = 2ε10 and the coupling parameter J . We used the qubit
parameters: �2/h = 1.5�1/h = 0.45 GHz, ω/2π = 1 GHz, and
A2/h = 2A1/h = 7 GHz.

quasienergies crossing, which depend on the system parame-
ters. It is well known that when the amplitude of the driving
field and the control parameter change, the quasienergies
of different symmetry classes may cross, but if they are of
the same symmetry class, they form an anticrossing. As a
result, the transition amplitudes may change drastically for
such parameters.15,16,56,57 Special attention will be paid to
the dependence of the level populations on the interaction
parameter. As recently shown,46 the interaction parameter can
be varied over a wide range by using an intermediate coupler,
which, for instance, may be an additional Josephson loop
placed between the two main qubit loops. So, we investigate
here the behavior of the level populations as a function of the
coupling parameter of the qubits.

First, we depict a three-dimensional plot of the qubit
energy dependence on the control parameter and the cou-
pling parameter. Figure 1(a) shows the energy surfaces for
the time-independent Hamiltonian, Eq. (1) (when A = 0).
Figure 1(b) shows the transformation of the dispersion surfaces
to quasienergy surfaces when the time-dependent field is
applied to the qubits. In order to understand what quasienergies
cross, we have depicted some of the characteristic cross
sections of the quasienergy surface in Fig. 1(b).

The dependences of the quasienergies and transition prob-
abilities on the control parameter, at a given amplitude of the
alternating field, were investigated. In Figs. 2(a) and 2(b) the
quasienergies are shown as functions of the control parameter
ε0 = ε20 = λε10 for J = 0 [Fig. 2(a)] and J/h = −0.1 GHz
[Fig. 2(b)], respectively. In this case, a set of quasienergy
level crossings which produce additional peaks for transition
probabilities between the eigenstates of the Hamiltonian,
Eq. (1), is observed, in Figs. 2(c) and 2(d). Several examples of
the quasienergy level crossings in Fig. 2 and their coincidence
with the resonance peaks are shown by the dotted vertical
(gray) lines.

The quasienergy dependence, in Fig. 2(b), on the control
parameter can be easily understood in the framework of pertur-

(a) (b)

(c) (d)

FIG. 2. (Color online) (a, b) Quasienergies as functions of the
control parameter ε0 for an external amplitude, A/h = 4 GHz.
(c, d) Transition probabilities P 1→2 (blue), P 1→3 (red), and P 1→4

(green). The coupling parameter chosen were J = 0 for (a) and (c)
and J/h = −0.1 GHz for (b) and (d) were chosen. The following
qubit parameters were used: ω/2π = 1 GHz, �2/h = 1.5�1/h =
0.45 GHz, ε0 = ε20 = 2ε10, and A = A2 = 2A1.
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(a) (b)

(c) (d)

FIG. 3. (Color online) (a, b) Quasienergy versus field amplitude A

(which is also measured in GHz) for coupled qubits; ε0 = ε20 = 2ε10,
ε0/h = 4 GHz. (c, d) Transition probabilities P 1→2 (blue), P 1→3

(red), and P 1→4 (green). Other parameters and designations are the
same as in Fig. 2.

bation theory. We explain the meaning of the quasienergy level
formation, which is shown in Fig. 2(a). Let us mentally draw
a set of lines parallel to the vertical axis at distances nh̄ω from
each other and then move the fragments of dispersion curves
from each line to the first Brillouin zone (0 < Qk < h̄ω). It
is shown below that the obtained picture will approximately
correspond to the pictures shown in Fig. 2. As shown in
Fig. 2(a) the dependence of quasienergies on the parameter
ε0 is very simple at ε0 
 �: the quasienergies behave in
accordance with the almost-linear laws of dispersion of
the uncoupled qubits (defined by h̄ω module). The above

explanation also provides a key to understanding the meaning
of Fig. 1(b). Note that when ε0 ∼ �, the curvature of the
qubit dispersion plays an important role in the formation of
the resonance peaks [see Fig. 2(d)].

Figure 3(a) shows the dependence of the four quasilevels of
two noninteracting qubits in an alternating field. In the RWA,
the dependence of the quasienergies on the driving amplitude
may be found approximately from the average Hamiltonian
defined by Eq. (7). The inclusion of the interaction leads to
an effective repulsion of quasienergy levels [Fig. 3(b)]. At the
same time the populations have peaks when the quasilevels
approach each other [Fig. 3(c)]. Also, this effect occurs for
interacting qubits.

As shown in Figs. 3(a) and 3(b), the quasienergies exhibit
a nontrivial dependence on the field amplitude for the two
coupling parameters J = 0 [see Fig. 3(a)] and J = −0.1 GHz
[see Fig. 3(b)]. In this case, the appearance of additional
quasienergy crossings and the formation of new peaks for the
transition probabilities might be possible here [see Figs. 3(c)
and 3(d)]. Circles show additional quasienergy levels crossing
and their coincidence with resonance peaks [dashed (gray)
lines in Fig. 3].

The dependencies of the transition probabilities between
the states of two qubits built at one time according to the
alternating field amplitude and the control parameter are more
informative and obvious. The interference patterns in Fig. 4
for the interacting qubits are qualitatively understandable on
the basis of the results given in Sec. II. The positions of
the “bright spots” on the probability diagrams, at definite
values of ε0 and the field amplitudes, coincide with the
positions of the given transitions on the dependence of
the quasienergies on the amplitude, as shown in Fig. 3. We

(a) (c)

(b) (d)

(e)

(f)

FIG. 4. (Color online) Transition probabilities P 1→2 (a, b), P 1→3 (c, d), and P 1→4 (e, f) of two coupled qubits (�2/h = 1.5�1/h =
0.45 GHz) as functions of the driving amplitude field A = A2 = 2A1 (ω/2π = 1 GHz) and the control parameter ε0 = ε20 = 2ε10 for different
values of the coupling parameter: (a, c, e) J = 0 and (b, d, f) J/h = −0.3 GHz.
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FIG. 5. (Color online) Transition probabilities P 1→2 (a), P 1→3

(b), and P 1→4 (c) as a function of the control parameter ε0 =
ε20 = 2ε10 for different coupling constants J : dotted (black) lines,
J = 0; dashed (blue) lines, J/h = −0.3 GHz; and solid (red) lines,
J/h = −0.8 GHz. Here we have set �2/h = 1.5�1/h = 0.45 GHz,
ω/2π = 1 GHz, and A2/h = 2A1/h = 7 GHz.

see that the system possesses a distinct behavior depending on
the coupling parameter J , which causes a shift of the peaks
depending on J along the bias direction. Figure 5 clarifies the
radical change that the interaction between the qubits makes on
the level populations. First, from the RWA analysis it follows
that a shift of the resonance peaks as a function of the coupling
constant should be observed. These shifts are shown in Fig. 5;
in the transitions P 1→2 [Fig. 5(a)] and P 1→3 [Fig. 5(b)], the
shifts with increasing qubit coupling constants are shown by
arrows. Second, for transitions P 1→4 the resonance peaks do
not move when the coupling parameter J is changed.

We note that in order to calculate the level populations for
the coupled qubits in Fig. 5, a definite relationship between
the control parameters, ε0 = ε20(t) = λε10(t) (where λ is a
parameter that determines the slope lines in the plane ε20 and
ε10), has been assumed. The analysis in the framework of the
RWA (Sec. II) has shown that the locations of the resonance
peaks are given by the following conditions:

ε20 + J + nh̄ω ≈ 0 (1 → 2),
(19)

ε10 − J + n′h̄ω ≈ 0 (2 → 4)

and

ε10 + J + mh̄ω ≈ 0 (1 → 3),
(20)

ε20 − J + m′h̄ω ≈ 0 (3 → 4).

We can see in Figs. 2, 3, and 5, for the populations as well
as for the interference patterns in Figs. 4(b) and 4(d), that
the resonance peaks undergo a shift by a distance |J | for the
transitions 1 → 2 [see Figs. 4(b) and 5(a)] and 3 → 4. At the
same time, for the transitions 1 → 3 [see Figs. 4(d) and 5(b)]
and 2 → 4, the peaks are shifted by a distance |J |/λ. Also
shown in the figures is the fact that, due to the chosen relations
between the parameters (e.g., when λ = 2) and the relevant
conditions (ε0 + J + nh̄ω ≈ 0 and 2ε0 + J + mh̄ω ≈ 0), the
“bright” resonances of a quantum-coherent tunneling in the
transition 1 → 3 [Fig. 4(d)] are seen twice as often as for
the transition 1 → 2 [Fig. 4(b)]. Depending on the sign of
the coupling constant J (ferromagnetic or antiferromagnetic
coupling), there is a shift of the resonance peaks to the right
or to the left.

Also note that the transitions to a higher excited level are due
to virtual transitions that are possible when both of the paired
resonance conditions, Eq. (19) and/or Eq. (20), can be fulfilled
with the participation of second and third intermediate levels,
respectively. A characteristic feature of this transition is the
absence of peaks at integer values of the control parameter of
the qubits and a lack of resonance shifts when the coupling
constant J is changed. The positions of the resonance peaks
(for 1 → 4) for fixed J are determined by ε0 = sh̄ω

λ+1 , where s ≡
n + n′ = m + m′, and do not depend on the coupling constant.

Thus, Figs. 5(a) and 5(b) demonstrate the shift of peaks with
an increase in the parameter J , and that agrees qualitatively
with the results of the analysis on the basis of the RWA (see
Sec. II). These conclusions manifest the fact that the experi-
mental study of the response of a system of coupled qubits will
make it possible to obtain some additional information and, in
particular, to determine the qubit coupling parameter.

In Figs. 6(a) and 6(b) we show the dependence of the
population for the transitions 1 → 2 and 2 → 4 depending on
the control parameter and the interaction parameters of qubits.
For the selected slope parameter, λ = 2 is a clearly visible
position of the resonance peaks, defined by Eq. (19). Resonant
lines defined by Eq. (20) look quite similar. In contrast, the
resonance peaks in Fig. 6(c) for the transition 1 → 4 are
determined by the intermediate states, so according to Eqs. (19)
and (20) these will be located at the intersection of the lines.

IV. CONCLUSIONS

In this work we have presented results on the behavior of
two interacting qubits in a strong driving field. The principal
difference of our approach from that of works devoted to laser
spectroscopic investigations of multilevel atomic systems is
that we study the excitation probability dependencies on the
applied field amplitude and the control parameter at a fixed
frequency of the applied field.

For a better understanding of the effects of driving fields
on a multilevel system, we use the RWA, which allows us to
find simple conditions of the system resonant excitation. We
have shown that these conditions differ from those that occur

184524-6
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FIG. 6. (Color online) Transition probabilities P 1→2 (a), P 2→4

(b), and P 1→4 (c) as functions of the control parameter ε0 = ε20 =
2ε10 and the coupling parameter J . Qubit parameters are the same as
in Fig. 5 and field amplitudes used here are A2/h = 2A1/h = 7 GHz.
The color bar is the same as in Fig. 5.

in the case of a single qubit. The most important result here
is that these conditions of the resonant excitation include the
interaction qubit constant. The realized numerical simulation
confirms the qualitative conclusions as follows from the
RWA.

Our results show that the change in the field amplitude
and the control parameter have a strong effect on the system
dynamics. At the same time, the quasienergy basis proves to
be the most adequate for describing states in periodic time-
dependent fields. The quasienergy representation gives the
precise intermediate states of a system in a driving field with an
arbitrary amplitude and allows us to detect the peculiarities of
resonant transitions caused by quasilevel motion and crossing
as a function of changing parameters. This numerical method
of calculating quasienergy states of multilevel systems made
it possible to find the transition probabilities in a quasienergy
representation and build interference patterns for the transition
probabilities. The interference patterns obtained are very
sensitive to the coupling strength of the qubits, suggesting
a method to extract the value of the coupling parameter. The
other parameters of the qubits, in particular, the tunneling
rates, also significantly affect the interference pattern so they
can also be obtained in experiments.

The RWA as well as the numerical calculations of
quasienergy levels of the qubits in a strong driving field has
shown that the effect of avoided crossings leads to drastically
increased transition probabilities between the qubit steady
states. Surprisingly, the peaks of the transition probabilities
between the directly coupled states shift with a change in the
interqubit coupling J , but for indirectly coupled states the peak
positions are not affected by J . This effect should be observed
in experiments using the technique of amplitude spectroscopy.

The theory developed in this work should allow extension
of the technique of amplitude spectroscopy used earlier
for a single qubit4–8 to more complicated systems. Clearly,
amplitude spectroscopy can be used to study the spectra of
artificial quantum objects—quantum wells, quantum dots,
quantum wires, etc.—in which the distances between energy
levels are significantly smaller than in atomic systems.

ACKNOWLEDGMENTS

We thank Sergey Shevchenko for useful comments on
the manuscript. S.A. and F.N. acknowledge partial support
from the LPS, the NSA, the ARO, NSF Grant No. 0726909,
Grant-in-Aid for Scientific Research (S), MEXT Kakenhi on
Quantum Cybernetics, and the JSPS-FIRST program. This
work was funded in part by the Federal Program of the
Russian Ministry of Education and Science through Contract
No. 07.514.11.4012 and RFBR Grants No. 11-02-97058-a
and 12-07-00546-a. M.V.D. was financially supported by the
“Dinastia” fund.

*sarkady@mail.ru
1J. Q. You and F. Nori, Phys. Today 58, 42 (2005); Nature 474, 589
(2011).

2I. Buluta, S. Ashhab, and F. Nori, Rep. Prog. Phys. 74, 104401
(2011).

3A. M. Zagoskin, Quantum Engineering: Theory and Design
of Quantum Coherent Structures (Cambridge University Press,
Cambridge, 2011).

4W. D. Oliver, Y. Yu, J. C. Lee, K. K. Berggren,
L. S. Levitov, and T. P. Orlando, Science 310, 1653
(2005).

5D. M. Berns, W. D. Oliver, S. O. Valenzuela, A. V. Shytov, K. K.
Berggren, L. S. Levitov, and T. P. Orlando, Phys. Rev. Lett. 97,
150502 (2006).

6M. Sillanpää, T. Lehtinen, A. Paila, Y. Makhlin, and P. Hakonen,
Phys. Rev. Lett. 96, 187002 (2006).

7D. M. Berns, M. S. Rudner, S. O. Valenzuela, K. K. Berggren,
W. D. Oliver, L. S. Levitov, and T. P. Orlando, Nature 455, 51
(2008).

8M. S. Rudner, A. V. Shytov, L. S. Levitov, D. M. Berns, W. D.
Oliver, S. O. Valenzuela, and T. P. Orlando, Phys. Rev. Lett. 101,
190502 (2008).

184524-7

http://dx.doi.org/10.1063/1.2155757
http://dx.doi.org/10.1038/nature10122
http://dx.doi.org/10.1038/nature10122
http://dx.doi.org/10.1088/0034-4885/74/10/104401
http://dx.doi.org/10.1088/0034-4885/74/10/104401
http://dx.doi.org/10.1126/science.1119678
http://dx.doi.org/10.1126/science.1119678
http://dx.doi.org/10.1103/PhysRevLett.97.150502
http://dx.doi.org/10.1103/PhysRevLett.97.150502
http://dx.doi.org/10.1103/PhysRevLett.96.187002
http://dx.doi.org/10.1038/nature07262
http://dx.doi.org/10.1038/nature07262
http://dx.doi.org/10.1103/PhysRevLett.101.190502
http://dx.doi.org/10.1103/PhysRevLett.101.190502


SATANIN, DENISENKO, ASHHAB, AND NORI PHYSICAL REVIEW B 85, 184524 (2012)

9L. D. Landau, Phys. Z. Sowjetunion 2, 46 (1932).
10C. Zener, Proc. R. Soc. A 137, 696 (1932).
11E. C. G. Stückelberg, Helv. Phys. Acta 5, 369 (1932).
12E. Majorana, Nuovo Cimento 9, 45 (1932).
13S. N. Shevchenko, S. Ashhab, and F. Nori, Phys. Rep. 492, 1

(2010).
14A. Izmalkov, M. Grajcar, E. Il’ichev, N. Oukhanski, Th. Wagner,

H.-G. Meyer, W. Krech, M. H. S. Amin, A. M. van den Brink, and
A. M. Zagoskin, Europhys. Lett. 65, 844 (2004); C. M. Wilson,
T. Duty, F. Persson, M. Sandberg, G. Johansson, and P. Delsing,
Phys. Rev. Lett. 98, 257003 (2007).

15S. H. Autler and C. H. Townes, Phys. Rev. 100, 703 (1955).
16J. H. Shirley, Phys. Rev. 138, B979 (1965).
17M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge

University Press, Cambridge, 1997).
18F. Grossmann, T. Dittrich, P. Jung, and P. Hänggi, Phys. Rev. Lett.

67, 516 (1991).
19G. S. Agarwal and W. Harshawardhan, Phys. Rev. A 50, 4465R

(1994).
20H. Ian, Y. X. Liu, and F. Nori, Phys. Rev. A 81, 063823 (2010).
21K. Gawryluk, K. Bongs, and M. Brewczyk, Phys. Rev. Lett. 106,

140403 (2011).
22J.-N. Zhang, C.-P. Sun, S. Yi, and F. Nori, Phys. Rev. A 83, 033614

(2011).
23J. Tuorila, M. Silveri, M. Sillanpää, E. Thuneberg, Yu. Makhlin,
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