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Inverse Landau-Zener-Stückelberg problem for qubit-resonator systems
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We consider theoretically a superconducting qubit–nanomechanical resonator (NR) system, which was realized
by LaHaye et al. [Nature (London) 459, 960 (2009)]. First, we study the problem where the state of the strongly
driven qubit is probed through a frequency shift of the low-frequency NR. In the case where the coupling is
capacitive, the measured quantity can be related to the so-called quantum capacitance. Our theoretical results
agree with the experimentally observed result that, under resonant driving, the frequency shift repeatedly changes
sign. We then formulate and solve the inverse Landau-Zener-Stückelberg problem, where we assume the driven
qubit’s state to be known (i.e., measured by some other device) and aim to find the parameters of the qubit’s
Hamiltonian. In particular, for our system the qubit’s bias is defined by the NR’s displacement. This may provide
a tool for monitoring of the NR’s position.
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I. INTRODUCTION

Nanoelectromechanical systems have recently attracted
attention because of both possible applications (e.g., in
sensing) and interest in fundamental quantum phenomena in
mesoscopic systems.1 Particularly interesting is the coupling
of the mechanical motion of a nanomechanical resonator (NR)
to an electric mesoscopic system. A few examples are carbon
nanotube NRs coupled to electron transport2 and a metallic NR
coupled to an LC tank circuit.3 It was proposed theoretically
that for sensing and controlling the NRs, superconducting
few-level circuits4 (qubits) can be effectively used.5,6 For
example this approach was applied in the demonstration of
the ground state of a high-frequency piezoelectric dilatational
resonator coupled to a superconducting phase qubit.7

Successful coupling of a NR (a suspended silicon nitride
beam) to a charge qubit allowed LaHaye et al.8 to demonstrate
both ground-state measurement and excited-state spectroscopy
as well as Landau-Zener-Stückelberg (LZS) interferometry of
the qubit. The spectroscopy was performed with weak driving,
where the position of the resonance gave the information
about the qubit levels. In the regime of strong driving, where
the qubit’s evolution experiences repeated LZS transitions at
the avoided crossing, the resulting interference is visualized
in the LZS interferograms.9 The LZS interferometry was
demonstrated on superconducting qubits probed by different
methods (see Ref. 9 and references therein), as well as studied
for other different physical realizations of strongly driven
two-level systems in Refs. 10.

In the work by LaHaye et al.,8 the NR’s frequency shift
was used for monitoring the qubit’s state. For the theoretical
description of the NR-qubit system, the perturbation-theory
procedure developed in Ref. 5 was used. The theory says
that the NR’s frequency shift �ωNR is negative for a qubit
in the ground state and zero when two qubit states are on
average equally populated under the periodic driving. This
allowed a description of the ground-state and low-amplitude
spectroscopy measurements.8 However, this theory does not
explain the experimentally observed sign changes of �ωNR in

the strong-driving regime, where the frequency shift becomes
positive.

In this work we consider the NR-qubit system semiclas-
sically. Within this approach, we describe the qubit as a
quantum system coupled to a classical resonator, with the
oscillation-energy quantum much smaller than the thermal
energy, h̄ωNR � kBT . Note that such a semiclassical approach
was successful for the description of most phenomena related
to atom-light interaction.11

The impact of the qubit on the resonator’s frequency shift
can be described in terms of the so-called quantum capacitance,
as studied for qubits in Refs. 12 and 13. The quantum
capacitance is defined as the derivative of the average charge
on the qubit with respect to the applied voltage. The charge can
then be related to the charge-qubit occupation, the derivative
of which (under resonant driving) exhibits sign changes.
A similar sign-changing response under strong driving was
recently studied for qubits probed by an LC (tank) circuit for
capacitive coupling14,15 as well as for inductive coupling.16,17

Thus, in the first part of this work (Sec. II) we study the
situation where the strong-driving qubit’s state is probed by the
NR. In Sec. III, we formulate the inverse problem. There, we
are interested in the influence of the NR’s state (its position) on
the qubit’s state. We graphically demonstrate the formulation
of the problem for the direct and inverse interferometry in
Fig. 1. There, the two-level system represents a qubit with
control parameter ε0; the parabola represents the resonator’s
potential energy as a function of the displacement x. Thus,
in the first part of our work (Sec. II) we deal with the
direct problem, where the influence of the qubit’s state on
the resonator is studied.

The second part of this work (Secs. III and IV) is devoted
to the inverse problem, where we study the influence of the
resonator’s state on the qubit’s state. Measuring the latter is an
alternative method for defining the NR’s displacement. This
approach can be related also to other inverse problems for
two-level systems, as studied in Refs. 18–20. A generalization
of the results can also be applied to other quantum systems for
which the problem of defining the Hamiltonian’s parameters
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FIG. 1. (Color online) Schematic representation of the formulated
problems for direct and inverse interferometry. The red curves on
the left represent the bias-dependent energy levels of the qubit, and
the green parabola on the right shows the potential energy of the
(classical) resonator. In the direct problem, the resonator is used to
probe the state of the qubit. In the inverse problem, the response of
the qubit to external driving is used to infer the state of the resonator.

with a given system’s state was studied in Ref. 21. In Sec. IV
we demonstrate how the inverse problem can be solved for
different driving regimes in a generic two-level system, and
we comment on the possibility of applying this technique for
superconducting qubit-NR systems.

II. CHARGE QUBIT PROBED THROUGH
THE QUANTUM CAPACITANCE

The split-junction charge qubit [also called the Cooper-pair
box (CPB) and shown in red on the left in Fig. 2] consists
of a small island between two Josephson junctions. The state
of the qubit is controlled by the magnetic flux � and the
gate voltage VCPB + VMW. Here VCPB is the dc voltage used
to tune the energy levels of the qubit and VMW = Vμ sin ωt

is the microwave signal used to drive and manipulate the
energy-level occupations. The Cooper-pair box is described
in the two-level approximation by a Hamiltonian in the charge
representation (see, e.g., Ref. 8 and Appendix A):

H (t) = −�

2
σx − ε0

2
σz − A sin ωt

2
σz. (1)

Here the tunnel splitting � is equal to the Josephson energy
EJ, which is controlled by the magnetic flux �,

� ≡ EJ = EJ0| cos(π�/�0)|. (2)

The charging energy and the driving amplitude are given by

ε0 = 8EC(ng − 1/2), A = 8ECnμ, (3)

where the Coulomb energy EC = e2/2C� is defined by the
total island capacitance C� = 2CJ + CCPB + CNR, defined
with the notation 2CJ ≡ CJ1 + CJ2; the dimensionless driving
amplitude is nμ = CCPBVμ/2e; the dimensionless polarization
charge ng = nNR + nCPB is the fractional part of the respective
polarization charges in the plates of the two capacitors:
nNR = {NNR} and nCPB = {NCPB} with NNR = CNRVNR/2e

and NCPB = CCPBVCPB/2e.
Here we consider the Cooper-pair box formed by four

capacitances CJ1, CJ2, CCPB, and CNR (CJ � CCPB,CNR). One
of the plates of the last capacitor is formed by the NR, which
is characterized by the displacement at the midpoint x. This
displacement is usually much smaller than the distance d

FIG. 2. (Color online) Schematic diagram of a split-junction
charge qubit coupled to a nanomechanical resonator. The charge qubit
is biased by the magnetic flux � and the dc + microwave voltage,
VCPB + VMW, to which it is coupled through the capacitance CCPB.
The qubit is coupled to the NR through the capacitance CNR. The NR
is biased by a large dc voltage VNR; its state is controlled and measured
by applying the dc and rf voltages between the gate and the NR, VGNR

and VRF, through the capacitance CGNR. The NR’s motion is described
by the displacement at the midpoint x. The capacitances form an
island (Cooper-pair box) with the total capacitance C� , voltage VI ,
and charge −2en.

between the plates, in which case the capacitance between
the NR and the qubit reads2,3,8

CNR(x) ≈ CNR0 + ∂CNR

∂x

∣∣∣∣
0

x ≡ CNR0

(
1 + x

ξ

)
, (4)

ξ−1 = 1

CNR0

∂CNR

∂x

∣∣∣∣
0

, ξ ∼ d � x. (5)

(By the subscript 0 here we mean the values at x = 0; in what
follows this subscript is assumed.) The displacement of the NR
influences the qubit through the changes in the polarization
charge; to make this influence significant, a large dc voltage
VNR (of the order of volts) is applied. On the other side, the
NR is biased by dc and rf voltages, VGNR and VRF, through the
capacitance CGNR, which provide its control and readout.

The influence of the qubit’s dynamics on the nanomechani-
cal resonator can be described in different ways. In Appendix A
we present a detailed derivation of the influence of the qubit’s
state through the voltage VI and the average polarization charge
−2e〈n〉 of the CPB on the NR’s dynamics. An alternative, and
maybe physically more illustrative, approach is to describe
the CPB as an effective capacitor, which is the subject of
Appendix B. Here, in the main text, we present only essential
results, referring the interested reader to the Appendixes.

As a result of the interaction between the qubit and the NR,
the resonance frequency of the NR is shifted (see Appendix A).
The result can be written in the following form:

�ωNR

ωNR
= −β

∂〈n〉
∂ng

= −β

2

∂〈σz〉
∂ng

, (6)

β = 1

mω2
NRC�

(
CNRVNR

ξ

)2

. (7)

The frequency shift �ωNR is defined by the derivative of the
average extra Cooper-pair number on the island, 〈n〉 = 0 ×
P0 + 1 × P1 = P1. Here P0 (P1) stands for the probability of
having 0 (1) extra Cooper pair.

Alternatively to the approach above, the effect of the
qubit on the NR can be described in terms of the effective
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(differential) capacitance, as described in Appendix B,
Ceff = ∂QNR/∂VNR = Cgeom + CQ, where the relevant quan-
tum capacitance is given by

CQ = C2
NR

C�

∂〈n〉
∂ng

. (8)

The term “quantum” capacitance is used here to denote
the (small) qubit-state-dependent addition to the classical
(geometric) capacitance. Obviously, Eq. (6) can be rewritten
in terms of the quantum capacitance (cf. the discussion in
Appendix C for the qubit-LCR circuit system)

�ωNR

ωNR
= −β̃

CQ

CNR
, (9)

where β̃ = (C�/CNR)β.
The qubit’s density matrix in the energy representation (in

the eigenbasis of the time-independent Hamiltonian) can be
parametrized in terms of the respective Pauli matrices τi , ρ =
1
2 (Xτx + Yτy + Zτz), as, e.g., in Ref. 17. Here Z = 〈τz〉 is the
difference between the occupation probabilities of the excited
and ground states. Now we express the probability of having
one excess Cooper pair, P1, by changing from the energy basis
to the charge basis, and obtain

P1 = 1

2

(
1 − �

�E
X + ε0

�E
Z

)
, �E =

√
�2 + ε2

0. (10)

And this gives (after time-averaging over the driving period
2π/ω) for the quantum capacitance the following:

CQ ≈ C2
NR

C�

(
4EC�2

�E3
Z + ε0

2�E

∂Z

∂ng

)
, (11)

where we have taken into account that in the stationary state
X averages to 0.9

As we can see from Eq. (11), the quantum capacitance is
defined by the value Z = 〈τz〉. In particular, we obtain the
quantum capacitance and the respective frequency shift in the
ground (excited) [g (e)] state with Z = ±1

�ω
g (e)
NR

ωNR
= ∓β

4EC�2

�E3
. (12)

This result, obtained in the semiclassical approach, is in
agreement with the one obtained in Ref. 5 and used in Ref. 8.
Equation (11) is a more general result, where the second
term describes the sign-changing behavior near resonance.
Namely, when sweeping the gate voltage ng, the quantity Z

changes from −1, far from resonance (in the ground state), to
0 in resonance (when the levels are equally populated). This
describes the maximum of Z in resonance and the change of
its derivative ∂Z/∂ng from positive, in the left vicinity of the
resonance, to negative, to the right of the resonance point.
Thus, the resulting behavior of the observable (either �ωNR or
CQ) is defined by the competition of the two terms in Eq. (11).
In what follows we will use Eq. (11) for the superposition states
(which appear under driving).14 Note that a similar approach
for calculating the effective (quantum) inductance was used in
Refs. 16 and 17.

The dissipative dynamics can be described with the Bloch
equations written in the energy representation (where relax-
ation appears naturally). To characterize dissipation we use a

result of the spin-boson model with the spectral density defined
with the dimensionless parameter α, J (ω) = αh̄ω; see, e.g.,
Ref. 22 and references therein, while the low-frequency 1/f

noise is described by the peak of J (ω) at ω ≈ 0. Then the
relaxation and dephasing times are defined by the spectral
density at ω ≈ �E and ω ≈ 0, respectively, as follows:

T −1
1 = α

�2

2h̄�E
coth

�E

2kBT
, (13)

T −1
2 = 1

2
T −1

1 + kBT

h̄

ε2
0

�E2

(
α + B

2π

)
≈ B

kBT

h

ε2
0

�E2
.

(14)

Here the (relatively large) phenomenological parameter B was
introduced to describe the low-frequency 1/f noise. We note
that alternatively the low-frequency noise could be taken into
account as the averaging of the final solution resulting in some
blurring of the resonances, as, e.g., in Ref. 14. The values
for the relaxation and dephasing times define the shape of the
resonances [as for example it is later described by Eqs. (28)
and (31)]. In this way, the width of the resonances can be
used for the estimation of the dephasing rate. In our case, we
have taken α and B as the fitting parameters, to obtain better
resemblance with the experimental results.

We display the direct LZS interferometry in Fig. 3, where
the resonator’s frequency shift �ωNR was calculated with
Eqs. (9) and (11). Figure 3 demonstrates that our formalism
is valid for a description of the experimentally measurable
quantities: the quantum capacitance or the resonant frequency
shift8,14 (see also Appendix C). Such a description allows one
to correctly find the position of the resonance peaks in the inter-
ferogram and to demonstrate the sign-changing behavior of the
quantum capacitance, which relates to the measurable quanti-
ties. The appearance of the interferogram depends on several
factors: the values of the qubit parameters, the model for the
dissipative environment [such as Eqs. (13) and (14) and the
parameters α and B], the value of the bias current (which dis-
torts the shape of the resonances, as demonstrated in Ref. 17).
Moreover, the formalism presented above is valid for the case
where the qubit’s dynamics is much faster than the NR’s dy-
namics; otherwise one should study the cooperative dynamics
of the composite system; see, e.g., the discussions in Refs. 14
and 17. However, we will not go here into more detailed
calculations, since our aim was to demonstrate the simplest
approach for the description of the experiment in Ref. 8.

III. THE BIAS INFLUENCED BY THE RESONATOR:
PROBLEM FOR THE INVERSE INTERFEROMETRY

Let us now consider the qubit’s bias ε0, Eq. (3), as a function
of the NR’s displacement x. For small x � ξ , we have the
expansion (4), which results in the decomposition of the bias

ε0(x) ≈ ε∗
0(ng) + δε0(x), (15)

where

ε∗
0(ng) = 8EC(ng − 1/2), (16)

δε0(x) = 8EC nNR
x

ξ
. (17)

Here we have used the fact that x � ξ and CNR � C� .
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FIG. 3. (Color online) LZS interferometry probed via the res-
onator’s frequency shift �ωNR. (a) The frequency shift versus the
energy bias (ng) and the driving amplitude (nμ). Arrows show the
values of nμ and ng at which the graphs (b) and (c) are plotted as
functions of ng and nμ, respectively. The upper curves were shifted for
clarity. The parameters for calculations were taken close to the ones
of Ref. 8: ωNR/2π = 58 MHz, EJ0/h = 13 GHz, EC/h = 14 GHz,
ω/2π = 4 GHz, kBT /h = 2 GHz, α = 0.005, B = 0.2, and the
proportionality coefficient β defined by the qubit-NR coupling
constant λ from Ref. 8: h̄λ2/πEJ0 = βECωNR/πEJ0 = 1.6 kHz.

The Hamiltonian of the qubit (1) with the parameter-
dependent bias ε0(x) brings us to the following problem. Let us
assume that the qubit’s state is known (i.e., this is measured by a
device whose details we do not consider here for simplicity; see
Refs. 12, 13, 16, and 23 for different realizations of the ways
to probe the qubit’s state). Given the known qubit state, we
aim to find the Hamiltonian’s parameters. We are particularly
interested in the parameter-dependent bias ε0(x).

On one hand, we can study here the general (“reverse
engineering”) problem in the spirit of Refs. 18 and 19. On
the other hand, we aim to provide the basis for measuring the
NR’s position x by means of probing the qubit’s state, while
x = x(t) is considered a slow time-dependent function.

In what follows we will consider the driven qubit’s state
with emphasis on finding optimal driving and controlled offset
parameters (A, ω, and ε∗

0) for the resolution of the small
bias component δε0. We will assume that the dynamics of
the parameter x is slow enough not to be considered during
the measurement process. Depending on this slowness, the
measurement might have to involve only one passage of the
avoided crossing, or it can involve long-time driving and

stationary-state equilibrium of the qubit. Our aim is to find
a sensitive probe for small δε0. For high sensitivity we require
substantial changes in the qubit’s state for small changes of
ε0 given by δε0. For a quantitative definition of the sensitivity
one can consider the derivative of the probability with respect
to the bias ε0.

IV. RESULTS FOR THE INVERSE LZS
INTERFEROMETRY

In this section we consider the inverse problem for the
qubit’s dynamics, in particular how to infer the qubit’s bias ε0

from the measured qubit state. For concreteness, we consider
the qubit driven by the bias ε(t) = ε0 + A sin ωt . For purposes
of analyzing the short-time dynamics, one would consider a
single passage or a sequence of a small number of passages
through the avoided level crossing. If the time dependence of
the bias ε0(x) is so slow that the multiple-passage dynamics is
relevant, then the stationary qubit state can be considered.

A. Single passage: Nonlinearity in the Landau-Zener problem

The linearization of the bias in the vicinity of the avoided
crossing [where ε(t) = 0] results in the approximation that
this region is swept at the ε0-dependent rate Aω

√
1 − (ε0/A)2

(for details see Ref. 9). The corresponding probability of the
nonadiabatic transition to the upper adiabatic level is given by
the Landau-Zener formula

P
(I )
+ = PLZ = exp

(
− γ√

1 − (ε0/A)2

)
, γ = π

2

�2

Ah̄ω
.

(18)

In other words, the nonlinear dependence of the bias on time
has the effect that the Landau-Zener probability depends on
ε0 (see also Ref. 24), which is demonstrated in Fig. 4(a). We
note that here |ε0| < A and the formula (18) gives numerically
incorrect results when ε0 tends to A.

To quantify the sensitivity of the transition probability to
small changes in the bias, in Fig. 4(c) we plot the derivative of
the excitation probability P

(I )
+ with respect to ε0. We can see

that the nonlinearity of the bias results in an increase of the
sensitivity.

For the single-passage case it is straightforward, from
Eq. (18), to find the solution for the inverse problem ε0 =
ε0(P (I )

+ ). In particular, in the case ε∗
0 = 0 and δε0 � A we

have

PLZ ≈ PLZ,0

[
1 − γ

2

(
δε0

A

)2]
, PLZ,0 = e−γ , (19)

and the solution for the inverse problem becomes

δε0

A
=

√
2

γ

(
1 − PLZ

PLZ,0

)
. (20)

B. Double passage: Stückelberg oscillations

Next, consider the situation where the avoided crossing
region is passed twice. For example, the qubit can be
driven by a sinusoidal pulse of length 2π/ω. Alternatively,
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FIG. 4. (Color online) Upper-level excitation probability P+ after
(a) single passage and (b) double passage, plotted for A/� = 5 and
h̄ω/� = 0.2, versus the bias ε0. The sensitivity to the changes of the
bias ε0, defined as the derivative χ = |dP+/d(ε0/A)| is plotted in
(c) and (d), respectively. Solid lines were plotted with Eqs. (18) and
(21), while dashed lines were calculated numerically.

triangular pulses can be used to drive the qubit twice through
the avoided-level crossing, as in Refs. 25 and 26. In both
cases, the double-passage process can make use of quantum
interference to increase the sensitivity of our problem through
the accumulation of the Stückelberg phase.27

The upper-level excitation probability after the double
passage is9

P
(II)
+ = 4PLZ(1 − PLZ) sin2(ζ2 + ϕS), (21)

where ζ2 is the phase acquired during the evolution between
anticrossings at t2 and t1 + 2π/ω:

ζ2 = 1

2h̄

∫ t1+2π/ω

t2

√
�2 + ε(t)2dt, (22)

and ϕS is the Stokes phase.
Stückelberg oscillations, described by Eq. (21), are demon-

strated in Fig. 4(b) for 0 < ε0/A < 1. The corresponding
sensitivity is shown in Fig. 4(d). The agreement of the
analytical formulas and numerical calculations is remarkable
(as demonstrated in Fig. 4). One can see that the sharper
the Stückelberg oscillations, the higher the sensitivity. This
is related to the period of the Stückelberg oscillations, which
decreases with increasing A/ω. Here we also note that P (II)

+ (ε0)
is not a symmetric function, and the period of the Stückelberg
oscillations is smaller for ε0 < 0 than for ε0 > 0. Therefore,
using negative values of ε0 results in slightly higher sensitivity
than that shown in Fig. 4(d).

The factor PLZ(1 − PLZ) in Eq. (21) is described by the
one-passage problem above. Consider the term cos2 ζ2. For
ε∗

0 = 0 and δε0 � A we have9 ζ2 ≈ A
h̄ω

− π
2

δε0
h̄ω

. For example,
for A

h̄ω
= 2kπ + π

4 we obtain

P
(II)
+ ≈ 2PLZ(1 − PLZ)

(
1 + π

δε0

h̄ω

)
. (23)

This describes a linear dependence on the small bias δε0,
which is a significant increase in sensitivity as compared to

the quadratic dependence on δε0 in the single-passage case
above, Eq. (19). If the decoherence is negligibly small, one can
further increase the sensitivity of the excitation probability to
small changes in the bias due to interference by considering
the multiple-passage case.

The formula (23) can be conveniently used to make
quantitative estimates. Consider this for the example of the
qubit-nanomechanical resonator system as in Ref. 8. First, to
increase the sensitivity of the changes of P

(II)
+ with respect

to δε0, we choose the smallest possible frequency ω. In our
case the driving period should exceed the decoherence time T2

and the NR oscillation period 2π/ωNR. For superconducting
qubits T2 is typically higher than 1 μs. Then, we are limited
by the relation ω > ωNR, and we take ω/2π ∼ 0.1 GHz.
We choose the parameters A(nμ) and �(�) such that PLZ ∼
1/2. Assuming nNR = 1 and 8EC/h = 100 GHz, we obtain
the change of the probability with changes in the NR’s
displacement �P

(II)
+ = 103x/ξ . This means that for probing a

displacement of x ∼ 10−5ξ , one has to be able to measure
population changes P

(II)
+ ∼ 0.01. This level of accuracy is

achievable with superconducting qubits.28

C. Multiple passage: Stationary solution

Now we assume that what is relevant for our inverse
problem is the stationary state of the driven qubit. To analyze
the analytical expressions, we consider two limiting cases.

1. Slow-passage limit

For the analytical description of the upper-level occupation
probability in the adiabatic limit, when γ > 1, we use the
following formula from Ref. 9:

P+ = PLZ(1 − cos ζ ′
+ cos ζ−)

sin2 ζ ′+ + 2PLZ(1 − cos ζ ′+ cos ζ−)
, (24)

where

ζ ′
+ = ζ1 + ζ2, ζ− = ζ1 − ζ2,

(25)

ζ1 = 1

2h̄

∫ t2

t1

√
�2 + ε(t)2dt,

and ζ2 is given by Eq. (22). Formula (24) is illustrated in
Fig. 5(a). Consider ε∗

0 = 0; then for strong driving, A � �,
we have

ζ− ≈ πδε0

h̄ω
, ζ ′

+ ≈ 2A

h̄ω
− δε2

0

Ah̄ω
. (26)

Analyzing the interferogram in Fig. 5(a), we find the possibility
of obtaining a sensitive working point with a driving amplitude
a little bit lower than the one where the width of the resonance
line tends to zero, that is, 2A/h̄ω = 2πn − a, a � 1 [see
the small horizontal red and green dashes around ε0 = 0 in
Fig. 5(a)]. It follows that

P+ ≈ 1

2

PLZ(πδε0/h̄ω)2

a2 + PLZ(πδε0/h̄ω)2
, (27)

which is equal to zero at δε0 = 0 and quickly tends to 1/2 with
increasing δε0. This is demonstrated in Fig. 5(b).
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FIG. 5. (Color online) Slow-passage and fast-passage LZS in-
terferometry of a qubit. (a),(d) The time-averaged upper-level
occupation probabilities, defined in the adiabatic (P+) and diabatic
(P up) bases, as functions of the bias ε0 and driving amplitude A.
The parameters are the same as for Fig. 3 except for the frequency:
(a) ω/2π = 6.5 GHz < �/h and (d) ω/2π = 20 GHz > �/h.
(b),(e) Cross sections for the corresponding dependencies of the
upper-level occupation probabilities as functions of the bias along the
horizontal dashes shown in red and green in (a) and (d). (c),(f) Inverse
graphs, which show the dependence of the bias on the upper-level
occupation probabilities (assuming that ε0 lies on the right-hand side
of the resonance peak).

2. Fast-passage limit

In the fast-passage and strong-driving regime (where γ �
1), the rotating-wave approximation gives for the upper-level
occupation probability23,29

P up = 1

2

∑
k

�2
k

h̄2

T1T2
+ T2

T1
(ε0 − kh̄ω)2 + �2

k

, (28)

�k = �Jk(A/h̄ω), (29)

where Jk is the Bessel function. Formula (28) is demonstrated
in Fig. 5(d). If the relaxation is not taken into account, then in
the vicinity of the kth resonance (where ε∗

0 = kh̄ω) we obtain
the Lorentzian dependence on the small bias shift δε0:

P up = 1

2

�2
k

δε2
0 + �2

k

. (30)

This describes the resonance peak P up = 1/2 at δε0 = 0,
which is demonstrated graphically in Fig. 5(e). Its width is
defined by �k and is minimized for values of A/h̄ω in the
vicinity of the zeros of the Bessel function. With relaxation
taken into account, the sensitivity is defined by the half-width
of the resonances, given by

�ε
(k)
0 =

√
T1T2�

2
k + h̄2

T2
. (31)

This means that to increase the sensitivity, which is related
to the sharpness of the resonances, one has to decrease the
decoherence rate.

Here we note that it was assumed that the measurement time
is much smaller than the resonator’s period, Tmeas � 2π/ωNR.
On the other hand, to reach a stationary state, the measurement
time should be larger than the relaxation time, T1,2 < Tmeas.
This means that the results presented in this section are relevant
for qubits with short relaxation times and for resonators with
small frequencies. Alternatively, one should solve the problem
which explicitly takes into account x = x(t).

Formula (31) allows us to make estimates, as we did at
the end of the previous section. For A/h̄ω equal to one of
the Bessel-function zeros and for T2 = 4 ns � 2π/ωNR, we
obtain that the probability P up changes by about 1/4 when
the bias changes by �ε0/h ∼ 0.25 GHz. On the other hand,
we have seen that δε0/h ∼ 100(x/ξ ) GHz. This means that
in order to observe changes x ∼ 10−5ξ , one has to distinguish
changes in P up∼ 10−3, which is also possible, in principle.28

D. Inverse interferometry: Qubit probes resonator

The idea of the measurement procedure, presented in Fig. 5,
could be as follows. Driving the qubit in a wide range of
parameters is done first to plot the interferogram as in Fig. 5(a)
and/or 5(d). Then a region of high sensitivity, where small
changes in the qubit bias result in large changes in the final
state, is chosen. Examples of such high-sensitivity regions are
shown in Fig. 5(b) and/or 5(e).

From Fig. 5 we can see that both the slow-passage limit,
demonstrated in Figs. 5(a)–5(c), and the fast-passage limit
[Figs. 5(d)–5(f)] can be used for the solution of the inverse
problem. The choice of the optimal working point and its
vicinity will depend on the specific parameters of the problem.
For illustration, in Figs. 5(a) and 5(d) we marked by red
and green small dashes two possibilities of having the dip
in Fig. 5(b) or the peak in Fig. 5(e) be narrow (red curves) or
relatively wide (green curves).

In principle, a low-amplitude slice near the bottom of
Fig. 5(d) can be used to obtain a sharp resonance peak, as
in Fig. 5(e). However, based on the results of Refs. 9 and 30, it
seems that the width of the resonances might be increased more
for low-amplitude driving due to the influence of the noise and
decoherence. From the experimental point of view the best
strategy is probably to obtain a wide-range interferogram and
then choose a narrow resonance.

One can now bias the qubit at a high-sensitivity point, apply
a “measurement pulse” to the qubit, measure its state at the
end of the pulse, and extract the resonator’s position x from
the measured qubit’s state; see Figs. 5(c) and 5(f), where ε0

(which parametrically depends on x) is plotted as a function
of the qubit’s occupation probability.

It should be noted here that the measurement pulse, which
is essentially a driving signal applied to the qubit, can take a
short duration at the beginning of the measurement process.
Afterward the final state of the qubit is read out in the absence
of any driving fields. As a result, issues that affect the qubit
only on relatively large time scales, e.g., dephasing and the
slow measurement of the qubit’s state, do not affect the qubit’s
ability to accurately measure the instantaneous position of
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the resonator. It should also be noted that this measurement
procedure is a single-shot type of measurement and not a
continuous measurement. One could in principle use several
qubits in order to perform multiple measurements on the state
of the resonator.

V. CONCLUSIONS

We have analyzed a measurement scheme where a qubit
is probed via a quantum capacitance. We demonstrated the
sign-changing behavior of the quantum capacitance where
the strongly-driven qubit exhibits a LZS interferogram. Our
semiclassical calculations were used to describe recent experi-
mental results8 for the LZS interferometry of the qubit probed
by a NR.

Then, motivated by the experimental work of LaHaye
et al.,8 we formulated the inverse problem. The inverse LZS
problem was formulated and solved for a generic two-level
system in several driving regimes. More specifically, we have
split the quasiconstant bias ε0 into an externally controlled part
ε∗

0(ng) and a small part δε0(x) that is to be measured through
the qubit’s state. For the qubit-NR system the former can be
changed through the gate voltage to realize the most efficient
measurement working point; the latter was assumed to be a
function of the NR’s displacement x.

We have shown how the inverse problem can be used
for defining the NR’s displacement. First, one should find
(measure) the direct LZS interferogram (in a wide range
of parameters). This allows finding the qubit’s parameters
and choosing the optimal bias ε∗

0 . Then, fixing the qubit’s
parameters at the optimal working point, small changes due
to the slow NR’s motion may be used for measuring its
displacement.
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APPENDIX A: SEMICLASSICAL THEORY FOR THE
QUBIT-RESONATOR SYSTEM

In this Appendix we consider the semiclassical theory for
the qubit-NR system. The equation for the displacement x

of the classical NR with effective mass m, quality factor Q,
eigenfrequency ω0, and driven by the external force F is

m
d2x

dt2
+ mω0

Q

dx

dt
+ mω2

0x = F. (A1)

In our problem, presented in Fig. 2, the NR is influenced by
the voltage difference from both sides. On one side (to the
right of the NR in Fig. 2) the voltage difference contains the
large constant part �V = VNR − VGNR and the small rf driving

component VRF = VA cos ωrf t . The force due to these voltages
is

FGNR = 1

2

∂

∂x
[CGNR(VNR − VGNR − VRF)2]

≈ 1

2

(
∂CGNR

∂x

)
�V 2 − FA cos ωrf t, (A2)

where FA = (∂CGNR/∂x)�V VA. From the other side (left side
of the NR in Fig. 2) the voltage difference is defined by the
island’s voltage VI. The corresponding force is

FNR = 1

2

∂

∂x
[CNR(VNR − VI)

2]

≈ 1

2

(
∂CNR

∂x

)
V 2

NR − VNR
∂

∂x
(CNRVI). (A3)

In the Coulomb-blockade regime, the voltage VI is defined
by the quantum-mechanically averaged island charge −2en,
which is given by the sum of the charges on the plates of the
capacitors that define the island,

−2en = QJ1 + QJ2 − QCPB − QNR. (A4)

FIG. 6. (Color online) Scheme showing how the charge qubit can
be described as an effective capacitance coupled either to the NR or
to an LCR resonator. (a) To the left, the charge qubit (CPB) is shown
to be described as the capacitance 2CJ controlled by the voltage VCPB

and coupled through the coupling capacitance CNR to a measuring
circuitry. This is described as the effective capacitance Ceff as shown
to the right. (b) The effective capacitance is coupled to the NR, which
can be used to model our system shown in Fig. 2. (c) The effective
capacitance is coupled to the electric LCR tank circuit.
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For the island voltage it follows that

VI = 2e(Ng + nμ sin ωt − n)

C�

, (A5)

Ng = CNRVNR

2e
+ CCPBVCPB

2e
≡ NNR + NCPB. (A6)

Here we note that to obtain the charging Hamiltonian of
the CPB in the two-state approximation, we consider Ng =
N + ng close to a half-integer number, where N is the integer
part of Ng, and ng = {Ng} is the fractional part. Then, with
n = N + n̂ and nμ < 1, we obtain for HCPB = C�V 2

I /2 the
charging part of Hamiltonian, Eq. (1). Here the operator for the
extra Cooper-pair number n̂ = (1 + σz)/2 acts on the “charge”
basis states as follows: n̂|0〉 = 0 and n̂|1〉 = |1〉.

At this point we assume that the qubit’s dynamics is much
faster than that of the classical NR, so the equation for the
NR can be averaged over the period 2π/ω and then the NR’s
dynamics is defined by the time-averaged voltage

V I = 2e(ng − 〈n〉)
C�

. (A7)

In what follows this time averaging is assumed.
Denoting the sum of the constant terms in Eqs. (A2) and

(A3) as F0, we obtain

F = F0 + ∂F

∂x
x − FA cos ωrf t, (A8)

∂F

∂x
= − 2

C�

(
CNRVNR

ξ

)2[
1 − ∂〈n〉

∂ng

]
. (A9)

The term F0 results in an (irrelevant) constant displacement of
the NR, while the linear term results in the resonance frequency
shift in Eq. (A1) as follows:

mω2
0 − ∂F

∂x
≡ mω̃2

NR. (A10)

Then we obtain the NR’s frequency shift

�ω̃NR = ω̃NR − ω0 ≈ 1

2mω0

∂F

∂x
≡ �ω1 + �ω2, (A11)

where �ω1 and �ω2 correspond to the two terms in Eq. (A9).
The term �ω1 does not depend on the state of the qubit; we
therefore define the qubit-state-dependent frequency shift

�ωNR = �ω̃NR − �ω1 = �ω2, (A12)

which leads to Eq. (6).

APPENDIX B: QUANTUM CAPACITANCE

In addition to the theory presented in the previous Ap-
pendix, it is useful to consider the system qubit-resonator
by introducing the quantum capacitance, which is the subject
of this Appendix. Let us introduce the effective (differential)
capacitance, as shown in Fig. 6(a), by differentiating the charge
QNR of the capacitance CNR as follows:31 Ceff = ∂QNR/∂VNR.
Then, for the charge QNR = (VNR − V I)CNR with the island’s
voltage given by Eq. (A7), we obtain

Ceff = Cgeom + CQ, (B1)

which consists of the quantum capacitance CQ, given by
Eq. (8), and the geometric capacitance Cgeom,

Cgeom = CNR(C� − CNR)

C�

≈ 2CJCNR

2CJ + CNR
, (B2)

where the latter approximation is valid for CCPB �
CJ,CNR.

Alternatively to the approach of the previous Appendix,
one can consider the force FNR as the electrostatic force from
the effective capacitance [see Fig. 6(b)]: FNR = 1

2
∂
∂x

(CeffV
2

NR).
Then the term with the quantum capacitance, in which C2

NR ≈
C2

NR0(1 + x/ξ )2, results in the same frequency shift as obtained
in the previous Appendix, Eq. (A12).

APPENDIX C: QUBIT PROBED BY TANK CIRCUIT

In this Appendix we consider a qubit coupled capacitively
to the series LCR (tank) circuit [see Fig. 6(c)]. The tank circuit
consists of an inductor LT and a capacitor CT, while dissipation
is described by the resistor RT. The qubit is considered to be
coupled to the tank circuit through the coupling capacitance,
which for uniformity we again denote by CNR (even though
there is no NR in the scheme considered in this Appendix),
in parallel to the tank’s capacitance CT. The effect of the
qubit on the tank circuit can be described by replacing the
tank capacitance CT with C̃T = CT + Ceff , where the effective

FIG. 7. (Color online) LZS interferometry probed via a quantum
capacitance. (a) The quantum capacitance CQ of the qubit versus the
energy bias (ng) and the driving amplitude (nμ). Arrows show the
values of nμ and ng at which the graphs (b) and (c) are plotted as
functions of ng and nμ, respectively. The upper curves were shifted
for clarity.
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capacitance of the Cooper-pair box is given by Eq. (B1). The
geometric capacitance Cgeom gives only a constant contribution
to the tank capacitance CT, while the quantum capacitance
CQ � C0 = CT + Cgeom is defined by the derivative of the
average extra Cooper-pair number on the island 〈n〉.

The tank circuit is biased by the current Ib = IA cos ωrf t .
The output voltage is given by VT = VA cos(ωrf t + θ ). Then
from the equation for the voltage we obtain for the phase shift

tan θ = Q0

(
2
�ω

ω0
+ CQ

C0

)
, (C1)

ω0 = 1√
LTC0

, �ω = ωrf − ω0, Q0 = 1

RT

√
LT

C0
. (C2)

The measured value can be either the voltage shift θ at
resonance frequency12,13,15 (�ω = 0):

tan θ = Q0
CQ

C0
, (C3)

or the resonance frequency shift8 (at which the voltage shift
θ = 0):

�ω

ω0
= − CQ

2C0
. (C4)

Both are proportional to the quantum capacitance CQ.

For the sake of illustration, in addition to Fig. 3, we
also demonstrate in Fig. 7 the direct LZS interferometry
calculated for the quantum capacitance for the parameters
of Ref. 14: EJ0/h = 12.5 GHz, EC/h = 24 GHz, ω/2π =
4 GHz, kBT /h = 1 GHz, and also we have taken α = 0.005,
B = 0.5. We note that besides the difference in the parameters,
in Fig. 3 the frequency shift �ω is plotted, while in Fig. 7
the quantum capacitance CQ is shown. Both figures were
calculated by numerically solving the Bloch equation.

Finally, it is worthwhile emphasizing that for simplicity we
have assumed that the qubit’s dynamics is much faster than
the resonator’s dynamics. In the general case, the cooperative
dynamics of the qubit-resonator system should be studied, as,
e.g., in Ref. 32. However, a simplification can be made because
the stationary oscillations in the nonlinear system (either the
NR or tank circuit), influenced by the qubit’s dynamics, can
be reduced to oscillations in the linear system, as was studied
in Ref. 17. In that work, the Krylov-Bogolyubov technique of
asymptotic expansion was used. This technique describes the
influence of the qubit as shifts of both the effective damping
factor and the effective coefficient of elasticity. In analogy
to the results of Ref. 17, for the system considered here,
this means that not only is the voltage shift θ related to the
qubit’s capacitance CQ [see Eq. (C1)], but also the voltage
magnitude VA is defined by CQ. This, in particular, explains
the experimental results presented in Fig. 3 by Paila et al.15
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