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Neill Lambert,1 Robert Johansson,1 and Franco Nori1,2

1Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198, Japan
2Physics Department, University of Michigan, Ann Arbor, Michigan 48109, USA

(Received 21 July 2011; revised manuscript received 11 October 2011; published 13 December 2011)

We show how to apply the Leggett-Garg inequality to opto-electro-mechanical systems near their quantum
ground state. We find that by using a dichotomic quantum nondemolition measurement (via, e.g., an additional
circuit-QED measurement device), either on the cavity or on the nano-mechanical system itself, the Leggett-Garg
inequality is violated. We argue that only measurements on the mechanical system itself give a truly unambigous
violation of the Leggett-Garg inequality for the mechanical system. In this case, a violation of the Leggett-Garg
inequality indicates that physics beyond that of “macroscopic realism” is occurring in the mechanical system.
Finally, we discuss the difficulties in using unbound nondichotomic observables with the Leggett-Garg inequality.
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I. INTRODUCTION

The Leggett-Garg (LG) inequality1–8 is one of a large class
of inequalities used to delineate different physical theories. It
is constructed to test for “macroscopic realism,” the class of
physical theories that imply that, before we measure a property
of a system, that property has a well-defined value (which is not
the case in quantum mechanics). Bell’s inequality9 also tested
for this property but not without also testing for nonlocality.
The LG inequality1,2 attempts to test only for realism, but to
do so requires the assumption of noninvasive measurement
and macroscopically distinct states; hence, the moniker of
“macroscopic realism.”

In the original LG proposal,1 they imagined measuring
the two different and distinct “macroscopic states” of a
superconducting flux qubit (where, mathematically, one can
describe these states as a quantum two-level system). However,
physically, these two states are, by most definitions, “macro-
scopic”: They involve millions of particles. Superconducting
qubits have been used to show violations of Bell’s inequality,10

the Leggett-Garg inequality,5 and have been proposed as a way
to test the Kochen-Specker theorem.11

An alternative candidate to test for quantum behavior in the
macroscopic limit is in the ground state of a nanomechanical
oscillator.12,13 Strong evidence has been reported of success in
this goal by coupling a nanomechanical resonator to a qubit.14

Recent work suggests that the ground state has also been
reached in an optomechanical device.15,16 An optomechanical
system is essentially an optical (or microwave) cavity coupled
to a mechanical resonator to cool and measure the mechanical
system.17,18 A generic physical model for this optomechanical
system is of a spring that supports one of the mirrors of
an optical cavity and, thus, the mechanical motion of the
spring is coupled to the frequency of the optical mode.
However, the physical realization of optomechanical devices
can vary greatly, from a mirror suspended on a cantilever18 to
a mechanical membrane capacitively coupled to a microwave
transmission line.15,16

Reference 18 is an interesting example of the optical-cavity
realization of an optomechanical system. They18 showed
sideband cooling from photopressure and evidence of normal-
mode splitting, i.e., strong coupling between optical and
mechanical modes. Recent results15,16 using optoelectrome-

chanical systems (i.e., a microwave transmission line in place
of the optical cavity) have shown ultrastrong coupling and
ground-state cooling. However, one cannot easily distinguish
the resultant effective low-temperature state of two coupled
quantum oscillators from two coupled classical oscillators.19,20

It is well known from quantum optics that the linear re-
sponse spectral properties one observes are similar for both
theories,18,21,22 though spectral properties can strongly infer
cooling to the mechanical ground state.15,16,19,23 In addition,
the observation of asymmetry between spectral peaks due to
absorption and emission of quanta is purely a quantum effect22

and has been recently observed in experiment.24

In this work we propose a method of further distinguishing
quantum and classical oscillators by applying the Leggett-
Garg inequality. By using dichotomic quantum nondemolition
measurements (QND),25,26 we show that a theoretical model
of a realistic optomechanical system implies a violation of
the Leggett-Garg inequality due to the coherent interaction
of the cavity with the mechanical oscillator. We show how
measurements either on the cavity or on the mechanical system
directly produce violations of the inequality. We argue that
the latter are stronger proofs of quantum behavior in the
mechanical system, as the former can also occur due to the
quantum nature of the cavity alone.

Since the dichotomic QND measurements we use here
require strong coupling to a qubit, our results are most directly
applicable to optoelectromechanical systems that employ
microwave transmission lines (as the “optoelectro-” cavity that
cools the mechanical system to its quantum ground state). As
far as we are aware, a dichotomic number state measurement
has not been achieved in optical cavities. We believe the results
we show here align well with Leggett and Garg’s original goal
of testing for nonrealism in the macroscopic world, since the
ground state (or a single Fock state) of a mechanical oscillator
represents a quantum state in a solid composed of millions of
atoms.

We begin this article by outlining the original Leggett-Garg
inequality and discuss why dichotomic QND measurements
are necessary. We then show our main result: that the
introduction of a single photon into the microwave cavity,
and application of dichotomic QND measurements, leads
to a violation of the LG inequality. Afterward we present
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the technical details of the model we use to describe the
optoelectromechanical system and discuss the practical issues
of state preparation and measurement. We finish with a
discussion of the difficulties of using nondichotomic unbound
measurements and give a conjecture on a possible bound for
the inequality in such a case.

II. THE LEGGETT-GARG INEQUALITY

The Leggett-Garg inequality1,2 is defined as follows: Given
an observable Q(t), which is bound above and below3,4 by
|Q(t)| � 1, the assumption of (A1) macroscopic realism and
(A2) noninvasive measurement implies

L(t1,t2) = 〈Q(t1)Q(0)〉 + 〈Q(t1+t2)Q(t1)〉
− 〈Q(t1+t2)Q(0)〉 � 1. (1)

If Q is in the steady state at the initial time of measurement,
and we set t1 = t2, then this becomes

2〈Q(τ )Q(0)〉 − 〈Q(2τ )Q(0)〉 � 1. (2)

To adapt this to work on measurements on bosonic (harmonic)
systems one must proceed with extreme caution. This is
because (a) it is difficult to define a bound on measurements
on harmonic systems, (b) many measurements (particularly in
the optical regime) are invasive (e.g., single-photon counting),
and (c) the dynamics of classical and quantum harmonic sys-
tems are identical (apart from quantum fluctuations) without
additional sources of nonlinearity.

Fortunately, the growing field of optoelectromechanical
systems and circuit QED27–31 allows us to overcome many of
these obstacles. We can adapt the scheme realized by Johnson
et al.25,26 to overcome obstacle (a). In their scheme, one uses
an additional qubit/measurement-cavity system to dispersively
measure whether the optomechanical-cavity contains “one
photon or not” (this is a dichotomic QND measurement). We
will also show how, in principle, it might be possible to use
this to measure the mechanical system directly and say if it
contains “one phonon or not.”

The former (a dichotomic QND measurement on the cavity)
is possible due to the strong coupling between qubit and
cavity that has been achieved in circuit-QED systems. The
latter (a dichotomic QND measurement on the mechancical
system) may be possible given the recent strong coupling
shown between a mechanical system and a superconducting
qubit.14 A possible realization of the QND measurement on the
cavity in an optoelectromechanical system is shown in Fig. 1.

This scheme also allows us to overcome obstacles (b) and
(c), as it realizes a nondemolition, and classically noninvasive,
projective measurement of the photons in the cavity (or
phonons in the mechanical oscillator). In the final section we
will return to these issues and hypothesize about a new bound
for the inequality if one’s observables are nondichotomic and
unbound.

Microwave
measurement
cavity

Microwave
cavity

Measurement
qubit

Mechanical 
oscillator

Dichotomic QND measurement: Opto-electro-
mechanical system:

Cavity drive

FIG. 1. (Color online) Schematic diagram of a possible opto-
electromechanical system with dichotomic QND measurement of
the cavity. (Right side of figure) The driven microwave cavity is
coupled to a mechanical oscillator, e.g., the fundamental mode of
a thin film drum as in Refs. 15 and 16. (Left side of figure) A
simplified schematic of the qubit/measurement-cavity system used for
the dichotomic QND readout (as in Ref. 25). A similar measurement
could be performed directly on the phonon states in the mechanical
mode, given sufficiently strong coupling strengths between qubit and
mechanical system (such a configuration is not shown in the figure).

III. VIOLATION FOR OPTOMECHANICAL SYSTEMS
USING DICHOTOMIC QND MEASUREMENTS

We define the LG inequality in terms of dichotomic
quantum nondemolition measurements either on the single-
Fock state occupation of the cavity mode

Qc = 2|1〉c〈1|c − 1, (3)

where c refers to the cavity mode or on the single-phonon state
occupation of the mechanical mode,

Qm = 2|1〉m〈1|m − 1, (4)

where m refers to the mechanical mode. As mentioned above,
these measurements require an additional qubit/measurement-
cavity,25 which we outline in Sec. V, and are shown schemat-
ically in Fig. 1, for the example of measuring the cavity
mode. For our purposes, this measurement returns +1 if
there is a quanta in the appropriate mode (m or c) and −1
if not. To show a violation of Eq. (1) one can prepare the
optoelectromechanical system near its ground state following
the sideband cooling procedure described in the next section.
The ground-state cooling of the mechanical system requires
that we strongly drive the microwave cavity, resulting in a
nonzero steady-state coherent occupation in the cavity in a
rotating frame. Fortunately this can, in principle, be eliminated
from the QND measurement (see Sec. V).

We then adiabatically introduce an additional photon into
the cavity,32 in addition to this coherent state,25,33 which ideally
prepares the system in the state

ρ(t = 0) = |1〉c 〈1|c ⊗ |0〉m 〈0|m, (5)

where, again, c refers to the cavity and m refers to the
mechanical mode (note that the state of the cavity is in a
displaced basis in a rotating frame because of the driving
of the cavity). The strong coupling between the mechanical
system and the optical mode causes this single excitation to
be coherently exchanged (akin to a Rabi oscillation). One
then measures the operator Qc (or Qm) using the readout
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FIG. 2. (Color online) Example of violation of Eq. (1) (with
t1 = t2 = τ ) using (a) measurements on the cavity Qc and
(b) measurements on the mechanical mode Qm, as a function of
the dimensionless time: τ |G|/2π . Both figures are produced by our
model of an optoelectromechanical system, where G = gωmα is the
effective coupling between the mechanical and cavity modes and α ≈
−�/� is the displacement of the cavity mode produced by the driving
�. For strong effective coupling, the non-energy-conserving terms in
our model begin to strongly modulate the shape of the correlation
functions in Eq. (1). We have chosen ratios for the parameters
that correspond approximately to those seen in the strong-driving
limit of Refs. 15 and 16, where ωm ≈ 2π × 10 MHz, though to aid
computation we made g large, and � small, in comparison to their
data. Remarkably, the high quality factor of both the microwave and
mechanical cavities used in Refs. 15 and 16 means that the violation of
the inequality remains visible for relatively long time scales, though
this can depend on the initial temperature of the mechanical mode.

qubit-measurement cavity and a programmable controlled-
NOT (CNOT) scheme25 (see Sec. V). If the measurement
time scale (which includes rapidly resetting the qubit to its
ground state) is short enough one can construct the two-time
correlation functions in Eq. (1).

In Fig. 2 we explicitly show how the results from our
model, outlined in the next section, which suggest a vio-
lation of Eq. (1), is, in principle, observable with existing
experiments.14–16 It is interesting to note that the largest
violations occur for small times, which implies we require the
readout and reset of the qubit to be fast. Typical readout times
in Ref. 25 are of the order of 550 ns, introducing an intrinsic
minimum delay into the correlation functions. The typical time
scale of the coherent dynamics in Refs. 15 and 16 is related to
the coupling, which is of the order of 105–106 Hz, implying that
the short-time-scale coherent dynamics should be observable
with such a measurement, though for measurements of Qc this
may be altered by the need to measure in a rotating frame (see
later). We also find that if the driving, and, hence, the coupling
between cavity and mechanical system, is strong enough, then
the non-energy-conserving terms in the interaction modulate
the dynamics quite strongly. However, at this point one also
expects other nonlinear affects to arise.

A. Ambiguities in cavity measurements

As we will discuss shortly, the measurement of Qc is a direct
adaptation of an existing experiment (albeit with additional
steps to make sure that we are measuring in the correct frame).
However, our main goal is to verify the quantum dynamics
of the mechanical mode. It just so happens that in this case
it is the quantum coherent interaction between the cavity and
mechanical modes that drives the violation we observe in the
observables of the cavity system. However, in principle, a
violation could also be observed due to the quantum nature of
the cavity mode alone.

Thus, with measurements on the cavity mode alone it is
impossible for us to state that a violation the Leggett-Garg
inequality (e.g., with measurements Qc) gives unambiguous
proof of macroscopic quantum phenomena in the mechanical
mode. Ideally, one requires dichotomic QND measurements
on the mechanical mode directly (as defined by Qm) to state
that a violation of the Leggett-Garg inequality is unambiguous
proof of quantum mechanics in the nanomechanical system.
We will outline a possible scheme to achieve this later.

IV. OPTOMECHANICAL SYSTEMS

We now explicitly describe the optomechanical system and
the model we use to calculate the results shown in Fig. 1. This
model is well known and studied in other works,23,34 but we
provide details here for clarity.

We start with the Hamiltonian describing the coupling
between the cavity and the mechanical oscillator,35

H (1) = �a†a + ωmb†b + gωm(b + b†)a†a + �(a + a†).

(6)

The driving field is such that the cavity and mechanical mode
are now near resonance (� = ωm).

One of the approaches taken before (e.g., Refs. 23 and 34)
is to insert displacements α and β for both modes, take
the limit g,gα � �,ωm, and treat the cavity mode as an
effective environment that cools the mechanical mode. The
condition for cooling, in our notation, is, then, � > 0, and
a sufficiently high-quality cavity κ < ωm. Reference 18 has
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shown that by observing the homodyne transmission spectra
from the (optical) cavity, we can see a clear signature of
“normal mode splitting.” This is because the displacements
α and β, and the coupling, are given by a simple model of two
coupled oscillators, which has coupled normal modes. Here
we explicitly model both cavity and mechanical system in the
strong-coupling regime observed in Ref. 15 using a master
equation approach.

A. Resolved sideband cooling

One can find the linearized version of the original Hamil-
tonian by displacing both mechanical and cavity modes, so
a → c + α, b → d + β. Inserting these displacements in the
Hamiltonian, and eliminating linear terms, gives two coupled
equations for the displacements,

α� + 2ωmgα(β + β∗) + � − iκ = 0, (7)

ωmβ + ωmgα2 = 0. (8)

The κ term arises because of the linear dissipation terms (cavity
losses) we will introduce shortly. Careful inspection of the
possible solutions of these cubic equations shows that

β = −gαα∗, (9)

and in the limit of small g,

α ≈ −�

� − iκ/2
. (10)

If we do not make a small g assumption, these displacements
are real, up to some critical driving � of order ωm/g, which
corresponds to the breakdown point of the small displacement
assumption made to derive the original Hamiltonian (see
Ref. 35). At this point, additional nonlinearities in the
interaction could play a role, but we do not consider those
here.

The Hamiltonian, with the linear terms eliminated, becomes

H (2) = (� + 2gωmβ)c†c + ωmd†d

+ gωm(d + d†)(α∗c + αc†) + gωm(d + d†)c†c. (11)

We then add standard Lindblad cavity and mechanical losses
to this model and solve the resulting master equation,

ρ̇ = −i[H (2),ρ]

+ κ

2
{−c†cρ − ρc†c + 2cρc†

+ [(α∗c − αc†)ρ + ρ(αc† − α∗c)]}
+ �

2
(N̄ + 1)[−d†dρ − ρd†d + 2dρd†]

+ �

2
N̄ [−dd†ρ − ρdd† + 2d†ρd]

+ �

2
[(β∗d − βd†)ρ + ρ(βd† − β∗d)], (12)

where N̄ is the initial thermal occupation of the mechanical
mode. Dissipation terms linear in c and d (and displacements α,
β) arise because of the shifted coordinate frame. As mentioned
earlier, the linear terms for the cavity can be easily eliminated
by including them in the displacement α. The linear terms
for the mechanical mode dissipation are small in the limit of a

high-quality-factor resonator, so we neglect them here (though
we have numerically checked that their influence is small).

Under the conditions κ < ωm, � > 0 and sufficiently large
driving strength �, one can achieve the well-known resolved
sideband-limit cooling; one can start from a thermal state of
the resonator at a given temperature and reach a steady-state,
where the thermal phonon occupation of the mechanical
system approaches zero. See Refs. 23 and 34 for further details
and discussion of the cooling process.

Using this model we can easily construct the various
correlation functions needed for Eq. (1). Our technique is to
prepare the system in the appropriate initial state; e.g., a single
photon in the cavity (in the displaced basis)

ρ(0) = |1c,0m〉〈1c,0m|, (13)

then the appropriate correlation functions are calculated via
the time evolution

〈Qi(2τ )Qi(τ )〉 = Tr [Qi exp [Lτ ]Qi exp [Lτ ]ρ(0)] (14)

or via the quantum regression theorem.
Since we operate always in the basis of the displaced modes,

we are always close to the steady state. Thus, imposing directly
as an initial condition a single Fock state is a sufficiently
good approximation to the true process of preparing the
optomechanical system in its steady state and, then, e.g.,
introducing the single-photon state using the measurement
qubit.25 In principle, one can explicitly model this state-
preparation stage33 but, for simplicity, we omit it here.

V. QND READOUT

As discussed earlier, both of these measurements, Qc and
Qm, are challenging but may be feasible in the future by
combining existing circuit-QED devices (for QND readout25)
with an optoelectromechanical system.15,16 The additional
circuit-QED system (qubit and microwave cavity) allows both
the deterministic preparation of the cavity in a single Fock
state26,36–38 and the dispersive QND readout of its population
dynamics.25 Thus, in reality, our proposed optoelectromechan-
ical system is a circuit-QED-mechanical system, where the
additional qubit-cavity part is used for state preparation and
readout. First, we will describe the details (Fig. 1) of how to
realize the measurement Qc (Ref. 25). As mentioned earlier,
this is perhaps the most feasible with current technology,
though does not give us an unambigous violation of the LG
inequality for the mechanical mode. We then will discuss
possible ways that the measurement Qm might be realized
by coupling the qubit directly to the mechanical system, and
not the cavity, which give us a more ideal and unambigous
violation of the LG inequality.

A. Cavity measurement Qc

The dichotomic QND measurement realized by Johnson
et al. is ideal for our purposes of realizing Qc, but the scheme
as it is described there25 measures “if there is one cavity or
not” in the laboratory basis. The cavity in the optomechanical
Hamiltonian Eq. (6) we used earlier is in a displaced rotating
frame (because of the microwave driving needed for sideband
cooling), and, thus, it is in this basis that we must measure
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the cavity to realize Qc as we have described it. For example,
in the stationary frame of the qubit (but rotating frame of the
cavity), the interaction between qubit and cavity is described
by

Hqb−c = ε

2
σz + �a†a + λ(σ+ae−iωd t + σ−a†eiωd t ), (15)

where ωd is the driving frequency and was chosen to bring the
cavity and mechanical system on resonance in Eq. (6), so

� = ωc − ωd ≈ ωm. (16)

In addition, we also displace the cavity coordinates by α, so
the interaction between the qubit and cavity coordinates that
we actually want to measure is

H̄qb−c = ε

2
σz + �c†c + λ(σ+ce−iωd t + σ−c†eiωd t )

+ λ(αe−iωd tσ+ + α∗eiωd tσ−). (17)

The additional displacement term represents the large number
of photons that are in the cavity due to the driving. Ideally,
their influence on the qubit can be eliminated by applying an
additional microwave drive to the qubit itself28 (still in the
laboratory frame), out of phase with the term above, e.g.,

Hadjust = −λ(αe−iωd tσ+ + α∗eiωd tσ−). (18)

This is feasible if the magnitude, λα, is not too large28 but may
become unfeasible if an extremely large driving of the cavity
is needed for cooling.

Assuming this term has been applied, and the effect of
the large cavity population eliminated, we can move the
qubit into the same frame as the cavity with the unitary
transformation Uq = exp (iωdσzt/2). This leaves us with a
normal Jaynes-Cummings Hamiltonian between qubit and
cavity, with a shifted qubit energy

�′ = ε − ωd. (19)

In this new picture, the QND measurement scheme pro-
posed and analyzed elsewhere25,28,39 applies for a large bias,

δ = �′ − � = ε − ωc. (20)

This is clearly shown by applying the unitary transformation
UdHU

†
d , Ud = exp [ λ

δ
(cσ+ − c†σ−)], which leads to the well-

known dispersive coupling Hamiltonian (see, e.g., Refs. 28
and 39),

Hqb−D =
[
�′

2
+ λ2

δ

(
c†c + 1

2

)]
σz + �c†c. (21)

This transformation can induce interactions between the
measurement qubit and the mechanical mode, but these terms
can also be treated with a dispersive transformation and give a
shift of the qubit frequency of order (λgαωm)2/δ3 and are, thus,
much weaker than the λ2/δ shift. In addition, the higher-order
terms in λ/δ (representing backaction of the qubit on the
cavity) should be much smaller than the cavity-mechanical
mode interaction (i.e., λ3/δ2 � gαωm).

In Ref. 25, in order to have sufficiently high-resolution
measurement of the effect of the photons on the energy
levels of the qubit, they needed δ/λ < 10. That is, they need
sufficiently large δ to reach the dispersive limit but sufficiently

strong λ to obtain well resolved energy shifts for different
photon occupations. Here, δ == ε − ωc, thus reaching the
same regime as δ/λ < 10 seems feasible.

The dichotomic property of the measurement is achieved
because of the strong dependence of the qubit response on
the number of photons in the cavity. In Ref. 25, for the
measurement step, they apply a π control pulse to the qubit
at the frequency corresponding to its energy when just one
photon is in the cavity. Thus, the qubit is rotated if and only
if there is one photon present and nothing happens otherwise.
This is an effective CNOT gate on the qubit and the cavity. Here,
the effective CNOT gate must also be in the rotating frame of
the qubit. For the final measurement step, one measures the
state of the qubit via pulsed spectroscopy of the cavity.

Overall, this dispersive Hamiltonian, combined with the
controlled-π rotation of the qubit and readout of the qubit
using the additional measurement cavity (which we have not
explicitly described) ideally gives us a way to realize the
dichotomic QND measurement Qc = 2|1〉c〈1|c − 1. As we
discussed earlier, the time needed in Ref. 25 to realize this
measurement may be short enough to observe correlation
functions on the time scale we require. However, in general
there will be losses involved in the measurement process (e.g.,
due to dissipation of the qubit state) which will degrade the
measurement result.25 In addition, the need to perform the
effective CNOT gate in the rotating frame may slow down the
measurement step.28

B. Mechanical measurement Qm

As we have reiterated several times, a measurement of Qc is
not sufficient to unambiguously show quantum dynamics in the
mechanical mode. We ideally need to perform the dichotomic
QND measurement on the mechanical system itself. As far
as we are aware, no similar measurement has yet been
achieved, though efforts on membrane-in-the-middle devices22

are promising. Staying within the regime of the nanomechan-
ical systems we have discussed so far,14–16 one can imagine
adapting the scheme of Johnson et al. to directly measure the
mechanical mode.25 In Ref. 14, O’Connell et al. observed a
strong interaction between a high-frequency mechanical mode
and a superconducting qubit. There the mechanical mode
frequency was ωm/2π = 6 GHz, so cryogenic freezing was
sufficient to reach the quantum ground state, and they observed
qubit-oscillator coupling strengths of λ/h = 110 MHz. This
is favorable for using the qubit as a dispersive measurement
of the mechanical mode. However, a straight adaptation of
Ref. 25 to the system in Ref. 14 would have to compensate for
the extremely short quality factor of the mechanical resonator
(the mechanical dephasing time is estimated to be T ≈ 20 ns).
This is well short of the measurement time in Ref. 25 and, thus,
resolving the short time correlations needed to see a violation
of the inequality may prove difficult without improvements in
the readout and reset times of the qubit or employing a higher
quality factor/lower-frequency mechanical resonator.

Furthermore, one can imagine a similar scenario using the
optomechanical sideband cooling systems we have described
here, where the low-frequency (and high quality factor)
mechanical system is cooled by the cavity, and then the
mechanical part is measured in the same manner as above
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(by an additional superconducting qubit, with compensation
for the coherent occupation β). This is quite a speculative
scenario, as it is not clear if a sufficiently large coupling
between the qubit and the type of mechanical oscillator used in
optoelectromechanical devices15,16 can be engineered, and if
the overly large energy mismatch between the superconducting
qubit and mechanical resonator overcome. However, if realized
it would be ideal for truly showing macroscopic quantum
phenomena in the same spirit as Leggett and Garg’s proposal.1

C. Single photon measurements

For the optical-cavity realization of an optomechancial
system (as in Ref. 18), the Fock state preparation (e.g., by
using an additional one-way cavity as discussed in Ref. 33),
and QND measurements,40 are feasible but the dichotomic
measurements we require are much more difficult to realize
than in the microwave cavity case.

We also point out that the correlators in Eq. (1) are not
normal ordered and, thus, do not represent the measurements
obtained from single-photon counting (which are typical in
optical cavity systems). As we discussed in earlier work,6,7

photon absorbtion measurements are fundamentally invasive
and typically represent an obstacle for unconditionally veri-
fying quantum behavior via the Leggett-Garg inequality. This
is particularly true with a fragile single-quantum Fock state,
hence, the need for QND measurements.

VI. NONDICHOTOMIC AND UNBOUND OBSERVABLES

What happens if we attempt to construct the Leggett-
Garg inequality from nondichotomic and unbound observ-
ables? Recent work on Bell’s inequality with unbound
measurements41,42 suggest that one has to move to fourth-order
correlation functions to distinguish quantum and classical
correlations, which may also apply to the Leggett-Garg
inequality.

First, let us consider a general picture where we measure
an unbound operator 〈Q̂〉 ∈ {−∞,∞}. Following the same
reasoning as used in the Leggett-Garg inequality, one can
derive a bound (and assuming we construct our expectation
values by counting how often a particular measurement result
arises),

LQ � 〈Maxt [Q(t)]2〉. (22)

Such a bound may occur due to some intrinsic conservation
rule in the system (e.g., if the number state or energy is
conserved). However, this bound is both difficult to calculate
(and measure) and is extremely loose, since, in general,
extremum values may be observed but contribute little to
the expectation values. Since the maximization is a convex
function, we know that

Maxt [〈Q(t)2〉] � 〈Maxt [Q(t)]2〉, (23)

(this is the Jensen inequality), but finding further constraints
on these functions is challenging beyond trivial cases. We hy-
pothesize that there might be a tighter bound for the inequality
given by Maxt [〈Q(t)2〉]. However we have been unable to find
a rigorous proof, and it may be that a simple counterexample
exists to show that this hypothesis does not hold.

There is a further caveat on such an approach. Note that
taking the stationary limit and setting (t1 = t2 = τ ) simplifies
the inequality with our conjectured bound Maxt [〈Q(t)2〉]
to L

(2)
Q = 2〈Q(τ )Q(0)〉 − 〈Q(2τ )Q(0)〉 � 〈Q(0)2〉. In a clas-

sical situation, the correlation functions one can observe
are harmonic functions (even in the stationary state). For
example, one can easily solve the equation of motion for
a single oscillator in contact with a thermal bath and find
that the spectral density of the displacement12 is a Lorentzian
with amplitude 2kBT

πmQ
related to the bath temperature T . The

Wiener-Khinchin theorem tells us that the spectral density is
the Fourier transform of the autocorrelation function in the
steady state, implying sinusoidal correlation functions that
are dependent only on one time variable (the time between
measurements). These obviously cause a violation of the bound
〈Q(0)2〉 in the steady state. One can argue that this is not
per se a failure of our conjectured bound but is because the
only output one observes from the system is noise driven; the
thermal background has a white-noise spectrum, which can
thus excite the system around its resonant frequency. Thus,
in the language of Leggett-Garg, these classical correlation
functions are essentially invasive since one only observes
a signal when the system fluctuates (e.g., due to thermal
fluctuations). Therefore, the observation of thermal-noise-
induced fluctuations is equivalent to a perturbation of the
system by the measurement.

The original Leggett-Garg inequality avoids this problem
by demanding that the system must be in one of two macro-
scopically distinct states and that the system is almost always in
one of the two states.1,2 In a harmonic system this assumption,
of macroscopically distinct states, breaks down spectacularly.
One can overcome this problem by avoiding the steady state,
or introducing a third measurement (if Q ∈ {0,∞} or a third
and fourth measurement if Q ∈ {−∞,∞}) into all correlation
functions in the inequality at time t = 0, and scaling the
bound appropriately. The violation then is dependent on the
effect of the second measurement (which we assume again
to be noninvasive). The quasi-invasive (fluctuation) nature of
the first measurement becomes irrelevant. Introducing extra
measurements into the inequality is akin to the fourth-order
Bell inequality derived by Bednorz et al.41,42 However, more
work remains to be done to derive rigorous proofs for our
hypothesis.

VII. CONCLUSIONS

In summary, we discussed how to use the Leggett-Garg
inequality to distinguish quantum and classical dynamics in
optoelectromechanical systems. We illustrated that dichotomic
QND measurements of either the cavity or mechanical system
leads to a violation of this inequality. We discussed possible
methods to realize such measurements and argued that only
measurements directly on the mechanical system itself will
give unambigous proof of macroscopic quantum dynamics in
the mechanical system (or, in the language of Leggett and
Garg, proof of a violation of macroscopic realism).
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