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Majorana fermions in pinned vortices
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Exploiting the peculiar properties of proximity-induced superconductivity on the surface of a topological
insulator, we propose a device, which allows the creation of a Majorana fermion inside the core of a pinned
Abrikosov vortex. The relevant Bogolyubov-de Gennes equations are studied analytically. We demonstrate that
in this system the zero-energy Majorana-fermion state is separated by a large energy gap, of the order of the
zero-temperature superconducting gap �, from a band of single-particle nontopological excitations. In other
words, the Majorana fermion remains robust against thermal fluctuations, as long as the temperature remains
substantially lower than the critical superconducting temperature. Experimentally, the Majorana state may be
detected by measuring the tunneling differential conductance at the center of the Abrikosov vortex. In such an
experiment, the Majorana state manifests itself as a zero-bias anomaly separated by a gap, of the order of �,
from the contributions of the nontopological excitations.
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I. INTRODUCTION

A Majorana fermion is an unconventional quantum state
with non-Abelian statistics. Until recently, the condensed
matter community viewed it only as a mathematical tool
designed to help solving some specific many-body problems,
arising, for example, in the areas of the two-channel Kondo
model1–3 and the quantum magnetism.4

However, the study of topological quantum computing5

initiated a search for experiments where this state can be
directly observed and manipulated. Several proposals have
been put forward. They rely on a diverse set of systems:
liquid helium,6,7 topological insulators (TI),8 superconduct-
ing heterostructures,9 px + ipy-wave superconductors,10,11

noncentrosymmetric superconductors,12,13 proximity-induced
superconductivity on the surface of TI (Refs. 14,15);
Ref. 16 studied non-abelian topological orders and Majorana
fermions in s-wave superfluids of ultracold fermionic atoms
and also spin-singlet superconductors with the spin-orbit
interactions.

In this paper, we discuss a Majorana state localized at the
core of an Abrikosov vortex residing in a two-dimensional
(2D) superconductor. Clearly, not every superconductor has
such a state inside its Abrikosov vortices: ordinary s-wave
superconductors, for example, do not. Yet, in the theoretical
literature, several superconducting systems are discussed
where a vortex can trap a Majorana state.10,11,17 However,
these proposals have one serious drawback: in addition to the
Majorana fermion, inside the normal core of the vortex, nu-
merous nontopological Caroli-de Gennes-Matricon (CdGM)
states are localized as well.18 These states are separated
from the zero energy by a minigap δ whose size can be
estimated as

δ ∼ �2

εF

, (1)

where � is the superconducting gap and εF is the Fermi
energy. In order for a device to be a building block of a
topological quantum computer it is necessary to freeze-out

all nontopological degrees of freedom, that is, the operational
temperature should be much smaller than δ. Since εF � �,
the minigap is expected to be extremely low (of the order of
10−2–10−3 K for usual s-wave superconductors). This means
that such proposals have very dim prospects, unless a way of
increasing δ is found (however, see Ref. 19).

A possible way to overcome this shortcoming is described
in Ref. 15 (see also Ref. 16). In this reference, the idea of
a “robust” Majorana fermion is put forward: the Majorana
state is robust if the eigenenergy of the lowest nontopological
excitation is of the order of �, that is δ ∼ �. It is found
numerically that, if conditions are right, the robust Majorana
fermion exists in a vortex residing in a proximity-induced
superconductor on the surface of a TI. This result implies that
the Majorana fermion in such a system can be created and
manipulated at experimentally achievable temperatures.

A device suitable for this task is presented in Ref. 15 as
well. It relies on two coupled trijunction devices in which a
Josephson vortex is inserted. A trijunction is a meeting point
of three Josephson junctions separating three superconducting
islands placed on the surface of the TI. Altogether, the
system consists of four superconducting islands and four
superconducting loops with magnetic fluxes to control the
superconducting phases on the islands. The Majorana fermion
is bound to the Josephson vortex. Varying the relative phases
with the help of the fluxes, one can move the fermion from one
trijunction to another.

Here, we discuss a much simpler system in which the
robust Majorana fermion may exist, as shown in Fig. 1. It
is related to the proposal of Ref. 15: the most basic component
is the vortex inserted into the superconductor induced on the
TI surface by the proximity effect. It is demonstrated below
that such a vortex can host a robust Majorana state whose
presence can be detected with the help of local tunneling
experiments. Thus, our proposed setup can provide a proof of
principle that a robust Majorana fermion is indeed possible and
robust, as claimed. However, the simplicity comes at a price:
unlike the device of Ref. 15, our Majorana fermion is pinned
in space.
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FIG. 1. (Color online) Schematic side view of the system studied
in this work. On the surface of the topological insulator (TI), there
exists a 2D band of surface states, which may be described by the
massless Dirac equation. To induce superconductivity in this 2D
metal, a slab of superconducting material (SC) is placed on top
of the TI surface. A cylindrical cavity of radius R is carved in
the superconductor. It serves as a pinning site for the Abrikosov
vortex, which is introduced in order to create the Majorana state. The
main purpose of the cavity is to remove the unwanted single-particle
excitations in the normal core of the vortex. Therefore, a robust
Majorana fermion can be localized inside the vortex core created
on the surface of the topological insulator by the proximity effect.

In addition to that, our results are as follows. We inves-
tigate the Bogolyubov-de Gennes (BdG) equations, which
describe an Abrikosov vortex in our system, and analytically
demonstrate that, indeed, the gap separating the Majorana
state and the lowest nontopological excitation is of the order
of �, in agreement with numerical results.15 Further, we
provide simple arguments explaining why the robustness of
the Majorana fermion exists in this system: it is a consequence
of the vanishing density of states in the TI.

Our paper is organized as follows. In Sec. II, we review the
derivation of the BdG equations on the surface of the TI for
the uniform case and derive BdG equations in the presence
of an Abrikosov vortex. In Sec. III, we analytically obtain
the zero-energy solution (Majorana state) of these equations.
In Sec. IV, excited states of the model and the robustness of
the Majorana fermion are analyzed. In Sec. V, we discuss the
results obtained here. More technical points are relegated to
two Appendices.

II. BOGOLYUBOV-DE GENNES EQUATIONS

A. General formalism

The system under investigation is schematically presented
in Fig. 1. It consists of a TI sample on which a slab of s-wave
superconducting (SC) material is placed. On the surface of the
TI a 2D band of electron states exists. This band is described
by the massless Dirac equation (Weyl-Dirac equation). The
proximity to the superconductor induces a finite gap �TI in
the Dirac band.

When such a system is placed into a transverse magnetic
field of sufficient magnitude an Abrikosov vortex enters it.
This vortex is accompanied by a “pancake” vortex inside
the 2D Dirac band of TI. Such a pancake vortex can host
a Majorana state.20 Since the core of the Abrikosov vortex
contains a large amount of CdGM states separated by small
energy gap δ, the Majorana state is not robust. To counteract
this disadvantage, a cylindrical channel of radius R > ξ is
carved in the superconductor (see Fig. 1). The cavity removes
the CdGM states from the vortex core. It also acts as a pinning
center for the vortex.

When the CdGM states are absent, the remaining low-lying
states may be present only inside the “pancake” vortex core in
the TI. To find them, we derive the effective BdG equations
for the TI degrees of freedom. To this end we consider the
Hamiltonian15 describing the proximity effect at the TI-SC
interface

H = HTI + HSC + T̂ + T̂ †, (2)

where HTI and HSC are the Hamiltonians for the TI surface
and the BCS s-wave superconductor, and T̂ (T̂ †) accounts for
the tunneling from the TI surface to the SC (from the SC to the
TI surface). The excitation spectrum of the model is described
by the equations

HTI�TI + T̂ †�SC = ω�TI, (3)

HSC�SC + T̂ �TI = ω�SC, (4)

where HTI,SC and T̂ are written as a 4 × 4 matrix in the Nambu
basis:15

HTI = [ivσ · ∇r − U (r)]τz , (5)

HSC = −
(∇2

R

2m
+ εF

)
τz + �′(R)τx + �′′(R)τy, (6)

T̂ = τzT (r − r′). (7)

In these equations, h̄ = 1, R = (x,y,z) is the 3D coordinate
inside the SC, r = (x,y) is the 2D coordinate on the surface of
the TI, and σ and τ are the Pauli matrices acting in the
spin and charge spaces, respectively. The parameter v is the
effective electron velocity at the TI surface and εF is the Fermi
energy in the SC. The Fermi level U (r) in the TI may be
inhomogeneous: it depends on the external potential and the
tunneling operator (see Appendix A). The tunneling kernel
T (r − r′) is independent of spin and charge indices.

The wave functions �TI,SC are the 4-component spinors,

�TI,SC = [u↑,u↓,v↓, −v↑]T . (8)

The spinor �TI = �TI(r) corresponds to the surface state and
depends on x and y only. The spinor �SC = �SC(R) describes
electrons in the superconductor bulk. It vanishes for z � 0.

The complex order parameter in the SC is � = �′ + i�′′,
where both �′ and �′′ are real. The superconductor is
characterized by the correlation length

ξ = vF

|�| . (9)

Starting from Eqs. (5) and (6), the effective BdG equations for
the TI states can be derived15 as

[HTI − T̂ †(HSC − ω)−1T̂ ]�TI = ω�TI. (10)
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Here, the expression (HSC − ω)−1 is the single-electron
Green’s function for the superconductor. For details, see
Appendix A.

B. Uniform system

The symbolic Eq. (10) is very general; it is valid for
arbitrary �(R) and T̂ , as long as the Green’s function remains
well-defined. Of course, finding the Green’s function for a
nonuniform � may be practically challenging. Fortunately, in
the regime of interest, the required Green’s function can be
constructed from the knowledge of the Green’s function for
a homogeneous system. Thus, as a first step, let us study the
situation when � and T̂ are uniform over the whole interface,
the cavity is absent, and |ω| < |�|. The resultant BdG equation
now reads

(Heff − ω)�TI = 0, (11)

where the effective Hamiltonian and its parameters are defined
as

Heff = [iṽ(ω)(σ · ∇r) − Ũ (ω)]τz + �̃′(ω)τx + �̃′′(ω)τy,

(12)

ṽ(ω) = v
√

|�|2 − ω2√
|�|2 − ω2 + λ

, (13)

Ũ (ω) = (U + δU )
√

|�|2 − ω2√
|�|2 − ω2 + λ

, (14)

�̃(ω) = �̃′(ω) + i�̃′′(ω) = �λ√
|�|2 − ω2 + λ

. (15)

The quantity λ has the dimension of energy. It characterizes the
transparency of the barrier separating the SC and TI, and can
be measured in a tunneling experiment performed at T > Tc.
For our purposes, we need a sufficiently thick insulating layer
between the superconductor and the TI to guarantee the low
transparency of the barrier (λ � εF ).15

The contact with the superconductor shifts the bare Fermi
energy U by the amount δU = O(λ). The details of the
derivation can be found in Appendix A.

For uniform λ and �, we can choose � to be real.
Equation (11) has no solutions with |ω| < �TI, where
the proximity-induced gap �TI < � satisfies the equation
�̃(�TI) = �TI, or, equivalently,

λ

�
= �TI

�

√
� + �TI

� − �TI
. (16)

The gap in the TI is a monotonous function of λ: �TI ≈ λ at
small λ � � and approaches � from below at large λ � �.

C. The system with the pinned vortex

The system schematically drawn in Fig. 1, however, is not
uniform. Due to the cavity and the vortex, both � and λ acquire
some coordinate dependence. Obviously, λ(r) vanishes for
r < R, where r =

√
x2 + y2 is the distance to the axis of the

cavity. In addition, when the vortex is introduced,21 �(R) can
be written as

�(R) = |�(r)|eiθ , (17)

where θ is the polar angle in the (x,y) plane, and |�(r)| is
an increasing function of r , which approaches the bulk value
|�| when r → ∞. It is finite at r = R + 0. In such a case,
strictly speaking, one has to recalculate the superconducting
Green’s function for a spatially varying �(r,θ ). This might
be particularly difficult for r � ξ , where the phase θ varies
quickly on the distances of the order of ξ .

However, one can avoid the latter complication if

R � ξ. (18)

In this limit, our formalism can be easily adopted to account for
the vortex presence. Ignoring the detailed behavior of |�(r)|
when r ≈ R, we assume that

|�(r)| = |�|ϑ(r − R), (19)

where ϑ(r) is the Heaviside step function.
When Eq. (18) holds true, the order-parameter phase θ

varies slowly on distances of the order of ξ . Thus, it is
permissible to insert the nonuniform �(r,θ ), Eq. (17), directly
into Eqs. (12)–(15). Since |�| is r dependent, therefore, ṽ, |�̃|,
and Ũ are nonuniform. Further, we assume that our treatment
remains valid, at least qualitatively, in the case R � ξ .

In our formalism, the TI area beneath the cavity (r < R) is
nonsuperconducting. It may be viewed as the normal core of
the pancake vortex. Outside the core (for r > R), the absolute
value of the order parameter equals to its equilibrium value
|�|. This approximation is very natural in the case R > ξ .

To calculate the eigenenergies of the Hamiltonian (12) with
a vortex, it is standard to exploit the cylindrical symmetry of the
problem to separate the variables (for details, see Appendix B).
If we define the spinor  as

�TI = exp [iθ (τz + σz)/2 + iμθ ]μ(r), (20)

μ = (
f

μ

1 ,f
μ

2 ,f
μ

3 , −f
μ

4

)T
, (21)

then, its four components satisfy

iṽ

(
d

dr
+ μ + 1

r

)
f

μ

2 + |�̃|f μ

3 − (ω + Ũ )f μ

1 = 0,

iṽ

(
d

dr
− μ

r

)
f

μ

1 − |�̃|f μ

4 − (ω + Ũ )f μ

2 = 0,

(22)

iṽ

(
d

dr
+ μ

r

)
f

μ

4 + |�̃|f μ

1 − (ω − Ũ )f μ

3 = 0,

iṽ

(
d

dr
− μ − 1

r

)
f

μ

3 − |�̃|f μ

2 − (ω − Ũ )f μ

4 = 0.

This is the most general system of equations describing the
subgap states near the cavity. Below we study the spectral
properties of this system.

III. ZERO-ENERGY MAJORANA-FERMION SOLUTION

In this section, we will demonstrate that the Hamiltonian
H has a zero-energy Majorana-fermion solution for arbitrary
R. First, we will demonstrate this for the case of large R,
when one can map H on Heff . Afterward, this result will be
generalized for any R > 0. This section contains some known
results (see, e.g, Refs. 20,22–24), but these are included here
to make the derivation more complete and self-contained.
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A. Majorana state for large R

The system of Eqs. (22) can be solved exactly when ω = 0,
μ = 0, and δU (r) = 0. The latter requirement is satisfied
only in the presence of the external gate potential, which
compensates for the Fermi-level shift induced by the coupling
to the superconductor (see Appendix A). In Sec. III B, it is
demonstrated that a nonzero δU (r) does not destroy the ω = 0
solution.

To find the desired solution we define new functions:

X
μ

1 = if
μ

1 + f
μ

4 , X
μ

2 = if
μ

1 − f
μ

4 ,
(23)

Y
μ

1 = if
μ

2 + f
μ

3 , Y
μ

2 = if
μ

2 − f
μ

3 .

For these functions, the system of Eqs. (22) splits into two
systems of two equations each:

ṽ
dX0

2

dr
+ |�̃|X0

2 = iŨY 0
1 , (24)

ṽ
dY 0

1

dr
+ |�̃|Y 0

1 + ṽ

r
Y 0

1 = iŨX0
2 , (25)

and

ṽ
dX0

1

dr
− |�̃|X0

1 = iŨY 0
2 , (26)

ṽ
dY 0

2

dr
− |�̃|Y 0

2 + ṽ

r
Y 0

2 = iŨX0
1 . (27)

An elementary analysis reveals that the system of Eqs. (26)
and (27) has no nonzero solutions decaying at r → ∞. Thus,
X0

1 = Y 0
2 = 0. The nonzero solution of the system of Eqs. (24)

and (25) can be written explicitly. Keeping in mind that
Ũ (r)/ṽ(r) = U/v is a constant independent of r [see Eqs. (13)
and (14)], one derives:(

X0
2

Y 0
1

)
= 2C

(
iJ0(Ur/v)

J1(Ur/v)

)
exp

(
−

∫ r

0

dr ′|�̃(r ′)|
ṽ(r ′)

)
, (28)

where C is a normalizing coefficient and J0 and J1 are Bessel
functions. Thus, the exact solution for ω = 0 is

�M(r) = C

⎛⎜⎜⎜⎜⎝
exp(iθ )J0(Ur/v)

−iJ1(Ur/v)

J1(Ur/v)

i exp(−iθ )J0(Ur/v)

⎞⎟⎟⎟⎟⎠ exp

[
−

∫ r

0

dr ′|�̃(r ′)|
ṽ(r ′)

]
.

(29)
If the ratio |�̃(r)|/ṽ(r) = λ/v is a constant independent of r

[see Eqs. (13) and (15)] then the spinor �M decays for distances
larger than v/λ, which may be viewed as a characteristic
localization length of the zero-energy state.

To prove that the eigenfunction given by Eq. (29) corre-
sponds to the Majorana state, consider the following fermion
operator:

�̂
†
M =

∫
d2r[uM

↑ (r)ψ†
↑(r) + uM

↓ (r)ψ†
↓(r)

+ vM
↑ (r)ψ↑(r) + vM

↓ (r)ψ↓(r)], (30)

where ψ†
σ (r) is the creation operator for an electron with

spin σ located at point r. The functions uM
σ (r) and vM

σ (r) are
components of the spinor �M(r). The operator �̂

†
M creates

a fermion in the state corresponding to �M(r). It is easy
to demonstrate, by a direct calculation, that �̂

†
M = i�̂M.

Therefore, �M corresponds to the Majorana fermion.

B. Majorana state for arbitrary R and U

We demonstrated above that for large R our system can be
mapped to 2D Dirac electrons. In the latter model, when the
vortex is present, the zero-energy solution is found.22

Unfortunately, if R is small, this mapping is inapplicable.
What happens to the Majorana state when the cavity is small?
Below we will prove that our Hamiltonian has a zero-energy
eigenstate for any R � 0.

We start our reasoning with the observation that H satisfies
the following charge-conjugation relation:

H = −τyσyH
∗τyσy. (31)

Thus, for every eigenstate � of H with a nonzero eigenenergy
ω = 0, an eigenstate τyσy�

∗ with eigenenergy −ω is present.
A spinor with positive eigenenergy corresponds to the cre-
ation of a quasiparticle, while the charge-conjugated spinor
corresponds to the destruction of this quasiparticle.

Further, it is demonstrated here that for large R the
Hamiltonian has the zero-energy solution �M. This eigenstate
is special for it remains unchanged after a charge-conjugation
transformation. This means that the number of eigenenergies
lying inside of the even-energy interval (|�|, −|�|) is odd
(i.e., all the nonzero eigenstates are paired, while the Majorana
state is unpaired). If we start decreasing R, this property
endures: due to symmetry [see Eq. (31)] the eigenstates can
enter or leave our energy interval only in pairs. Thus, for
any R, the Hamiltonian H has an unpaired ω = 0 eigenstate
invariant under charge conjugation. However, it is necessary
to remember that, when R < ξ , the Majorana state cannot be
robust due to the CdGM states in the Abrikosov vortex core.

Instead of R, one can vary δU . The above reasoning can
be modified to prove that the deviation of δU (r) from the
δU (r) = 0 value does not destroy the Majorana state.

IV. EXCITED STATES IN THE VORTEX CORE

In addition to the ω = 0 state, it is possible to have 0 <

|ω| < |�TI| states localized at the vortex core.

A. Analytical calculations

To find the eigenfunctions for these states, it is necessary
to solve the system (22) for generic ω and μ. The solution can
be simplified significantly for Ũ = 0. We will now investigate
this case. The nonzero Ũ (r) may be accounted with the help
of perturbation theory, at least for |Ũ | � �̃. According to
Eqs. (26) and (27) of Ref. 15, the case |Ũ | > �̃ is not favorable
for the robustness of the Majorana state and will not be studied
here.

When Ũ = 0 and r < R, the system (22) decouples into
two sets of equations:

iv

(
d

dr
+ μ + 1

r

)
f

μ

2 − ωf
μ

1 = 0, (32)

iv

(
d

dr
− μ

r

)
f

μ

1 − ωf
μ

2 = 0, (33)
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and

iv

(
d

dr
+ μ

r

)
f

μ

4 − ωf
μ

3 = 0, (34)

iv

(
d

dr
− μ − 1

r

)
f

μ

3 − ωf
μ

4 = 0. (35)

The solutions are

f
μ

1 = iAμJμ(ωr/v), f
μ

2 = AμJμ+1(ωr/v),
(36)

f
μ

3 = iBμJμ−1(ωr/v), f
μ

4 = BμJμ(ωr/v),

where Aμ and Bμ are constants.
For r > R the equations are

Y
μ

2 = iṽ

ω

(
dX

μ

2

dr
+ |�̃|

ṽ
X

μ

2 − μ

r
X

μ

1

)
,

Y
μ

1 = iṽ

ω

(
dX

μ

1

dr
− |�̃|

ṽ
X

μ

1 − μ

r
X

μ

2

)
,

(37)
d2X

μ

1

dr2
+ 1

r

dX
μ

1

dr
−

(
1

[ξ̃ (ω)]2
+ |�̃|

ṽr
− μ2

r2

)
X

μ

1 = 0,

d2X
μ

2

dr2
+ 1

r

dX
μ

2

dr
−

(
1

[ξ̃ (ω)]2
− |�̃|

ṽr
+ μ2

r2

)
X

μ

1 = 0,

where the functions X
μ

1,2 and Y
μ

1,2 are defined by Eq. (23), and
the length ξ̃ (ω) is given by the formula

ξ̃ (ω) = ṽ(ω)√
|�̃(ω)|2 − ω2

. (38)

The above equations may be solved25 in terms of the Whittaker
functions Wα,β (z):

X
μ

1,2 = C1,2√
r

Wα1,2,μ[2r/ξ̃ (ω)], (39)

α1,2 = ∓ |�̃|
2
√

|�̃|2 − ω2
. (40)

Using Eq. (16) one can show that for subgap states (|ω| < �TI),
the expression under the square root in Eqs. (38) and (40)
is positive, therefore, ξ̃ (ω) and α1,2 are real. Equation (39)
implies that ξ̃ (ω) is the energy-dependent localization length
for the subgap states.

Matching the solutions at r = R, we derive the equation for
the subgap eigenenergies:(

W ′
α1,μ

ξ̃Wα1,μ

+ W ′
α2,μ

ξ̃Wα2,μ

− μ + 1

R
+ ωJμ+1

ṽJμ

)
×

(
W ′

α1,μ

ξ̃Wα1,μ

+ W ′
α2,μ

ξ̃Wα2,μ

+ μ − 1

R
− ωJμ−1

ṽJμ

)
=

(
W ′

α1,μ

ξ̃Wα1,μ

− W ′
α2,μ

ξ̃Wα2,μ

− �̃

ṽ

)2

. (41)

In this equation, all functions Wα,β(z) and W ′
α,β(z) must be

evaluated at z = 2R/ξ̃ (ω), and all Bessel functions must be
evaluated at ωR/v. We analyzed Eq. (41) numerically.

B. Majorana fermion robustness

The excited quantum states of our system can be classified
using two quantum numbers: the radial number n and the

FIG. 2. (Color online) The energy gap δ between the ground
and excited states as a function of the cavity radius R for different
transparencies λ of the barrier. The solid curves 1, 2, and 3 correspond
to the states with n = 0 and μ = 1 and the dashed curves a, b, and
c correspond to the states with n = 1 and μ = 0. As we go from top
to bottom, the transparency λ decreases; curves 1 and a (black) are
drawn for λ/� = 2, curves 2 and b (red) are drawn for λ/� = 0.5,
and curves 3 and c (blue) are drawn for λ/� = 0.1.

orbital number μ. The Majorana state obtained above corre-
sponds to the n = 0 and μ = 0 state. The results of the numer-
ical solution of Eq. (41) for different values of (n,μ) are shown
in Fig. 2. Here, the reduced gaps δ/� between the ground state
and excited states with (n = 0, μ = 1) and (n = 1, μ = 0) are
plotted for different transparencies λ as a function of the cavity
radius R. The solution of Eq. (41) confirms an intuitively
transparent conclusion: the first excited state is either the
(n = 0, μ = 1) or the (n = 1, μ = 0) state. Note that, to
calculate δ in the case (n = 1, μ = 0), we use the asymp-
totics of the Whittaker functions Wα1,2,0(z) valid at |z| � 1.
This negatively affects the accuracy of our calculations at small
R. We believe, however, that this substitution does not distort
the qualitative features of the solution.

As it is seen from Fig. 2, the state (n = 0, μ = 1) lies
lower than the state (n = 1, μ = 0). Thus the gap between
the ground and the excited state (n = 0, μ = 1) characterizes
the robustness of the Majorana fermion in our system. The
gap value increases when λ increases. If λ � �, the energy
gap δ(R) practically saturates and further growth of the barrier
transparency does not significantly improve the robustness.
Experimentally, the regime λ ∼ � corresponds to a barrier
with low transparency15 since λ is much smaller than the Fermi
energy.

At a given λ, the curve δ(R) is a decreasing function of R,
approaching a maximum value

δmax = �̃(0) = �λ

(� + λ)
at R ∼ ξ. (42)
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The main conclusion from the results shown in Fig. 2 is
that the energy gap between the Majorana state and the first
excited state may be of the order of � (δ/� = 0.5–0.6 or even
higher) if λ/� � 1–3 and R/ξ = 2–3. Therefore, a suitable
choice of R and λ allows one to realize the robust Majorana
state.

C. Physical and intuitive explanation
of the Majorana state robustness

Above we demonstrated that in our system, a robust Ma-
jorana state exists. Our results agree with previous numerical
calculations.15 However, it is desirable to have a simple non-
technical physical argument explaining these results. To this
end, now consider the “pancake” core. It can be approximately
described as a circle of radius R, where the superconducting
gap is zero. Let us now evaluate the number N core

TI of the
single-electron subgap states:

N core
TI ∼ πR2

∫ �TI

0
νTI(ε) dε ∼ �2

TIR
2

v2
. (43)

Here, νTI(ε) ∼ ε/v2 is the density of states for the TI. The
average energy interval between these states is

δTI ∼ �TI/N
core
TI ∼ v2/(R2�TI). (44)

For R ∼ ξ and �TI ∼ �, one has N core
TI ∼ 1 and δTI ∼ �. The

last estimate is equivalent to the statement of the Majorana
fermion robustness.

If, instead of TI, we now consider a 2D superconductor
with parabolic dispersion, we then obtain

N core
m ∼ πR2�νm(εF) ∼

(
εF

�

)
R2

ξ 2
. (45)

Here, νm(ε) is the density of states for a 2D metal [νm(ε) =
4m]. When R ∼ ξ , the number N core

m is much greater than
unity. Further, the energy difference between the CdGM energy
levels is of the order of (�2/εF)(ξ 2/R2). For R ∼ ξ , we recover
Eq. (1).

The estimate above demonstrates that the source of robust-
ness of the Majorana fermion in TI is the vanishing density of
states at the Dirac point. If we were to apply a bias shifting
the Fermi level away from the Dirac point, at a bias value U

substantially exceeding �̃, we recover Eq. (1). Thus, U = 0 is
a favorable condition for the Majorana state robustness.

V. DISCUSSION AND CONCLUSION

We demonstrated that in the proposed system a robust
Majorana state may exist. A possible way to detect its presence
is to perform the following tunneling experiment: insert an
STM tip into the cavity and measure the electron current
flowing through the TI surface. In such a setup, the Majorana
state manifests itself as a zero-bias anomaly: a peak of
the differential conductance located at eV = 0. Unlike the
zero-bias anomaly observed for an Abrikosov vortex in a
BCS superconductor,26,27 in the case of the robust Majorana
state, the zero-bias anomaly is accompanied by several discrete
subgap peaks, which correspond to the excited states bound in
the vortex core.

We would like to compare our proposal with the system
discussed in Ref. 15. It is clear that in our system the Majorana
fermion is pinned to the cavity. The advantage of the setup in
Ref. 15 is that it allows one to shift the Majorana fermion
along a straight channel over the distance L ∼ ξ . However,
the robustness of the Majorana state decreases when one tries
to increase the distance L above ξ : the gap separating the
Majorana fermion and the lowest excited state can be estimated
as δ ∼ v/L for L > ξ̃ . Moreover, the complexity of their15

system is an additional limitation.
To conclude, we propose a SC-TI setup in which a robust

Majorana state may be realized inside the core of the pinned
vortex. The robustness was justified with the help of both
analytical and physically intuitive arguments. An experimental
detection of this state is also discussed.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
HAMILTONIAN FOR PROXIMITY-INDUCED

SUPERCONDUCTIVITY

In this Appendix, we briefly present a derivation of the
effective BdG equation at the TI surface. Here, we refine the
reasoning of Refs. 15 and 28.

The system in question consists of a superconducting slab
described by the BCS Hamiltonian HSC, and a topological
insulator with Hamiltonian HTI. These two are separated by a
flat interface. Tunneling across this interface is described by
the tunneling Hamiltonian: T̂ + T̂ †.

As the TI has the bulk gap, its low-energy states are
located at the surface. At low energy, these 2D states can
be approximately described by the Weyl-Dirac Hamiltonian
whose apex is located at the M point at the boundary of the
Brillouin zone of the TI.

Due to conservation of the spin and the quasimomentum
parallel to the flat interface, the tunneling Hamiltonian couples
a single-electron state |φTI

kσ 〉 inside the TI with a normal-metal
state |χm

M+k,kz,σ
〉 inside the superconductor. Here, σ is the spin

index, k is the momentum’s components parallel to the barrier
measured from M, and kz is the absolute value of the transverse
momentum (since scattering at the interface couples SC states
with kz and −kz, the state |χm

M+k,kz,σ
〉 is a boundary-condition-

compatible linear combination of both kz and −kz states).
The superscript “m” stands for “metal.” Let us denote the
corresponding matrix element by T (k,kz). It is assumed to be
spin independent.

Invariance of the tunneling Hamiltonian with respect to
the spatial inversion r → −r implies that the same matrix
element couples the states |φTI

−kσ 〉 and |χm
−M−k,kz,σ

〉. Indeed, the
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quasimomentum M − k of the TI state is equal to the momen-
tum −M − k of the state inside the superconductor, modulo
the TI’s reciprocal lattice vector 2M. Thus the anomalous term
of HSC, which mixes |χm

−M−k,kz,σ
〉 and |χm

M+k,kz,σ
〉, induces a

coupling between |φTI
kσ 〉 and |φTI

−kσ 〉 in Heff .
In addition, recall that for a tunneling matrix element T

between certain electronic states, there is a tunneling matrix
element −T between corresponding charge-conjugated states.
This implies that the operator T̂ in the Nambu representation
Eq. (8) is proportional to τz, see Eq. (7).

The single-quasiparticle states are given by the following
BdG equations:

(HTI − ω)�TI + T †�SC = 0,
(A1)

(HSC − ω)�SC + T �TI = 0.

The four-component spinor �SC (�TI) describes a quasiparti-
cle inside the SC (TI).

Solving the second of the equations in Eqs. (A1) for the
wave function �SC and substituting the resultant expression in
the first one, we derive the effective BdG equation on the TI
surface

[HTI + �(k,ω) − ω]�TI = 0, (A2)

where the self-energy � on the TI surface reads

�(k,ω) = − 1

Lz

∑
kz

|T (k,kz)|2τz GSC(k,kz,ω) τz. (A3)

The Green’s function for the superconductor GSC = (HSC −
ω)−1 can be derived with the help of Eq. (6):

GSC(k,kz,ω) = [ε(k,kz)τz + �τx − ωτ0]−1, (A4)

where ε(k,kz) = (k2 + k2
z )/2m − εF . Substituting Eq. (A4) in

Eq. (A3), one obtains

�(k,ω) =
∫

dkz

2π

�τx − ωτ0 − ετz

ε2 + |�|2 − ω2
|T (k,kz)|2. (A5)

Here, τ0 is the unit matrix. The tunneling matrix element
T (k,kz) is assumed to vary slowly as a function of kz. Then,
transforming the kz integral to an energy one, we derive

�(k,ω) ≈ λ(k)
�τx − ωτ0√
|�|2 − ω2

− δUτz, (A6)

where λ(k) = (π/2)ν(εF ,k)|T (k,kz)|2 characterizes the trans-
parency of the interface. The quantity ν(ε,k) quantifies the
DOS at a given energy and parallel momentum in the normal
state of the SC. It is equal to

ν(ε,k) =
∫

dkz

2π
δ[ε − ε(k,kz)]. (A7)

In what follows, we are interested in the states close to the Dirac
cone k = M and ignore the k dependence of λ, assuming that
λ(k) ≈ λ(M).

The correction to the TI Fermi energy due to tunneling is
equal to

δU =
∫

dkz

2π

ε|T (k,kz)|2
ε2 + |�|2 − ω2

≈ λ(M)
∫ Eh

−Ee

dε

ε

≈ λ(M) ln
Eh

Ee
= O(λ), (A8)

where Eh (Ee) is the largest hole (electron) energy relative
to the Fermi level, and the integral over 1/ε is taken using
the Cauchy principle value. This term is, in general, nonzero.
It was discarded in Ref. 15, presumably, because it can be
absorbed into the renormalized Fermi energy. However, if λ

depends on the position r (which is the case for both our
system as well as the system of Ref. 15), then δU becomes
spatially inhomogeneous as well. Under such circumstances,
δU (r) cannot be absorbed into the Fermi energy, and has
to be treated separately. It should be possible, however, to
compensate δU by an external gate potential.

Finally, using HTI from Eq. (5) and � from Eq. (A6), we
rewrite Eq. (A2) in the explicit form15

(Heff − ω)�TI = 0, (A9)

Heff = [iṽ(ω)(σ · ∇r) − Ũ (ω)]τz + �̃(ω)τx, (A10)

ṽ(ω) = v
√

|�|2 − ω2√
|�|2 − ω2 + λ

, (A11)

Ũ (ω) = (U + δU )
√

|�|2 − ω2√
|�|2 − ω2 + λ

, (A12)

�̃(ω) = �λ√
|�|2 − ω2 + λ

. (A13)

APPENDIX B: BOGOLYUBOV-DE GENNES EQUATIONS
FOR THE RADIAL MOTION

In this Appendix, we will exploit the cylindrical symmetry
of the problem to separate angular and radial variables and to
derive the equations for the radial part of the wave function.
The effective Hamiltonian with a single vortex is equal to

Heff = iṽ(r) exp (iθσz)

(
σx∂r + 1

r
σy∂θ

)
τz

+ |�̃(r)| exp

(
i
θ

2
τz

)
τx exp

(
−i

θ

2
τz

)
−Ũ (r)τz . (B1)

The first term here is the Weyl-Dirac Hamiltonian in polar
coordinates. The second term corresponds to the anomalous
term in the presence of a vortex.

Equation (B1) suggests that it is useful to define a new
spinor � as

�TI = exp [iθ (τz + σz)/2]�. (B2)

Accordingly, the effective Hamiltonian is transformed as

H ′
eff = exp [−iθ (τz + σz)/2]Heff exp [iθ (τz + σz)/2]. (B3)
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The equation for � now reads{
iṽ

[
σx∂r + 1

r
σy∂θ + i

2r
σy(τz + σz)

]
τz

+ |�̃|τx − Ũτz − ω

}
� = 0 . (B4)

We look for a solution of Eq. (B4) in the form � = eiμθμ,
where μ = 0, ±1, ±2, . . . is the angular momentum. The
values of μ are integers (not half-integers) to ensure single-
valuedness of �TI. It is straightforward to show now that the
components of the spinor μ = (f μ

1 ,f
μ

2 ,f
μ

3 , −f
μ

4 )T satisfy
Eq. (22).
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