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Surface plasmons in a metal nanowire coupled to colloidal quantum dots:
Scattering properties and quantum entanglement
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We investigate coherent single surface-plasmon transport in a metal nanowire strongly coupled to two colloidal
quantum dots. Analytical expressions are obtained for the transmission and reflection coefficients by solving the
corresponding eigenvalue equation. Remote entanglement of the wave functions of the two quantum dots can be
created if the interdot distance is equal to a multiple half-wavelength of the surface plasmon. Furthermore, by
applying classical laser pulses to the quantum dots, the entangled states can be stored in metastable states that
are decoupled from the surface plasmons.
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I. INTRODUCTION

Colloidal quantum dots (QDs) are fluorescent core-shell
semiconductor nanocrystals with tunable luminescence prop-
erties (e.g., broad excitation spectra, narrow emission spectra,
and size-dependent emission), which have recently attracted
much attention for their ability to act as photon detectors.1

When a light wave strikes a metal surface, it can excite
a surface-plasmon polariton: a surface electromagnetic wave
coupled to plasma oscillations. Recently, the concept of plas-
monics, in analogy to photonics, has received much attention
since surface plasmons (SPs) reveal strong analogies to light
propagation in conventional dielectric components.2–4 For
example, it is now possible to confine them to subwavelength
dimensions5 leading to novel approaches for waveguiding
below the diffraction limit.6 The combination of subwave-
length confinement, single-mode operation, and the relatively
low-power propagation loss of SP polaritons could be used
to miniaturize existing photonic circuits.7 Furthermore, the
strong coupling between SP and emitters8 can be utilized to
enhance infrared photodetectors,9 the fluorescence of QDs,10

and light transmission through metal nanoarrays.11 High-field
surface plasmon confinement was also used to demonstrate an
all-optical modulator,12 to provide an extra degree of freedom
for information storage,13 and to estimate the reflectivity of
structures or surface roughness.14

In a related context, advances in quantum information
science have promoted an experimental drive for physical
realizations of highly entangled states.15 Successes have
been obtained within quantum-optical and atomic systems.15

However, due to scalability requirements, solid-state realiza-
tions of such phenomena are promising.16–18 Furthermore,
while initial attention has been focused on the coupling
between nearby qubits with local interactions,19–21 entangling
arbitrary pairs of remote qubits is still an important goal.
Circuit quantum electrodynamics (QED), for example, is one
promising candidate to couple two distant qubits via a cavity
bus.19,22

Motivated by these recent developments in plasmonics and
quantum information science, we propose a novel scheme that
can entangle two remote QDs coupled to a metal nanowire. The
idea is inspired by recent experiments showing single surface

plasmons in metallic nanowires coupled to QDs.23 We use a
real-space Hamiltonian24 to treat the coherent surface-plasmon
transport in the wire coupled to two dots. The transmission
and reflection spectra of SPs for both single QD and double
QDs cases in the nonlinear quadratic-dispersion regime (which
occurs near the vicinity of the band edge) has been studied in
our previous work.25 In that work the scattering spectra reveals
a Fano resonance due to the interference between localized and
delocalized SP channels. Here, we focus on a different goal
(the entanglement generated through the scattering of SPs) in
a different regime: the linear-dispersion regime, instead of the
nonlinear regime. In the limit of infinite Purcell factor, P →
∞, we find that maximally entangled states can be created
if the separation between the two dots is equal to an integer
multiple half-wavelength of the optical plasmon. Furthermore,
we show that the entangled state information can also be stored
in metastable states, which are decoupled from the surface
plasmons, by separately applying classical laser pulses to each
QD. The storage efficiency of the entangled states is equal to
(1 − 1/P ).

A similar scheme was also recently proposed independently
in Refs. 26 and 27, where a similar setup was solved
using a master-equation description of the two quantum
dots. Their findings are consistent with our results, with the
maximum of the concurrence occurring at the same values
of the dot distance. Furthermore, they show the concurrence
behavior as a function of time for a single initial excitation,
which illustrates that indeed the concurrence exists on an
experimentally accessible time scale. The approaches used
are very different: we use a real-space scattering formulation
in contrast with their master equation. We stress that the
reflection and transmission coefficients computed here can be
directly accessed experimentally, which is not easy to do by
other methods. Furthermore, we have considered the important
effects of Ohmic loss. Moreover, we propose a way to store
the entanglement produced in this manner.

II. PLASMON SCATTERED BY TWO QUANTUM DOTS

When a colloidal semiconductor QD is placed close to a
metal nanowire, a strong coupling between the QD exciton
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FIG. 1. (Color online) Schematic diagram of a metal nanowire
coupled to two QDs. A single surface plasmon injected from the left
is coherently scattered by the dots.

and SP can occur28–30 as in traditional cavity QED.31 As
shown in Fig. 1, the system we consider here is composed
of two nominally identical QDs, both with energy spacing h̄ω0

separated by a distance d near a cylindrical metal nanowire.
We assume that a surface plasmon emitted from a source QD
is incident from the left with energy Ek = vgk. Here, vg and
k are the group velocity and wave vector of the incident SP,
respectively. Since the SP is propagating on the surface of the
metal nanowire, it inevitably suffers from dissipation (such as
Ohmic loss). As a result, the source of the incoming plasmon
(e.g., an additional QD) must be placed close to the first QD
to minimize the initial losses (i.e., those that occur before
the plasmon reaches the two-dot region). We also propose a
practical way to further minimize all the dissipation affects in
the next section.

Following the method proposed in Refs. 32 and 33, we write
an effective non-Hermitian Hamiltonian for the combined
quantum-dot plasmon system (where the dissipation has been
included as an imaginary energy)

H =
∑
j=1,2

h̄

[
ω0 − i

(
�′

2

)]
σej ,ej

+
∫

dkh̄vg|k|a†
kak

− h̄g

∫
dk[(σ (1)

+ + σ
(2)
+ eikd )ak + H.c.] (1)

− ih̄
sin(k0d)

2k0d
γ0(σ (1)

+ σ
(2)
− + σ

(1)
− σ

(2)
+ ),

where σej ,ej
= |ej 〉〈ej | represents the diagonal element and

σ
(j )
+ = |ej 〉〈gj | represents the off-diagonal of the j th QD

operator, and a
†
k is the creation operator of the surface plasmon.

Here, k0 = ω0/vg and g is the coupling constant between the
excitons and SP. The term in the last line,

�SR =
[
i sin(k0d)

2(k0d)

]
γ0, (2)

is the contribution from the collective decay (superradiance,
hence the superindex “SR”) effect34 with γ0 being the exciton
decay rate into free space, and

�′ ≡ γ0 + �0, (3)

is the total dissipation including the decay rate into free space
γ0 and other dissipative channels (for example, the Ohmic
loss) �0. We can include the Ohmic loss of plasmons during
the scattering process in this way because a loss of the plasmon
is equivalent to a lose of the excitation in the quantum dots. In

addition,

δ ≡ Ek

h̄
− ω0 (4)

is the detuning between the incident SP energy with Ek and
the QD exciton energy ω0.

The validity of this non-Hermitian form relies on the fact
that �′ is small and that we only consider one excitation. Hence
we do not need to consider the effect of the quantum jump
terms one usually needs for a full description of the system.33,35

However, this implies that there is a certain time scale of
decay of the highly entangled state into other modes, even if
they are not emitted into the surface-plasmonic environment
(though typically the Purcell factor is large, so emission into
SPs will dominate any decay process). This reinforces the need
to transfer the fragile entangled state to a metastable state.

Since we are only interested in the case where the
incident SP is nearly resonant with the two QDs, we can
rewrite

∫
dkh̄vg|k|a†

kak as
∫

dkh̄vgk(a†
R,kaR,k + a

†
L,kaL,k) and

(σ (1)
+ + σ

(2)
+ eikd )ak as (σ (1)

+ + σ
(2)
+ eikd )(aR,k + aL,k). Trans-

forming Eq. (2) into real space, one obtains

H = h̄

∫
dx

{
− ivgc

†
R(x)

∂

∂x
cR(x) + ivgc

†
L(x)

∂

∂x
cL(x)

+ h̄g
∑
j=1,2

δ[x − (j − 1)d][c†R(x)σ (j )
− + cR(x)σ (j )

+

+ c
†
L(x)σ (j )

− + cL(x)σ (j )
+ ]

}
+

∑
j=1,2

h̄

[
ω0 − i

(
�′

2

)]

× σej ,ej
− ih̄

sin(k0d)

2k0d
γ0(σ (1)

+ σ
(2)
− + σ

(1)
− σ

(2)
+ ), (5)

where c
†
R(x) [c†L(x)] is a bosonic operator creating a right-

going (left-going) surface plasmon at x.
The eigenstate with an energy matching the incoming

plasmon, Ek = vgk, can be written as

|Ek〉 =
∫

dx[φ+
k,R(x)c†R(x) + φ+

k,L(x)c†L(x)]|g1,g2〉|0〉sp

+
∑
j=1,2

ξkj
σ

(j )
+ |g1,g2〉|0〉sp, (6)

where ξkj
is the probability amplitude that the j th QD absorbs

the surface plasmon and jumps to its excited state, and
|g1,g2〉|0〉sp means that both QD-1 and QD-2 are in their
ground states with no SPs. For a single SP incident from the
left, the scattering amplitudes φ+

k,R(x) and φ+
k,L(x) take the form{

φ+
k,R(x) ≡ exp(ikx)[θ (−x) + aθ (x)θ (d − x) + tθ (x − d)],

φ+
k,L(x) ≡ exp(−ikx) [rθ (−x) + bθ (x)θ (d − x)] ,

(7)

where θ (x) is the unit step function, which equals unity
when x � 0 and zero when x < 0. Moreover, t and r are
the transmission and reflection amplitudes, respectively, and
[a exp(ikx)θ (x)θ (d − x)] and [b exp(−ikx)θ (x)θ (d − x)]
represent the wave function of the SP between 0 and d. By
solving the eigenvalue equation H |Ek〉 = Ek|Ek〉, one can
analytically obtain the reflection and transmission coefficients
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of single surface plasmon scattering.32,33 Doing so we obtain
the following relations for the coefficients:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(2aeikd + 2be−ikd ) − �SRξk1 = (
δ + i�′

2

)
ξk2 ,

g(1 + a + r + b) − �SRξk2 = (
δ + i�′

2

)
ξk1,

a = 1 + gξk1
ivg

, b = gξk2
ivg

exp(ikd),

t = 1 + g

ivg

[
ξk1 + ξk2 exp(−ikd)

]
,

r = g

ivg

[
ξk1 + ξk2 exp(ikd)

]
,

(8)

The transmission and reflection amplitudes can then be
determined algebraically. In the following discussion, we
refer to the decay rate into surface plasmon modes as
�pl = 4πg2/vg. This is a convenient way to compare the
strength of the plasmon-dot coupling and other decay channels.

A. Reflection and transmission of surface plasmons

First of all, we analyze the reflection and transmission
properties. Figure 2(a) numerically displays the transmission
coefficient T = |t |2 (dashed lines) and reflection coefficient
R = |r|2 (solid lines) for different values of the interdot
distance d. The peak positions of the reflection coefficients
sometimes deviate from the center (δ = 0). Figure 2(c) shows
the peak position as a function of kd. The continuous green
(dotted blue) curve represents the result with (without) the
superradiant effect. As can be seen in Fig. 2(c), not only
the interference from the interdot separation but also the
superradiance affects the positions of the peaks. This is the
only real contribution the superradiance term makes to our
results. Its effect on the entanglement, discussed in the next
section, diminishes quickly as a function of d, thus we omit it
completely in that treatment (see methods).

Figure 2(b) shows that the amplitude r of the reflection
coefficient R is suppressed when increasing the nonradiative
loss �0. The inset in Fig. 2(b) is the scattering spectrum versus
detuning δ of a single SP incident on two QDs with kd equal to
an integer multiple of π . When kd = 2nπ [(2n + 1)π ], with
n being an integer, the phase difference of the SP between the
two QDs is in phase (π phase difference). This makes the two
QDs collectively act like a single QD and results in a spectrum
identical to the single QD case.33 Note that the reflection
coefficient R(δ) has one minimum when δ < 0. Without the
superradiant effect, the positions of the minima, δmin, can be
deduced from Eq. (8) and satisfy the following relation:

− tan2(kd) = −4

(
δmin

�pl

)2

−
(

�′

�pl

)2

, (9)

where �pl is the QD exciton decay rate into SP modes and
R(δmin) = 0. If there is no reflection (r = 0), one can say
that Eq. (9) is the resonant-tunneling condition for a photon
traveling through two QDs. This r = 0 minimum can be seen
close to δ = 0 in Fig. 2(b). Note that our R(δ) and T (δ) are
not symmetric around δ = 0. This is because (i) the incoming
wave meets two scatterers, instead of one, and (ii) we are consi-
dering the effects of superradiance. Without the conditions (i)
and (ii), (e.g., when d = 0) we would recover the Breit-Wigner
scattering resulting in a symmetric Lorentzian as opposed to
the asymmetric forms we obtain for R(δ) and T (δ).
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FIG. 2. (Color online) Transmission probabilities T = |t |2
(dashed lines) and reflection probabilities R = |r|2(solid lines) for
a single surface plasmon scattered by two quantum dots as a function
of detuning δ = Ek/h̄ − ω0. In the figures, γ0 and �0 are normalized
to the decay rate into the surface-plasmon modes �pl, and we have
chosen γ0 = �0 = 0.025�pl in (a) and kd = π/4, γ0 = 0.025�pl in
(b). (c) The peak positions of the reflection probabilities as a function
of kd . The continuous green (dotted blue, top) curve represents the
result with (without) the superradiant effect. (d) Refers to a surface
plasmon incident on a single QD,33 which is also the case for two
QDs with kd equal to a multiple of π .

B. Entanglement generation

The transmitted or reflected SP propagating on the surface
of the nanowire can, in principle, be observed by detectors
placed at both ends of the nanowire.23 Equations (1) and (2)
oppositely imply that if there is no transmission or reflection
SP detected at the two ends of the wire, the wave function is
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projected onto the state∑
j=1,2

ξkj
σ

(j )
+ |g1,g2〉|0〉sp. (10)

This means that it is possible to create entanglement between
the two dots. However, this projection, or postselection,
requires minimal Ohmic loss. This can be mitigated using the
metastable states and waveguides discussed in the next section.
Let us first consider the limit of P → ∞ (P ≡ �pl/�′). Two
special cases for achieving high entanglement are kd = 2nπ

and (2n + 1)π for which the amplitude ξk1 is equal to ξk2

or −ξk2 , respectively. In this case, the two-dot qubits become
triplet- or singlet-entangled if no surface plasmons are detected
at the two ends of the wire.

To demonstrate the degree of entanglement, Fig. 3 shows
the concurrence36 C of the two-dot qubits as functions of the
inter-dot distance and detuning δ. The concurrence quantifies
the degree of entanglement of two qubits. For our system,
the density matrix of the two-dot state is a pure-state density
matrix, and the concurrence simply takes the form

C = 2
∣∣ξk1

∣∣ ∣∣ξk2

∣∣∣∣ξk1

∣∣2 + ∣∣ξk2

∣∣2 . (11)

The red dashed line in Fig. 3(b) refers to kd = 2nπ , while
the blue dashed line refers to kd = (2n + 1)π . In addition to
the special cases mentioned above, there are several curved
“tangent-shaped” regions satisfying the condition of high
entanglement, C ≈ 1. In the limit of large d, we can neglect
the effect of superradiance and find that the equation of these
curved regions is given by

δ = −
(

�pl + �′

2

)
tan(kd). (12)

The physical meaning of this condition is that even if the energy
for the incident SP is not resonant with the qubit energy h̄ω0,
it is still possible to create a highly entangled state, but only if
the two dots are placed at the right locations. In this case, the
entangled state now becomes ξk1 |e1,g2〉 + eiθ ξk2 |g1,e2〉, i.e.,
there is an extra phase θ between |e1,g2〉 and |g1,e2〉.

Figure 4 shows the variations of the phase θ as a function of
the detuning δ. In the limit of large d, there is no superradiance
and the continuous black (top), dashed red, and dotted blue
(bottom) curves represent the results of �′ = 0, 0.025�pl, and
0.125�pl, respectively. As can be seen in Fig. 4, once the
dissipative loss �′ is nonzero, the phase suddenly changes
from π (top black line) to 0 (red and blue curves) when δ = 0.
However, the scattering treatment we use here does not truly
reflect the dynamics of the coupled system: in reality, it takes
a finite time for the plasmon to mediate the entanglement
between the two dots. During this finite time, the entangled
state will undergo decoherence, even if no plasmon is emitted
to the left or right. Thus this “high-entanglement” value will,
in practice, be reduced (e.g., by emission of the QDs into other
modes).

For finite Purcell factor P , the entanglement between the
two QDs will be suppressed by the dissipation (�′). In the ab-
sence of further emission of a surface plasmon (e.g., because of
ideal postselection or transfer to the metastable state, see next
section) the entangled state will decay exponentially due to

FIG. 3. (Color online) (a) Concurrence C of the two-dot qubits as
functions of the interdot distance d and detuning δ in the limit P →
∞. (b) Shows the density plot of (a): the white regions correspond
to high entanglement with concurrence around 1. The red vertical
dashed lines refer to kd = 2nπ , while the blue vertical dashed line
denotes the kd = (2n + 1)π case. Both of these conditions achieve
high entanglement.

the losses into free space γ0. This behavior is trivial, so we
do not show it here. All of this implies that the creation
of the entangled state truly depends on �pl dominating over
the all-decay channels (which is feasible33) and fast transfer
of the entangled state into a metastable state. We discuss this
in the next section.

III. ENTANGLEMENT STORAGE

One might argue that the entangled states created in this
manner are fragile because the QDs are still coupled to the
SPs. The entanglement would rapidly disappear either due to
radiative or nonradiative losses or the SP would eventually
escape and be detected (or lost during propagation in the
nanowire). The entangled state exists only on a very short
time scale. To overcome this, one can consider multilevel
emitters such as the three-level configuration33 shown in Fig. 5.
Metastable37 states, |s1〉 and |s2〉, are decoupled from the SPs,
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FIG. 4. (Color online) The phase factor θ of the entangled state
ξk1 |e1,g2〉 + eiθ ξk2 |g1,e2〉 in the limit of large d when superradiance
is negligible. The continuous black (top), dashed red, and dotted
blue (bottom) curves represent the results for �′ = 0, 0.025�pl, and
0.125�pl, respectively.

but are resonantly coupled to |e1〉 and |e2〉, respectively, via
a classical optical-control field with Rabi frequencies �1(t)
and �2(t). Here, the metastable states mean that the relaxation
times of the states |s1〉 and |s2〉 are much longer than that of
the excited states |e1〉 and |e2〉.

Three remarks about experimental realizations should be
addressed here. First, for the realization of the coupling
between a metal nanowire SP and the two QDs, colloidal
CdSe/ZnS QDs and a silver nanowire are ideal since the exci-
ton energy of CdSe/ZnS QDs is around 2–2.5 eV, compatible
with the saturation plasma energy23 (≈2.66 eV) of the silver
nanowire.

Second, the SPs inevitably experience losses as they
propagate along the nanowire, which limits the feasibility of

QD 1 QD 2Incident
plasmon

x=0 x=d

waveguide

FIG. 5. (Color online) Schematic diagram of the storage process
of the initial entangled state into metastable entangled states,
|s1,g2〉 ± |g1,s2〉 with classical optical pulses �1(t) and �2(t). To
avoid the possibility of strong losses in metal nanowires, a dielectric
waveguide is introduced to achieve remote entanglement. In the
three-level diagram, the subscript j (j = 1 or 2) labels each QD.

creating remote entanglement. One solution to this problem
would be to couple the two dots to two separate nanowires, as
shown in Fig. 5. Also, the wires are evanescently coupled to a
phase-matched dielectric waveguide.33,38 In this case, one can
have both the advantages of strong coupling to the SPs and
long-distance transport through the dielectric waveguide.

Third, once the entangled state has been prepared, how
can it be detected? One possible procedure is to use ultrafast
optical tomography as outlined in Ref. 39. This would allow
one to reconstruct the density matrix of the effective two-
dot (qubit) system (which, in practice, will be a mixed state
due to environmental effects and the inevitable decay of the
metastable states) and consequently obtain the concurrence of
the two dots.

IV. SUMMARY AND CONCLUSIONS

In summary, we have examined the scattering properties
of the SPs in a metal nanowire coupled with two QDs. Both
the dissipative losses and the superradiant effect are found to
influence the scattering properties. We then used this system to
propose a scheme to create a remote entangled state between
the two QDs. Using metastable states and waveguides this
might be possible even in the presence of metal and radiative
losses. In future work, one could consider how the presence
of entanglement could be tested with the Bell inequality by
scattering another plasmon off the entangled two-dot state
and performing measurements akin to those proposed for edge
states in quantum Hall systems.40 In addition, this proposal can
also be applied to other physical systems. For example, one
can easily extend this to photons (e.g., in transmission lines or
waveguides) coupled to artificial atoms (e.g., superconducting
qubit).32,41,42
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APPENDIX

1. Super-radiant decay

The inclusion of the superradiant term in the non-Hermitian
form can be justified as follows. One can start with a
master equation for the two QDs coupled to external modes
or with a simple application of Fermi’s golden rule (e.g.,
as in Ref. 43). In the singlet, |S〉 = 1√

2
(|e1,g2〉 − |g1,e2〉),

and triplet, |T 〉 = 1√
2
(|e1,g2〉 + |g1,e2〉, bases this master

equation has several superradiant and subradiant decay terms,
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describing the following decay channels: via rate �+ for the
channel T+ → T → T− and via the rate �− for the channel
T+ → S → T−. Since we omit the double-occupation terms
here, only the channels from S and T contribute. These give
the following Lindblad terms in the master equation for the
density matrix of the two dots:34,43

L+ = −�+
2

(|T 〉〈T |ρ + ρ|T 〉〈T | − |T−〉〈T |ρ|T 〉〈T−|),

L− = −�−
2

(|S〉〈S|ρ + ρ|S〉〈S| − |T−〉〈S|ρ|S〉〈T−|),
where

�± = γ0

[
1 ± sin(k0d)

k0d

]
. (A1)

For both L− and L+, the first two terms contribute to
the non-Hermitian Hamiltonian while the last term is the
“quantum-jump” term. As mentioned above, these jump terms
can be neglected in here because a loss of excitation from
either quantum dot means a loss of the input SP. Combining
the other terms and rewriting the singlet and triplet bases in
the dot excitation basis gives the following contribution to the
effective non-Hermitian Hamiltonian:

H SR
eff = −ih̄

γ0

2

(
σe1,e1 + σe2,e2

)
− ih̄

sin(k0d)

2k0d
γ0(σ (1)

+ σ
(2)
− + σ

(1)
− σ

(2)
+ ) (A2)

2. Entanglement storage

For the entanglement storage process, instead of transform-
ing Eq. (2) into real space, we represent the Hamiltonian under
the bases of singlet, |S〉 = 1√

2
(|e1,g2〉 − |g1,e2〉), and triplet,

|T 〉 = 1√
2
(|e1,g2〉 + |g1,e2〉, states:

H = h̄

(
ω0 − i

�′

2

)
(|T 〉〈T | + |S〉〈S|)

− h̄g

∫
dk

{[
1√
2

(1 + eikd )|T 〉〈g1,g2|ak

+ 1√
2

(1 − eikd )|S〉〈g1,g2|ak

]
+ H.c.

}

+
∫

dkh̄vg|k|a†
kak, (A3)

where we have adopted the approximation that the superradiant
effect can be neglected in the limit of large d. We now consider
the general time-dependent wave function

|ψ〉 =
∫

dk[cR,k(t)â†
R,k + cL,−k(t)â†

L,−k]|g1,g2; 0〉
+ cT (t)|T ; 0〉 + cS(t)|S; 0〉
+ cMT

(t)|MT ; 0〉 + cMS
(t)|MS ; 0〉, (A4)

where |MS〉 = 1√
2
(|s1,g2〉 − |g1,s2〉) and |MT 〉 =

1√
2
(|s1,g2〉 + |g1,s2〉) denote the singlet and triplet metastable

states, respectively. From H |ψ〉 = ih̄∂t |ψ〉, the state
amplitudes evolve according to

dc(t)

dt
= −iδkc(t) + ig√

2
(1 + e−ikd )cT (t)

+ ig√
2

(1 − e−ikd )cS(t), (A5)

where δk = vgk − ω0. The equation above refers to, in a
compact manner, to two equations: one for cR,k and the other
one for cL,−k , respectively. If �1(t) = �2(t) and kd = 2nπ ,
Eq. (A3) can be substituted into the equation of motion for
cT (t)

dcT (t)

dt
= −�′

2
cT (t) + i�1(t)cMT

(t)

+ ig

∫
dk[cR,k(t) + cL,−k(t)], (A6)

which yields an integro-differential equation involving cT (t).
Imposing the reasonable constraint that the SP storage process
has no outgoing field at the end of the wire, such that
cR,k(L,−k)(∞) = 0, one can obtain an implicit expression for
the required pulse shape �1(t) and the following equation
related to the population in the state |MT 〉:
d

dt

∣∣cMT
(t)

∣∣2 = −v2
g

2πg2

(
d

dt
|ET (t)|2 − �pl − �′

2
|ET (t)|2

)
,

(A7)

where

ET (t) = −
√

2πigcT (t)/vg. (A8)

With the normalization condition,∫ ∞

−∞
dt |ET (t)|2 = 1/(2vg), (A9)

and assuming that the incoming field vanishes33 at t = ±∞
[i.e., ET (±∞) = 0], Eq. (A4) can be integrated to yield∣∣cMT

(±∞)
∣∣2 = 1 − 1/P, (A10)

where

P ≡ �pl/�′, (A11)

is the effective Purcell factor. Similarly, it can be easily shown
that the storage efficiency into the |MS〉 state is also equal to
1 − 1/P , if �1(t) = −�2(t) and kd = (2n + 1)π . Note that
the metal and radiative losses on the qubits are taken into
account in the above derivation. Therefore, the entangled states
can be stored with a high efficiency only if the Purcell factor P

is large enough. Furthermore, the two qubits could be separated
far away from each other, such that one can address one qubit
without affecting the other.
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