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Dirac gap-induced graphene quantum dot in an electrostatic potential
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A spatially modulated Dirac gap in a graphene sheet leads to charge confinement, thus enabling a graphene
quantum dot to be formed without the application of external electric and magnetic fields [G. Giavaras and
F. Nori, Appl. Phys. Lett. 97, 243106 (2010)]. This can be achieved provided the Dirac gap has a local minimum
in which the states become localized. In this work, the physics of such a gap-induced dot is investigated in the
continuum limit by solving the Dirac equation. It is shown that gap-induced confined states couple to the states
introduced by an electrostatic quantum well potential. Hence the region in which the resulting hybridized states
are localized can be tuned with the potential strength, an effect which involves Klein tunneling. The proposed
quantum dot may be used to probe quasirelativistic effects in graphene, while the induced confined states may
be useful for graphene-based nanostructures.
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I. INTRODUCTION

Quantum dots have been studied extensively over the
last years because they allow fundamental laws of quantum
physics to be probed and they might also find applications
in nanoelectronics as detectors and transistors. Although
a dot in a semiconductor heterostructure can be routinely
formed, in monolayer graphene the situation is different.1–4

An ideal graphene sheet is gapless, its energy dispersion
is linear E = ±vF|p|, and its charge carriers are massless
Dirac particles. Therefore, they exhibit Klein tunneling, which
allows massless particles to tunnel through any electrostatic
potential barrier. This property excludes the possibility of
fabricating a graphene dot simply by using electrostatic gates,
as in common semiconductors.

In particular, the states of an electrostatic graphene dot
are deconfined, that is, they have an oscillatory tail outside
the dot region, which is a direct consequence of the Klein
tunneling.5–7 This essentially means that the electrons can
only spend a finite time interval inside the dot, and it has
been shown theoretically that this time interval is sensitive
to the details of the potential profile and the energy of the
quantum state.7 A uniform magnetic field leads to confined
states (bound states) which decay exponentially outside the
dot, provided the electrostatic potential rises slowly compared
to the magnetic vector potential.8,9 Thus a graphene quantum
dot can be formed with a uniform magnetic field. This
property has also potential applications in graphene
waveguides.10,11

It is experimentally possible to induce an energy gap in
graphene’s band structure, referred to as the Dirac gap.1,2 In
this case the energy dispersion becomes E = ±

√
(vFp)2 + �2,

with 2� the value of the Dirac gap. The importance of the
gap stems from the fact that it gives rise to carriers with
mass (∼�/v2

F) and thus a quantum well potential induces con-
finement as in common semiconductor dots.1,2 This happens
because the Klein tunneling is suppressed for a particle with
mass, as long as its energy lies in the gap. The quantum states
with energies within the gap decay exponentially in the barrier
region, thus trapping the electron in the dot for a theoretically
infinite time.

This work considers the case of a spatially modulated Dirac
gap that enables a graphene quantum dot to be formed without
the application of external electric and magnetic fields.12 This
is feasible provided the gap has a local minimum in which
the electron states become localized. Gap-induced confined
states couple with states induced by an electrostatic quantum
well potential; then this property allows the region in which
the resulting hybridized states are localized to be tuned with
the potential strength. This type of dot can be used to probe
quasirelativistic effects in graphene, related to Klein tunneling,
while the confined states may be useful for applications. To
manipulate the spin states of an electron confined in a quantum
dot, magnetic fields are usually needed. Thus, forming a
graphene dot without applying additional magnetic fields to
control the charge states can be advantageous. This is one
of the motivations of our proposal. Moreover, the density of
states in a gap-induced dot can be made low enough since only
states with energies in the gap are of importance. A magnetic
dot does not have this property and it is more tricky to induce
a low density of states.13

The value of the Dirac gap depends on the specific
experimental technique and can range from a few to hundreds
of meV. For example, a Dirac gap has been measured in
graphene grown epitaxially on a SiC substrate.14 A gap
opening has been demonstrated by controlling the structure
of the interface between graphene and ruthenium.15 Further,
a spatially modulated and (buffer layer) thickness-dependent
Dirac gap has been reported experimentally.16 Moreover, it has
been suggested theoretically that local strain and/or chemical
methods might also be employed to open up and tune the Dirac
gap.1,2,17–19

This paper is organized as follows. In Sec. II the quantum
dot model is presented and the necessary conditions for
confinement are derived in the presence of a magnetic vector
and scalar potentials, as well as a spatially modulated Dirac
gap. In Sec. III a model dot is examined in the regime where
the Dirac gap has the same spatial profile as the electrostatic
potential. In Sec. IV some semianalytical results are derived
for the case of a piecewise-constant Dirac gap profile and the
general properties of the gap-induced dot are presented. The

165427-11098-0121/2011/83(16)/165427(9) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.83.165427


G. GIAVARAS AND FRANCO NORI PHYSICAL REVIEW B 83, 165427 (2011)

interplay of the gap-induced dot with an electrostatic quantum
well potential is studied in Sec. V, and Sec. VI presents the
basic conclusions of the paper.

II. PHYSICAL MODEL

A. Graphene quantum dot Hamiltonian

For energies near the Dirac points (<±1 eV) and in the
continuum limit, a graphene quantum dot can be described by
the effective 2 × 2 Hamiltonian

H = vFσ · (p + eA) + V I + τ�σz. (1)

The Fermi velocity vF = γ /h̄ is assumed to be position
independent, where γ = 646 meV nm is a band structure
parameter. Also, σ = (σx,σy), σz are the 2 × 2 Pauli operators
acting on the two carbon sublattices, I is the 2 × 2 unit matrix,
p = −ih̄∇ = −ih̄(∂x,∂y) is the two-dimensional momentum
operator, A is the vector potential that generates the magnetic
field B = ∇ × A, and V is the quantum well potential formed
electrostatically, for example, due to a gate voltage. The last
term in Eq. (1), referred to as the mass term, gives rise
to an energy gap 2� in the spectrum of graphene, where
τ = +1 (τ = −1) corresponds to the K (K ′) valley. The
Hamiltonian (1) assumes no intervalley coupling, which is
a good approximation for most graphene samples.1,2

For the dot model we consider that both V and �

have cylindrical symmetry and the applied magnetic field is
perpendicular to the graphene sheet (i.e., B = Bẑ). Hence only
the azimuthal component Aθ is nonzero, therefore

A = (0,Aθ ,0), Aθ = B0r
s

s + 1
, (2)

which generates the field B = B0r
s−1; here, s = 1 corresponds

to a uniform magnetic field. Hamiltonian Eq. (1) is written
in cylindrical coordinates (x = r cos θ , y = r sin θ ) with the
substitution

∂x − i∂y = e−iθ

(
∂r − i

r
∂θ

)
, (3)

and

σ · A = −(σx sin θ − σy cos θ )Aθ . (4)

A two-component solution � to the Dirac equation

H� = E�, (5)

with E being the eigenenergy, is written in the general form

� = 1√
r

(
f1(r) exp[i(m − 1)θ ]

if2(r) exp(imθ )

)
, (6)

with m = 0,±1, . . . , being the orbital angular momentum
quantum number. The radial components f1 and f2 ex-
press amplitude probabilities on the two carbon sublattices
of graphene, and they satisfy the two coupled differential
equations

(V + τ�)f1 +
(

U + γ
d

dr

)
f2 = Ef1, (7a)(

U − γ
d

dr

)
f1 + (V − τ�)f2 = Ef2. (7b)

The term U is due to the angular momentum and the applied
magnetic field, and is given by

U = γ (2m − 1)

2r
+ γ eAθ

h̄
. (8)

Applying the time-reversal symmetry operator iCσy , with
C the operator of complex conjugation, to Eqs. (7a) and
(7b), it can be shown that the eigenenergies20 satisfy the
condition E(m,B,τ ) = E(1 − m,−B,−τ ). Also, E(V,τ ) =
−E(−V,−τ ) due to electron-hole symmetry.

B. Confinement in a Dirac gap-induced dot

The quantum states of a Schrödinger dot, formed by an
electrostatic quantum well, can be classified according to their
energy. A state is confined when its energy relative to the
bottom of the well is smaller than the well depth. This state
has an exponential tail at a large distance from the quantum
well. In the opposite regime, when the energy is larger than the
well depth, the state is deconfined and it has an oscillatory tail.

This behavior is no longer valid for a Dirac dot formed
in graphene because the energy spectrum of graphene is
unbound and Klein tunneling takes place. In particular, a
massless Dirac electron can tunnel through any electrostatic
potential barrier, as has been confirmed experimentally via
transport measurements in p-n junctions.21 For this reason an
electrostatic graphene dot cannot confine electrons.

Nevertheless, confinement can be achieved in the presence
of a magnetic field and/or an energy gap in graphene’s
spectrum, though for this to happen some specific conditions
have to be satisfied, which are analyzed in this section. As a
general rule, confined states should decay asymptotically [i.e.,
at a large (r → ∞) radial distance r , independent of their
energy], whereas deconfined states should have an oscillatory
tail. The former states are sometimes called bound and the
latter quasibound.

Below we employ a rigorous treatment to examine the dot
states.8 We derive a single second-order differential equation
for each radial component, by decoupling Eqs. (7a) and (7b).
Then we identify the form of the state in the asymptotic region
(i.e., at a large radial distance from the origin of the dot). The
f2 component satisfies

d2f2

dr2
+ a(r)

df2

dr
+ b(r)f2 = 0, (9)

with the coefficients

a(r) = − V ′
+

V+ − E
,

and

b(r) = a
U

γ
− U 2

γ 2
+ (V− − E)(V+ − E)

γ 2
+ U ′

γ
,

with V± = V ± τ� and the prime denotes differentiation with
respect to r . The first derivative term in Eq. (9) complicates the
analysis of the quantum states. For this reason we eliminate it
by writing f2 in the form f2(r) = g(r)u2(r) and from Eq. (9)
we derive that

g
d2u2

dr2
+ (2g′ + ag)

du2

dr
+ (g′′ + ag′ + bg)u2 = 0. (10)
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If we choose g = exp(− ∫
a/2dr), the first derivative term

cancels and u2 satisfies the Schrödinger-like equation

d2u2

dr2
+ k2

2(r)u2 = 0, (11)

with the r-dependent coefficient

k2
2(r) = b − 1

2

da

dr
− a2

4
. (12)

Here g is not an oscillatory function of r , therefore f2 has
the same confined or deconfined character as u2. Specifically,
Eq. (11) suggests that u2 is confined only if k2

2 is asymptotically
(r → ∞) negative. Otherwise u2 is deconfined. The same
arguments are valid for the f1 component.22

To proceed, we assume that for a large radial distance r

both V and � are constant or have a power-law dependence;
therefore in this case we derive asymptotically that

k2
2(r) ≈ −

(
eAθ

h̄

)2

+
(

V − E

γ

)2

−
(

τ�

γ

)2

. (13)

Equation (13) shows that the sign of k2
2 is tunable with Aθ , V ,

�, and energy E, and thus the same is valid for the character of
the dot states. Further, the character of the states is independent
of the choice of valley τ = ±1, although for a fixed m the
energies are not the same for both valleys.

The form of k2
2(r) in Eq. (13) shows that the vector potential

acts equivalently to the mass term, namely, both have the
tendency to confine the states. This can be understood as
follows. It can be seen from Eqs. (7a) and (7b) that the radial
Hamiltonian which acts on f1 and f2 is

Hr =
(

V + τ� U − γ d
dr

U + γ d
dr

V − τ�

)
. (14)

The similarity transformation P †HrP = Hr with the operator

P = 1√
2

(
1 1

1 −1

)
, (15)

results in the transformed Hamiltonian

Hr =
(

V + U τ� + γ d
dr

τ� − γ d
dr

V − U

)
. (16)

Among the terms which dominate asymptotically, U and
τ� are interchanged in Hr with respect to Hr . However,
asymptotically U ∼ γ eAθ/h̄, therefore in this regime τ� and
Aθ should act equivalently.

The necessary condition for the occurrence of confinement
(i.e., k2

2 < 0 asymptotically) means that at least one of Aθ ,
� has to be nonzero, otherwise k2

2 > 0 leading to deconfined
states. Most importantly, Eq. (13) shows that confined states
can be induced even for Aθ = 0 and V = 0 everywhere,
provided that E2 − �2 < 0 asymptotically. As shown in
Ref. 12 this inequality can be satisfied when � is spatially
dependent; for example, when � is zero within a disk area,
and nonzero outside that area, � = δ0. Then, as shown below,
discrete energy levels in the range |E| < δ0 correspond to
confined states with a large amplitude within the disk area.

III. MODEL QUANTUM DOT SYSTEM

To demonstrate the arguments presented in the previous
section, consider first a model quantum dot for which the
electrostatic potential V , and the mass term � have a power-
law spatial dependence. Equation (13) shows that if Aθ = 0,
and V , � are unequal, then confined states occur only if (V −
�) < 0, so that k2

2 < 0. In this case confinement is energy
independent (i.e., all the states independent of their energy
are confined). In the special limit of V = � only energies
which satisfy −EV < 0 correspond to confined states, which
implies that if V increases (decreases) asymptotically then
confinement occurs only for positive (negative) energies.

The complete physical behavior can be demonstrated when
V and � have the same r dependence, for example, parabolic,
V = V0r

2 and � = �0r
2 with V0, �0 > 0. Then from Eq. (13)

the resultant states are confined when �0 > V0 so that k2
2 < 0,

and deconfined when �0 < V0 and hence k2
2 > 0. For V0 = �0

only positive energies correspond to confined states.
To quantify this behavior the two coupled Eqs. (7a) and

(7b) are discretized on a uniform grid and the resulting matrix
eigenvalue problem is solved numerically, using a similar
technique as in Ref. 8. The boundary conditions for the compo-
nents f1 and f2 which lead to a Hermitian eigenvalue problem
[Eqs. (7a) and (7b)] are derived in Ref. 8, and it can be shown
that these are not modified by the presence of the mass term. So
one component has to vanish at the origin and the second has
to vanish asymptotically (at the boundary of the computational
box). The same procedure is followed in all sections.

Figure 1 shows quantum states for �0 constant, �0 =
1 μeV nm−2, and three different choices of V0. The states
plotted are those which correspond to the lowest positive
energy when V0 = 0. When V0 = 0 (< �0) the states are
confined and they have an exponential tail. This demonstrates
that a graphene dot can be formed thanks to a spatially
modulated Dirac gap without applying external electric or
magnetic fields. When V0 = 0.9�0 (< �0) the states are still
confined though the region within which they are localized is
slightly modified by the presence of the potential. On the other
hand, when V0 = 1.5�0 (> �0) the states have undergone
a transition and they are deconfined asymptotically with an
oscillatory tail. This behavior of the states with respect to the
potential strength is valid for all values of m and τ = ±1;
though, as shown in Fig. 1, the relative amplitude of the two
components depends on the choice of τ . In particular, for
τ = +1, f1 > f2 (f1 < f2) when E > 0 (E < 0), whereas the
opposite is valid for τ = −1, f1 < f2 (f1 > f2) when E > 0
(E < 0) (Ref. 23).

A similar confinement-deconfinement transition in the
character of the dot states can also be induced for � = 0,
provided that the vector potential is nonzero (Aθ �= 0) and has
the same power-law dependence as the electrostatic potential.8

This can happen because the first and third terms in Eq. (13)
have the same sign. This observation might be the key to
fabricate a graphene dot with the help of a uniform magnetic
field and an electrostatic potential, and some preliminary
calculations suggest that this should be feasible in realistic
dot designs formed in gated graphene.8,24

Figure 2 shows the energy level diagram in a range of
confined states for the two valleys τ = ±1. The spectrum
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FIG. 1. (a) Quantum states for m = 2, τ = +1 and different potential strengths V0. The mass term is modelled by � = �0r
2, with �0 =

1 μeV nm−2, and the electrostatic potential is modelled by V = V0r
2. The potential strength V0 is from top to bottom: V0/�0 = 0, 0.9, and

1.5. The vertical axes of the insets to the top and middle panels are on logarithmic scale. (b) As in (a) but for τ = −1.

consists of two ladders (sets) of discrete levels indicating the
existence of confined states. The energy ladders are separated
by a gap which is large when the angular momentum is large.
As V0 increases the confinement for negative energies becomes
weak and for this reason the splitting between the discrete
levels cannot be clearly resolved. The pattern of the two ladders
is characteristic of confined states in graphene quantum dots
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FIG. 2. Energy levels of confined states for the two valleys:
τ = +1 (solid lines) and τ = −1 (dashed lines). The angular
momentum number is m = 2, the electrostatic potential is modelled
by V = V0r

2 and the mass term is modelled by � = �0r
2. Here �0 =

1 μeV nm−2, whereas V0 is tuned.

and, for instance, can also occur when the mass term is replaced
by a vector potential of the same spatial dependence.24

IV. INVESTIGATION OF A DIRAC GAP-INDUCED DOT

In this section the basic properties of a Dirac gap-induced
dot are investigated numerically. We assume that there is
neither an electrostatic potential (V = 0) nor a magnetic
field (Aθ = 0) and thus confinement is due solely to the
spatial modulation of the gap. Then confinement depends
on energy, as can be seen from Eq. (13), and it is achieved
when E2 − �2 < 0, where � is the value of the mass term
asymptotically.

A. Graphene dot formed by a piecewise-constant Dirac gap

First a regime for which analytical results can be obtained
is examined. Consider the special limit where the spatially
dependent mass term � changes discontinuously. In this case
� can be modelled by the expression

�(r) = δ0
(r − R), (17)

with 
 the Heaviside step function. For simplicity we assume
that �(r) = 0 for r < R, although in the following analysis a
nonzero value can be introduced straightforwardly. As shown
in the previous section, the two radial components f1 and f2

satisfy a second-order differential equation, which for V = 0
and Aθ = 0 has the form [(τ�)2 = �2]

d2f1

dr2
− 4(m − 1)2 − 1

4r2
f1 + E2 − �2

γ 2
f1 = 0, (18a)

d2f2

dr2
− 4m2 − 1

4r2
f2 + E2 − �2

γ 2
f2 = 0. (18b)
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If we assume a solution of the form fi = √
rFi , then Fi has

to satisfy the following Bessel’s differential equations

d2F1

dr2
+ 1

r

dF1

dr
− (m − 1)2

r2
F1 + E2 − �2

γ 2
F1 = 0, (19a)

d2F2

dr2
+ 1

r

dF2

dr
− m2

r2
F2 + E2 − �2

γ 2
F2 = 0. (19b)

Setting k = E/γ and q =
√
|E2 − δ2

0 |/γ , the solutions for
confined states can be written in the general form(

F1

F2

)
=

(
αJm−1(kr)

αJm(kr)

)
, r � R, (20)

and (
F1

F2

)
=

(
βKm−1(qr)

cβKm(qr)

)
, R � r, (21)

with c =
√

|E2 − δ2
0 |/(E + τδ0) and α, β are constants that

can be determined from the normalization condition and the
requirement that both components are continuous at r = R.
Here Jm is an ordinary Bessel function of the first kind, and
Km is a modified Bessel function of the second kind. These
have been chosen since Jm is regular at the origin (r = 0),
while Km decays exponentially at large radial distances as
needed for confined states.25 The coefficients (α,β,c) in
Eqs. (20) and (21) are introduced in order f1 and f2 to satisfy
the coupled Eqs. (7a) and (7b).

Both components have to be continuous at r = R, leading
to the following algebraic equation

cJm−1(kR)Km(qR) = Jm(kR)Km−1(qR). (22)

This is solved numerically, with bisection, to give the energies
of the confined states in the range |E| <δ0. Thanks to the prop-
erties of the Bessel functions J−m = (−1)mJm and K−m =Km,
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FIG. 3. Quantum states for a piecewise-constant mass term �

given by Eq. (17). The parameters are m = 2, R = 100 nm, and
δ0 = 80 meV. Results for both valleys, τ = ±1, are shown. The states
correspond to the lowest positive eigenenergy.

the energies satisfy the condition E(m,τ ) = E(1 − m, − τ ) as
time-reversal symmetry requires when Aθ = 0. Figure 3 shows
one example of the two confined components for the lowest
positive energy. When this is much smaller than δ0 the states
decay quickly in the region r > R, while the states exhibit a
kink at r = R because their first derivative is discontinuous at
that point.

B. Graphene dot formed by a continuous Dirac gap profile

In any realistic graphene system the spatial modulation of
the Dirac gap will not be perfectly sharp. For this reason we
make a more realistic choice of the mass term than that in
Eq. (17) and use the expression

�(r) =
{

0, r � R,

−δ0 cosh
(

r−R
d

)−2 + δ0, R � r,
(23)

so that asymptotically � ≈ δ0. For all the calculations we
choose for the parameters R = 250 nm and d = 150 nm,
although these choices do not affect the main conclusions.
In the limit d → 0 we recover Eq. (17).

Figure 4 shows the energy levels as a function of the
asymptotic value of the mass term δ0, giving rise to an energy
gap of 2δ0. The (quasi) continuum of levels, corresponding to
the black area in Figs. 4(a) and 4(b), reflect deconfined states.
The finite system size needed for the numerical calculations
generates a gap at δ0 = 0, which increases with |m|. However,
the system size is chosen large enough and hence it does not
affect the physics of the discrete levels of the dot that we are
interested in. These levels emerging through the continuum
reflect the formation of confined states. The transition from
continuum to discrete levels and vice versa is accompanied
by the appearance of anticrossing points.12 As seen in
Figs. 4(a) and 4(b), the discrete levels form two ladders (sets)
of energy with either positive or negative values, separated by
a gap pertinent to the angular motion. The typical splitting of
the levels increases with δ0 because the confinement becomes
stronger. Further, the two energy ladders are formed after a
critical value of δ0 depending on the angular momentum. This
happens because the angular motion tends to delocalize the
states near the origin of the dot, see Eq. (8), and therefore for
a given δ0 not all m values produce confined states. For this
reason there are no discrete levels for δ0 � 3 and 28 meV in
Fig. 4, when m = 2 and m = 15, respectively.

If |m| is large, then δ0 has to be large for the formation
of confined states. This effect has a direct signature in the
density of states (DOS) which is shown in the contour
plot of Fig. 4(c). For simplicity only τ = +1 is considered
since the inclusion of τ = −1 simply doubles the number of
states. Moreover, because V = Aθ = 0 the energies satisfy
the condition E(m,τ ) = −E(1 − m,τ ) and thus the DOS is
symmetric with respect to E → −E. For a small δ0 only a few
energy levels near zero lie within the gap, corresponding to
small angular momentum states. The general trend is that with
increasing δ0 the number of discrete levels that falls in the gap
increases since gradually larger m values give confined states.
As an example, for δ0 = 5 meV the discrete levels correspond
to angular momentum numbers −1 � m � 2, whereas for
δ0 = 20 meV to −9 � m � 10. Still, however, for energies
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FIG. 4. (Color online) (a), (b) Energy levels, for τ = +1, as a function of the asymptotic value of the mass term δ0 which generates a
Dirac gap of 2δ0. The mass term � is modelled by Eq. (23). (c) The contour plot shows the density of states; the maximum number of states is
restricted to five.

near the middle of the Dirac gap, −5 meV � E � 5 meV,
the DOS remains low regardless of δ0 because only small
m values contribute to this energy range. This suggests that the
formation of a gap-induced dot can be probed using similar
charge measurements as, for example, in GaAs dots. The Fermi
energy of the graphene dot has to be adjusted near the middle
of the energy gap where the DOS is expected to be low and
scanning tunneling microscopy could be used to probe the
confined quantum states.

V. EFFECT OF A QUANTUM WELL POTENTIAL
ON A GAP-INDUCED DOT

In this section the effect of an electrostatic quantum well
potential on a gap-induced dot is examined. It is assumed that
the potential can be generated by a gate electrode and is not
related to the presence of the Dirac gap. We consider the most
common experimental regime where both the electrostatic
potential V and the mass term � are constant asymptotically.

In this case, if Aθ = 0 then confinement depends on energy,
as can be seen from Eq. (13), and it is achieved when
(V − E)2 − �2 < 0. If Aθ has a power-law dependence the
states are always confined independent of their energy, but in
this work we focus on the case where Aθ = 0, and therefore
there is no magnetic field in the graphene sample.

The interplay of a quantum well potential with the gap-
induced dot has a drastic effect on the resulting states. In
particular, gap-induced dot states couple to the states induced
by the potential. As a result the region in which the resulting
hybridized states are localized is tunable with the strength of
the potential. Also, Klein tunneling in the electrostatic barrier
region occurs.

It has been experimentally demonstrated that gate elec-
trodes can be suspended above the graphene sheet inducing a
smooth quantum well or barrier potential that is tunable with
the applied gate voltage.26,27 The exact potential profile can be
determined by solving the Poisson equation within a semiclas-
sical Thomas-Fermi model properly taking into account charge

165427-6



DIRAC GAP-INDUCED GRAPHENE QUANTUM DOT IN AN . . . PHYSICAL REVIEW B 83, 165427 (2011)

screening effects and the specific electrode geometry.8,27 How-
ever, a smooth and slowly varying potential can be modelled,
to a good approximation, by the Gaussian expression.8,24

V (r) = −V0 exp

(
− r2

l2
0

)
. (24)

The parameters V0 and l0 model the effective depth and width
of the quantum well potential, which are controlled by the
geometry of and the applied voltage to the gate electrodes.
Typical gate voltages of a few volts generate a potential well
depth of some hundreds of meV, with an effective width of
some hundreds of nm. This work is concerned only with the
regime where the quantum well potential is formed inside the
spatial region where � � δ0, with � as in Eq. (23), therefore
for all the calculations l0 = 180 nm and V0 � 120 meV.

The energy level diagram as a function of V0 is shown in
Fig. 5(a), for a spatially independent (constant) Dirac gap with
2� = 50 meV. Confined states have discrete energy levels that
lie within the gap, whereas deconfined states form an upper
and a lower band of (quasi) continuum of levels, for energies
E > � and E < −�, respectively. If V0 is small, the angular
momentum delocalizes the states; therefore confined states are
formed after a critical value of V0, that is ∼19 meV in Fig. 5(a).
As V0 increases, the number of discrete levels increases due to
the stronger confinement. Energy levels emerge from the upper
continuum into the gap, while the lowest discrete levels merge
into the lower continuum via anticrossing points. These are
formed inside the two bands as shown in Ref. 12. The quantum
states undergo a transition from confined to deconfined and
vice versa. Specifically, a confined state transits to a deconfined
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FIG. 5. (a) Energy levels versus the electrostatic potential depth
V0, for m = 6, τ = +1 and a constant Dirac gap of 2� = 50 meV.
(b) As in (a) but for a spatially modulated Dirac gap with an
asymptotic value of 2δ0 = 50 meV. (c) As in (b) but for m =
2. The states of the energies marked by circles are shown in
Fig. 6.

via tunneling into the valence (lower) band, when its energy
falls below the gap.28 In this regime the deconfined state has
an oscillatory tail but has a large amplitude near the origin of
the dot (see below).

Figures 5(b) and 5(c) show the energy diagram when the
Dirac gap is spatially modulated with an asymptotic value of
2δ0 = 50 meV. The appearance of discrete levels for V0 = 0
is a consequence of the gap-induced confinement. Such
levels are absent in the constant gap system. Furthermore, for
V0 = 0 there are more discrete levels for m = 2 than m = 6,
as expected based on the above arguments. Anticrossing
points, formed now between discrete levels, indicate a
coupling between potential- and gap-induced states. The
gap-induced states of the upper energy ladder couple strongly
to the potential states and for this reason the corresponding
anticrossing points are not well formed. On the other hand,
states of the lower energy ladder couple weakly to the
electrostatic potential for m = 6 [Fig. 5(b)], and therefore the
anticrossing points are well formed, while this coupling is
much stronger for m = 2 [Fig. 5(c)].

Figure 6 illustrates the dot states as the potential depth V0

increases. Consider first the m = 2 states shown in the left
panels of Fig. 6(a). Confinement for V0 = 0 is due to the
spatial modulation of the Dirac gap and cannot be realized for
a constant gap. As V0 increases, the gap-induced state couples
to the lowest energy state induced by the potential well (V0 =
30 meV), and its energy decreases. The state acquires a large
amplitude in the potential well region and with increasing V0 it
couples successively to gap-induced states of the lower energy
ladder (V0 = 50 meV). In this range the resulting hybridized
state is spread with significant amplitude over the whole
nonasymptotic region defined by � � δ0. Further increasing
V0, the energy of the state falls below the gap (V0 = 70 meV);
the state tunnels in the valence band and becomes deconfined
with an oscillatory tail.

Strong coupling between gap- and potential-induced states
occurs also for the m = 2 states shown in the right panels of
Fig. 6(a); for instance, for V0 = 70 and 100 meV. With increas-
ing V0, the gap-induced state that corresponds to the highest
energy in the lower ladder (for V0 = 0) couples successively
to excited potential-induced states. This effect is reflected in
the energy level diagram [Fig. 5(c)] by the appearance of a
series of anticrossing points as V0 increases. A similar effect
is displayed by gap-induced states of smaller energy, although
with increasing V0 the number of gap-induced confined states
in the lower energy ladder decreases. For instance, as seen
in Fig. 5(c) for V0 = 0 there are five discrete levels, whereas
for V0 = 50 meV there are three. The number of states can
be determined using a similar approximate formalism as
that in Ref. 9. The necessary condition for the existence of
confined states is that there must be a spatial region near
r = R in which k2

2 > 0, with k2
2 as given in Eq. (12), whereas

asymptotically k2
2 < 0.

In Fig. 6(a) the coupling between potential- and gap-
induced states of the lower ladder is strong and therefore the
resulting hybridized states have a relatively strong amplitude
over the whole region where � � δ0. In contrast, the coupling
is weak for the m = 6 states shown in Fig. 6(b). Therefore, for
V0 = 85 meV, the states peak mainly in the region defined
either by the potential well (left panel) or the Dirac gap
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FIG. 6. (a) Quantum states for m = 2 and for different electrostatic potential depths V0; from top to bottom: V0 = 0, 30, 50, and 70 meV
for the left panels, and V0 = 0, 30, 70, and 100 meV for the right panels. The Dirac gap is spatially modulated with an asymptotic value of
2δ0 = 50 meV. Left (right) panels show states with energies marked by • (◦) in Fig. 5(c). (b) As in (a) but for m = 6 and V0 = 0, 40, 85,
and 100 meV for the left panels, and V0 = 0, 40, 85, and 120 meV for the right panels. Left (right) panels show states with energies marked
by • (◦) in Fig. 5(b). The vertical axes of the insets range from 0 to 1 × 10−3.

modulation (right panel). These two regions have a small
overlap when m is large and the effective width of the potential
well is smaller than the radius of the zero-gap region.

The m-dependent coupling of the states is related to the
width of the classically forbidden region formed between
the confinement regions defined by the gap modulation and
the electrostatic well. The semiclassical approach developed
in Ref. 6 shows that for a large positive m the width of the
forbidden region is large. This results in a weak coupling
between the potential- and gap-induced states of the lower
energy ladder. Also, as m increases the gap between the
upper and the lower energy ladders increases also (Fig. 4)
and therefore V0 has to be large for the formation of coupled
states. The coupling effect, though, is insensitive to the details
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FIG. 7. (Color online) Density of states versus energy E (|E| <

24.8 meV) and electrostatic potential depth V0, for τ = +1, and an
asymptotic Dirac gap of 2δ0 = 50 meV.

of the gap modulation. Our calculations show that both weak
and strong couplings can be realized even when the Dirac gap
changes discontinuously as in Eq. (17).

When the potential is nonzero (V0 �= 0) the induced
states can have an oscillatory amplitude inside the barrier
region, though asymptotically they decay.29 This effect is
a consequence of the Klein tunneling in the nonasymptotic
region defined by � � δ0. In contrast, the quantum states of
a Schrödinger dot display only an exponential decay inside
an electrostatic barrier. Numerical calculations of the DOS,
shown in Fig. 7, suggest that it should be experimentally
possible to resolve graphene states with large oscillatory
amplitude in the barrier and the coupling between the states
described above. To probe the states with scanning tunneling
microscopy the DOS has to be low. This could be achieved for
a small V0 since in this case only energies that correspond to
small m states fall in the gap. For the same reason the DOS is
low when the asymptotic value of the Dirac gap is small.

VI. DISCUSSION AND CONCLUSION

The existence of a Dirac gap in the energy spectrum of
monolayer graphene suppresses the Klein tunneling and thus
enables charge confinement by an electrostatic quantum well
and formation of quantum dots. Here it was shown that a
graphene dot can be formed as a result of a spatially modulated
Dirac gap. It was found, by solving the Dirac equation in the
continuum limit, that when the gap has a local minimum con-
fined states with discrete energy levels can be formed without
applying external electric and/or magnetic fields. This cannot
be achieved in a constant Dirac gap graphene system. The re-
quired gap modulation may be introduced with substrate engi-
neering, local strain, or a chemical technique. Unlike quantum
dots formed in nanocrystals of graphene, the proposed dot is
formed in a large sheet of graphene, therefore the physics of
the edges is unimportant and does not affect the dot properties.
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The general conditions for confinement in the presence
of a spatially modulated Dirac gap, an external electrostatic
potential, and a magnetic vector potential were analyzed.
When the gap and/or the vector potential rises asymptotically,
while the electrostatic potential is zero (constant), the resulting
states are confined regardless of angular momentum, valley
and eigenenergy. The interplay of the gap-induced dot with
an electrostatic potential leads to tunable quantum states
(i.e., from confined to deconfined and vice versa). This
can only happen provided the potential and the mass term,
which generates the Dirac gap, have the same spatial forms
asymptotically while the magnetic field is zero. In this case the
states can be tuned with the strength of the potential: The states
are deconfined when the electrostatic potential is stronger than
the mass term and confined in the opposite regime.

When the Dirac gap is zero within a disk area and constant
outside that area confinement is energy dependent, thus the
choice of angular momentum and valley is important. Confined
states are localized inside the disk area when their energies lie
in the gap, otherwise the states are deconfined. The energy
spectrum of the confined states consists of two ladders (sets)
of discrete levels separated by a gap. Numerical calculations of
the DOS suggest that states with small angular momentum lie
in a region of low density and hence they could be probed using
standard techniques such as scanning tunneling microscopy.

It was also shown that states induced by a quantum well
potential, which may be generated by a gate electrode, can co-
exist and couple to gap-induced dot states. When the coupling
is weak the states retain their character, whereas in the opposite
regime the states are strongly hybridized. The signature of this
coupling in the energy spectrum is the appearance of a series
of anticrossing points. This coupling property offers a way
of tuning the spatial region in which the hybridized states
are localized with the strength of the potential. Moreover, the
states can have a large oscillatory amplitude in the barrier
region exhibiting Klein tunneling, before they eventually decay
asymptotically. Calculations of the DOS indicate that these
quasirelativistic effects could be probed.
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