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Analytical solution for the Fermi-sea energy of two-dimensional electrons in a
magnetic Beld: Lattice path-integral approach and quantum interference
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We derive an exact solution for the total kinetic energy of noninteracting spinless electrons at
half-ailing in two-dimensional bipartite lattices. We employ a conceptually different approach that
maps this problem exactly into a Feynman-Vdovichenko lattice walker. The problem is then reduced
to the analytic study of the sum of magnetic phase factors on closed paths. We compare our results
with the ones obtained through numerical calculations.

INTRODUCTION FERMI-SEA ENERGY

Noninteracting tight-binding electron models at half-
filling in two-dimensional (2D) bipartite (e.g. , square and
hexagonal) lattices have recently received renewed atten-
tion due to their role in condensed matter and particle
physics. For instance, several quantum field theories
arise in a natural way &om 2D tight-binding lattice
fermion probleins at half-filling for hexagonali'2 (e.g. , 2D
graphites) and square lattices. 24 These quantum field
theories are important to the problem of dynamical sym-
metry breaking, which plays a central role in many cur-
rent areas of research; for instance, they provide a pos-
sible mechanism for generating the fermion mass spec-
trum in elementary particle physics. Furthermore, non-
interacting 2D tight-binding electrons in a perpendicular
magnetic field have been the subject of intense study in
areas of current interest like mesoscopic structures and
the quantum Hall effect. More recently, the behavior of
the kinetic energy of a 2D noninteracting electron gas
under the inQuence of both a periodic potential and a
magnetic field has been analyzed by Hasegawa et al. and
many others. ' These results have been related to mean-
field approaches to the t-J model of high-temperature
superconductors. It is of value to obtain analytical results
for this important problem that has recently motivated
many perturbative and numerical studies.

The goal of this paper is to present exact results that
relate the kinetic energy of the half-filled Fermi sea of
tight-binding electrons with sum-over-paths on the lat-
tice. The problem is then reduced to the study of phase
factors on closed paths. From the computational point
of view, we would like to present an alternative to the
standard approaches. From a physical point of view, and
following Feynman's program, we would like to reformu-
late this quantum problem as an "average over histories. "

Recently, the lattice path approach has also been ap-
plied to two very diverse problexns; the computation of
(1) equilibrium crystal shapes, s and (2) the supercon-
ducting transition temperature in wire micronetworks
and Josephson-junction arrays.

The kinetic energy of spinless electrons on a 2D lattice
in a uniform magnetic field is described by the Hamil-
tonian H = —g~, l c, cs exp[i/;s], where (ij) refers to

nearest-neighbor sites and P;s = 2m j. A.dl in units of
the fiux quantum. Also, Ij) = ctIO) defines a localized
state centered at site j, and we will work on the (Ij))
basis. The above Hamiltonian has a &actal quantum en-
ergy spectrum as a function of an applied magnetic field
and also plays a central role in the physics of particles
with fractional statistics (anyons). ii

At half-filling, the Fermi-sea ground-state energy is the
sum of the lowest N/2 eigenvalues, where N is the total
number of sites. Since the energy spectra of bipartite
(e.g. , square and hexagonal) lattices are symmetric under

(E) ~ (—E), we can write the Fermi-sea ground-state
energy per site as ET ——~ g&&o E = (z/2N)TrIH— o/zI.
Here, Ho is the corresponding diagonalized Hamiltonian
obtained from H by a similarity transformation. Also z
is the coordination number of the lattice and Tr denotes
the trace. For a square (honeycomb) lattice, z = 4 (3).
Note that the energy spectrum of a lattice is bounded
between —z and z. By expanding IzI:—IHo/zI into a
Chebyshev series T»(z), it follows that

2 4 ( 1)i+
I*I = —+ —). T»(&).- 4k2 —&k)l

Also, using the identity

T ( )
—

( 1)"k) ( 1)'( ) (2 )2'
(k —l )!(2l )!

we obtain
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where values of E = 2y 2. By direct series expansions, we then
obtain

& —4& (k+i —1).

~
z2 ) (2l)!(k —l)!

We have replaced Tr(Ho') by Tr(H '), as they are equal
to each other.

Now let us examine the term Tr(H ) more closely.
Assuming periodic boundary conditions on the lattices,
we have

T (H")= (1IH"11) + (2IH" I»+" + Pl!H"l~)
= N(j/H" /j). (2)

ET (4) = — —1+) Ak ) . . .M2)(4)
I' ".

(—1)'k! 1

with

1 (2k —2)!
22k —lk [(k 1)l]2

(5)

The Fermi-sea ground-state energy is then exactly given
by

ET(4) = —— 1 —2) ) I'iM2((C), (3)
vr 4k2 —1 ( )

Among the above three solutions for ET (4) [namely,
Eqs. (3)—(5)], Eq. (3) gives the best results because of
its relatively rapid convergence. We will return to the
discussion on their accuracy later.

where 4' equals 2' times the fiux through each lattice
plaquette, and M2~(4):—(j!H 'tj) is a moment, or lattice
path integral, discussed in more detail below.

We have also studied two additional expansion
schemes; one of them using a different set of orthogo-
nal polynomials and the other based on a power series.
One of them exploits the expansion of ~z~ in terms of
Legendre polynomials, P2k(z), as

is

SUM OVER PATHS

M = (j~H '~j)
All 2D closed paths

(6)

The lattice path integral (or moment) used in this work

~z~ = —+ );;(4k+1)P»(z).
k)1

After expressing each P2k(z) in terms of a power series,
it is clear that

z & .4k + 1 (2k —3)!!
4 ~. 4" (2k+ 2)!!

k&Z

k

x ) AiM2&(4)
)1=0

(4)

where

/ —11 (2k+ 2l)!
Og ——

E
z' ) (2l)!(k —t)!(k+ l)!

The other scheme starts by rewriting ET as follows:

H2&
Tr& 1+

I

—1+
2K ( a2)

where a is a constant to ensure
~

—1 + Ho/a
~

( 1. In
general, a = 2~2 for a square lattice, and a = 3/~2 for
a honeycomb lattice. However, for a magnetic fiux near
1/2, we find that a = 2 produces better results for both
lattice types, since the energy density vanishes for larger

where 4,/2ir is equal to the net flux enclosed by the di-
rected closed path and 2l is referred as its order. The
physical meaning of the above quantum mechanical ex-
pectation value is simple. The Hamiltonian H is ap-
plied 2l tixnes to the initial state ]j) localized at site

This provides enough kinetic energy for the elec-
tron to hop through 2t bonds, reaching the new state
H '~j) located at the end of the path. The above ex-
pectation value is nonzero only when the path ends at
the starting site j. In our problem, quantum interfer-
ence arises because the phase factors of different closed
paths, or separate contributions from the same path, in-
terfere with each other, sometimes producing cancela-
tions in the phases. Therefore, our calculations general-
ize the Aharonov-Bohm phase factor, obtained by having
an electron going around a single fiux-enclosing loop, to
the (multiply connected) lattice case.

The basic problem is now reduced to the computa-
tion of the lattice path integrals. This is a very difFicult

task, since each moment involves an enormous number of
diferent loops, each one weighted by its corresponding
phase factor. We have considerably simpli6ed this cal-
culation by analyzing the symmetries of the problem. In
the next few paragraphs, we wiB list the most important
symmetries involved and we will present a few examples
of how the method works. Further details, with applica-
tions of this method to other problems, will be presented
elsewhere.

We will now compute M2~. We consider a unit spacing
for square as weH as graphite lattices and employ the
Landau gauge A = (0, Bz). Note that Mo equals 1 and
is independent of the type of lattice. Also, the M2~'s
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are gauge invariant. First let us investigate the square
lattice. Writing the coordinates of site j as j = (m, n),
we define an auxiliary quantity, W, (m, n), which is the
sum over all possible paths of r steps on which an electron
may hop froin some given site to the site (m, n). From
the definition of W„(m, n), it is evident that it obeys the
recurrence relation

W„+i(m, n) = W, (m+1, n) + e+' W„(m, n 6 1). (7)

Equation (7) states that the site (m, n) can be reached by
taking the (r + 1)th step from the four nearest-neighbor
sites. The factors in &ont of the TV„'s account for the
presence of the magnetic field. We can construct further
recurrence relations successively. For example,

W„+2(m, n) = 4W„(m, n) + (1+e+' )[e' W„(m+ 1,n —1) + e a™4W„(m+1,n+ 1)]
+W„(m 6 2, n) + e ' W„(m, n p 2). (8)

Examining the action of the Hamiltonian on the state
~j) = ~m, n), we find that

—H]m, n) = ~m+1, n) + e+' ~m, nk 1).

Hence, by comparing Eq. (7) with Eq. (9), we obtain M2i
which is just the coefficient of W„(m, n) in the recurrence
relation for W„+pi(m, n). This coefficient is obviously
the sum over all possible paths which return an electron
to its original site (m, n) after hopping 2l steps. Each
path has a phase factor corresponding to the net flux
going through the Chrected (e.g. , —4, clockwise and O,
counterclockwise) path.

It is worthwhile to notice the following symmetries
when constructing recurrence relations and obtaining
M2).

(a) The recurrence relation for W„+i contains only
terms W„(m+ p, n+ q) and W„(m —p, n 6 q) which sat-
isfy the restriction p + q = 1,3, . . . , I,, for l odd and =
0, 2, . . . , t, for l even.

(b) The coefFicients in front of the W„'s can be factored
into two parts. Each multiplicative factor involving coor-
dinate m is always of the form e+''i, for W„(m+p, n+q)
and W„(m —p, n + q). We shall refer to the rest of the
prefactors (the part not involving m) as C„. For instance,
C„(m+1,n 1) = C„(—mal, n+1) = 1+e+'@ in the above
expression [Eq. (8)] for W„+2(m, n) These C„'s satisfy
C, (m+p, n —q) = C„(m —p, n+q) = C„(m+q, n —p) =
C„(m—q, n, +p) and C, (m+ p, n, +q) = C„(m p, n —q) =-
C„(m+ qn+ p) = C„(m —q, n —p). It can be shown that
the latter set becomes equivalent to the former one when
4 ~ —C' (and vice versa).

(c) To obtain M2i, it is sufficient to compute the com-
plete recurrence relation for W„+i(m, n).

We have computed the path integrals up to M4p.
Here we list M2 through Myp. 4, 28 + 8 cos 4,
232 + 144cos@ + 24cos24, 2156 + 2016cos4 +
616cos 24 + 96 cos 34 + 16cos 44, 21 944+ 26 320 cos 4 +
11080cos24 + 3120cos34 + 840cos44 + 160cos54 +
40cos64, for l = 2, . . . , 10. Notice that moments with
odd orders are always zero because there is no path with
an odd number of hops for which the electron may return
to the initial site on a bipartite lattice.

We now consider the hexagonal lattice, which consists
of two interpenetrating triangular sublattices. Follow-
ing similar techniques, we have two difFerent formulas for

W„+i(m, n). The proper choice between them depends
on the sublattice to which the site (m, n) belongs. How-
ever, both choices lead to the same results for the path
integrals. These have been computed up to M60. We list
M2 through Myp here: 3, 15, 87+ 6 cos C, 543+ 96cos 4,
3543 + 1080cos 4 + 30 cos 24, for l = 2, . . . , 10.

In general, the path integrals can be analytically com-
puted by hand to any desired order through the tech-
niques discussed above. We have computed by hand the
moments up to the 20th order for both square and hexag-
onal lattices. However, these and the higher-order mo-
ments can be most conveniently obtained by using com-
puter symbolic-manipulation software. The correctness
of the calculated moments is assured by the consistency
of the results obtained by hand and by computer.

FERMI-SEA ENERGY VALUES
AND DISCUSSION

After computing the lattice path integrals, we can now
proceed to calculate the kinetic energy of the half-filled
Fermi sea. -Recall that we have obtained the moments up
to M4p (Msp) for the square (honeycomb) lattice. There-
fore, by truncating the series at k = 20 (30) for a square
(honeycomb) lattice in Eqs. (3)—(5), we obtain analytic
closed-form expressions for the ground-state energy as
an explicit function of the magnetic flux. In Table I, we
present our results for the Fermi sea energies at various
values of the flux by using Eqs. (3) and (4). For the
square (hexagonal) lattice, the results are obtained by
using the path integrals up to M2p, Msp, and M4p (M2p,
M4p, and Msp), respectively. Here, instead of showing
the exact numerical expressions (involving, e.g. , m's and
square roots of integers), we present the actual numerical
values for easier comparison purposes. It is worthwhile to
notice that results obtained by using moments up to M2p
are already in excellent agreement with those obtained
in Refs. 6 and 7. The values obtained by using higher-
order moments are essentially identical. Also Eq. (3) and
Eq. (4) produce almost identical results. Although the
results obtained from Eq. (5) are not as close as those ob-
tained froin Eqs. (3) and (4), they are consistent within
+0.03.

It should be pointed out here that the tight-binding
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TABLE I. Fermi-sea ground-state energies at half-filling for the square and hexagonal lattices and for various values of the
flux. The first three (fourth to sixth) rows present results obtained from Eq. (3) [Eq. (4)I, i.e. , by using a Chebyshev (Legendre)
series expansion. The numbers in parentheses indicate the highest order of the path integral used. They are compared with
the numerical results (Num. ) from Refs. 6 and 7.

1/8
Square lattice

1/6 1/4 3/8 1/2

C (20)
C (30)
C (40)
L (20)
I (30)
L (40)
Num.

—0.8114920
—0.8109902
—0.8108108
—0.8114462
—0.8109779
—0.8108047

—0.811

—0.8254256
—0.8231301
—0.8252121
—0.8250180
-0.8234147
—0.8254116

—0.826

—0.8288598
—0.8347727
—0.8361273
—0.8286112
—0.8348405
—0.8362933

—0.835

—0.8592316
—0.8599869
—0.8588387
—0.8603026
—0.8600546
—0.8587258

—0.859

—0.8569940
—0.8576158
—0.8574827
—0.8567193
-0.8576395
—0.8575003

—0.857

—0.8801229
—0.8?75567
—0.8774209
—0.8799075
—0.8777049
—0.8774703

—0.880

—0.9583405
—0.9581710
-0.9580550
-0.9584124
-0.9582486
—0.9580659

—0.958

C (20)
C (40)
C (60)
I. (20)
I (40)
L (60)
Num.

—0.7869927
—0.7872330
—0.7872775
—0.7869492
-0.7872308
-0.?872783

—0.787

Hexagonal lat tice

-0.7506642
-0.7527290
-0.7530423
-0.7512373
-0.7527266
—0.7530359

—0.753

—0.7489389
—0.7506511
—0.7509664
—0.7486450
—0.7506855
—0.7510000

-0.751

1/2

-0.7527022
-0.7538837
—0.7537718
-0.7524125
-0.7537969
--0.7537457

—0.754

model H does not include the diamagnetic energy of the
tight-binding orbitals and the reduction of the hopping
amplitude by the magnetic field. This issue is outside
the scope of this paper. The interested reader can find
a very detailed analysis of these points in Ref. 12 and
references therein. We also note that an expression for
the density of states, in terms of elliptic integrals and ob-
tained through a completely different approach, has been
known for some time and used, for instance, in Ref. 7.
Also, several groups, ' including ours, have obtained re-
sults by other methods, including purely numerical ap-
proaches. Furthermore, different approaches on similar
problems have been recently explored.

In conclusion, the theory of electronic diamagnetism
in two-dimensional lattices has been studied extensively
due to its many applications in very diverse areas of
physics. In particular, several computations of the Fermi-
sea energy have recently attracted considerable atten-

tion by many workers. We use a conceptually novel ap-
proach that maps the problem exactly onto a Feynman-
Vdovichenko lattice walker. More specifically, we derive
an expression for the Fermi-sea kinetic energy at half-
filling, as a function of a uniform perpendicular magnetic
field, in terms of the quantum interference originating
from the sum over 2D lattice closed paths, each loop
weighted by the phase factor corresponding to the net
Aux enclosed. The energies obtained are essentially iden-
tical to the ones obtained through numerical calculations.
We have shown that lattice path-integral techniques can
be successfully applied to this system and we expect this
approach to be applicable to many other electronic prob-
lems.
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