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Quantum input-output response analysis is a useful method for modeling the dynamics of complex quantum
networks, such as those for communication or quantum control via cascade connections. Non-Markovian effects
are expected to be important in networks realized using mesoscopic circuits, but such effects have not yet been
studied. Here we extend the Markovian input-output network formalism to non-Markovian networks. The general
formalism can be applied to various examples: (i) we show how non-Markovian coherent feedback can reduce
the speed of decoherence for an atom in an optical cavity; (ii) we examine the effect of finite-cavity bandwidths
in a superconducting circuit.
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I. INTRODUCTION

There has been tremendous progress in the last few years in
experimental efforts to realize quantum networks [1] in various
mesoscopic systems. These systems include photonic crystals
[2], ion traps [3], and superconducting circuits [4], which also
advance related fields such as quantum simulation (for recent
reviews, see, e.g., Ref. [5]). The input-output formalism of
Gardiner and Collet [6,7] is a useful tool for analyzing such
quantum networks. In fact, using the input-output response to
analyze or even modify the dynamics is a standard method
in engineering, called system synthesis. Up until now, system
synthesis for quantum networks has only been studied for
Markovian systems. Quantum input-output theory itself has
also mainly been limited to the Markovian regime, although
it was developed for quantum systems about twenty years
ago [6]. It was extended to non-Markovian systems only quite
recently [8].

In the existing literature [6,7], quantum input-output theory
is mainly applied to optical systems, in which the coupling
between the system and its environment is weak and the
correlation time (the “memory” of the environment) is small
compared with the characteristic time scale of the system
dynamics. Under the Markovian assumption, the quantum
input-output formalism [6] was extended to cascaded systems
[7], and has been used to study quantum coherent feedfor-
ward and feedback networks [9–14]. Markovian quantum
input-output networks can be described using two alternative
formulations: the Hudson-Parthasarathy formalism in the
Schrödinger picture [15]; and the quantum transfer function
formalism in the Heisenberg picture [16,17]. The general
algebraic structure of such systems has been well studied in
the language of quantum Wiener and Poisson processes and
quantum Ito rules [15].
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Although the Markovian assumption is reasonable when
considering optical network components, environments in
mesoscopic solid-state systems can have correlations on much
longer time scales [18–21]. Examples of this are the nuclear
spin bath that couples to electron spins in quantum dots [22],
and the 1/f noise that affects Josephson-junction qubits [23].
It has also been suggested that the damping and decoherence of
nanomechanical resonators are due to coupling to a small num-
ber of two-level systems [24], which can be expected to induce
significant non-Markovian dynamics. In addition, any classical
noise with a sufficiently narrow band generates non-Markovian
evolution. There has been increasing interest in recent years
in non-Markovian open quantum systems, and a number of
analytical approaches have been devised to describe them.
These include the projection-operator partitioning technique
[25], the non-Markovian quantum trajectory approach [26],
and very recently a non-Markovian input-output formalism [8].

In this paper we extend the non-Markovian input-output
theory to cascaded quantum networks, providing a recipe
for obtaining non-Markovian input-output equations for the
description of any such network. Naturally, this formalism
reduces to the standard input-output network formalism in
the Markovian limit. In Ref. [8] the non-Markovian input-
output relation was derived, but a quantum measurement was
imposed on the output field so that the dynamics of the
system is described by a stochastic Schrödinger equation.
Such a formalism cannot be used to describe coherent cascade
connections between systems because the quantum coherence
in the output field is deteriorated by the measurement. In
our formalism, without introducing measurements, the system
dynamics is described by a non-Markovian quantum stochastic
differential equation and a perturbative master equation, which
can be naturally extended to a non-Markovian network.

Our formalism is obtained by allowing the coupling to the
bath to have an arbitrary frequency dependence. This can be
used to describe noise with any frequency profile, and should
provide a good model for a wide range of non-Markovian
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environments. A nice feature of the resulting description is
that it is exact for both weak and strong coupling. However,
in order to perform calculations for nonlinear systems, one
must transform the Heisenberg equations of the input-output
formalism to a non-Markovian master equation, and this
requires further approximations. Here we do this at the
simplest level of approximation, by deriving the corresponding
master equation to second order in perturbation theory, using
the standard Born approximation [25]. Nevertheless, more
sophisticated techniques exist for obtaining non-Markovian
master equations, and it would be an interesting avenue for
future work to examine how these can be used to obtain master
equations for non-Markovian cascaded networks. We note that
for linear systems the Heisenberg equations of the input-output
formalism can be used to obtain exact results. This is especially
useful in some cases [27], when the second-order perturbative
master equation fails to behave correctly [28]. We expect the
network formalism we develop to be useful in describing a
range of mesoscopic systems, such as coupled-cavity arrays
in photonic crystals [29,30], and nonlinear resonator and qubit
networks in solid-state circuits [31–34]. The formalism can
also be applied to quantum feedback control networks [35–41]
in solid-state systems [42–49].

This paper is organized as follows. In Sec. II, we briefly
review the Markovian input-output formalism so that this can
be easily compared to the non-Markovian case. In Sec. III, we
use an alternative method to derive the non-Markovian input-
output relations in Ref. [8], and obtain the dynamical equation
for the system such that it can be easily used for networks. We
derive these here as a natural extension of the original Collett-
Gardiner quantum input-output theory. In Sec. IV, we derive
the input-output relations for more complex non-Markovian
quantum cascade networks. We then apply this formalism to a
non-Markovian damped oscillator, a non-Markovian coherent
feedback network in which we show how the non-Markovian
feedback suppresses the decoherence effects, and finally two
superconducting charge qubits interacting via cavities with
Lorentz noise profiles. Section V concludes with a brief
summary.

II. BRIEF REVIEW OF INPUT-OUTPUT THEORY
FOR MARKOVIAN SYSTEMS

Here we summarize the standard Gardiner-Collet input-
output formalism [6,50]. The basic model is a quantum system
interacting with a bath, where the bath consists of the modes
of an electromagnetic field, or equivalently a continuum of
harmonic oscillators. The Hamiltonian for the system and bath
is

H = HS + HB + Hint, (1)

with

HB =
∫ +∞

−∞
ωb†(ω)b(ω)dω,

(2)

Hint = i

∫ +∞

−∞
[κ(ω)b†(ω)L − H.c.]dω,

FIG. 1. (Color online) Schematic diagram of the Markovian
input-output system.

where b†(ω) and b(ω) are the creation and annihilation
operators of the bath mode with frequency ω, which satisfy

[b(ω),b†(ω̃)] = δ(ω − ω̃). (3)

In the above, HS is the free Hamiltonian of the system. The
bath mode with frequency ω interacts with the system via the
system operator L and the coupling strength κ(ω). Hereafter
we set h̄ = 1. The total Hamiltonian H can be reexpressed in
the interaction picture as

Heff = exp(iHBt)(HS + Hint) exp(−iHBt)

= HS + i

∫ +∞

−∞
[κ(ω)eiωtb†(ω)L − H.c.]dω. (4)

If the coupling strength is constant for all frequencies, so that

κ(ω) =
√

γ

2π
, (5)

then the dynamics of the system will become Markovian. This
is the Markovian approximation. The Hamiltonian Heff is now
given by

Heff = HS + i
√

γ [b†in(t)L − L†bin(t)], (6)

where

bin(t) = 1√
2π

∫ +∞

−∞
e−iωtb(ω)dω (7)

is the Fourier transform of the bath modes, and is the time-
varying input field that is fed into the system [50,51] (see
Fig. 1). In the Heisenberg picture, the system operator X(t)
satisfies the following quantum stochastic differential equation
(QSDE)

Ẋ = −i[X,HS] + γ

2
{L†[X,L] + [L†,X]L}

+√
γ {bin[L†,X] + [X,L]b†in}. (8)

If the input field bin(t) is in a vacuum state, and we trace it
out, we can re-express the system dynamics in the Schrödinger
picture as the following master equation

ρ̇ = −i[HS,ρ] + γ
(
LρL† − 1

2L†Lρ − 1
2ρL†L

)
. (9)

Finally, if bout(t) is the field just after it has interacted with
the system and is about to propagate away, then one has the
relation

bout(t) = bin(t) + √
γL(t). (10)

This is the Markovian input-output relation.
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FIG. 2. (Color online) Schematic diagram of the non-Markovian
input-output system. The input field is dispersed when it interacts with
the system, and the modes with different frequencies in the input field
are coupled to the system with different coupling strengths.

III. INPUT-OUTPUT THEORY OF NON-MARKOVIAN
SYSTEMS

A. The exact quantum Langevin equations

To derive the input-output relation for a general non-
Markovian quantum system (see Fig. 2), we rewrite the
Hamiltonian Heff in Eq. (4) as

Heff = HS + i

{[∫ +∞

−∞
κ(τ − t)b†in(τ )dτ

]
L − H.c.

}
= HS + i[b̃†in(t)L − L†b̃in(t)], (11)

where

κ(t) = 1√
2π

∫ +∞

−∞
exp(−iωt)κ(ω)dω (12)

is the Fourier transform of the coupling strength κ(ω). The
input field that interacts directly with the system is now

b̃in(t) =
∫ +∞

−∞
κ(t − τ )bin(τ )dτ (13)

and satisfies the new commutation relation

[b̃in(t),b̃†in(t̃)] = γ (t − t̃), (14)

where

γ (t − t̃) =
∫ +∞

−∞
κ(t − τ )κ∗(t̃ − τ )dτ. (15)

We can now proceed to derive the Heisenberg stochastic
differential equations for the evolution of the system,

Ẋ = −i[X,HS] + {b̃in(t)[L†,X] + [X,L]b̃†in(t)}

+
∫ t

0
{γ ∗(t − τ )L†(τ )[X(t),L(t)]

+ γ (t − τ )[L†(t),X(t)]L(τ )}dτ. (16)

The non-Markovian input-output relation becomes

bout(t) = bin(t) +
∫ t

0
κ(t − τ )L(τ )dτ. (17)

This relation coincides with Diosi’s non-Markovian input-
output equation (Eq. (10) in Ref. [8]). We give the details of the
derivations of Eq. (16) and output equation (17) in Appendix.

Remark 1. In the Markovian limit, where κ(ω) = √
γ /2π ,

we have κ(t) = √
γ δ(t), and γ (t − t̃) = γ δ(t − t̃). It can be

easily verified that Eq. (16) reduces to the quantum stochastic
differential equation (8) and the output equation (17) reduces
to Eq. (10).

Note that so far no additional assumptions have been
made following the Hamiltonian in Eq. (11). Thus our
non-Markovian network formalism is exact for any coupling
strength. However, as noted in the introduction, for nonlinear
networks we must often resort to the Schrödinger picture to
perform calculations.

B. Perturbative master equation

To obtain the second-order perturbative master equation,
one averages over the vacuum input field bin, which we will
take to be in the vacuum state, and uses the Born approxi-
mation. The perturbative master equation that corresponds to
Eq. (16) is

ρ̇ = −iHS,ρ] +
∫ t

0

{
γ ∗(t − τ )

[
Lρ(τ ),L†

HS
(τ − t)

]
+ γ (t − τ )

[
LHS (τ − t),ρ(τ )L†]}dτ, (18)

where

LHS (t) = exp(iHSt)L exp(−iHSt). (19)

The details of the derivation of (18) can also be found in
Appendix.

The non-Markovian master equation (18) is in the standard
form of the exact Nakajima-Zwanzig (NZ) equation ρ̇(t) =∫ t

0 dτO(t,τ )ρ(τ ) [52], where the NZ kernel O(t,τ ) is of the
time-translationally-invariant form O(t − τ ). Although the
properties of the NZ equation have been studied [25,53],
it is not yet known what criteria a kernel must satisfy to
guarantee complete positivity of the evolution. However,
complete positivity has been proved for some simple cases,
including noise with a Lorentzian spectrum. We will consider
this kind of noise in the examples we analyze below.

The Born approximation used to derive the perturbative
master equation is traditionally introduced when deriving
the non-Markovian input-output model from a Markovian
input-output system (see Fig. 3). In the Markovian input-output
model we consider, the Markovian input and output fields
interact with a medium bath, which then interacts with the
plant we are interested in. The bath is sometimes a complex
and high-dimensional system, which is very hard to describe,
and we can only obtain the spectrum of the bath. When we

FIG. 3. (Color online) Effective non-Markovian input-output
model obtained from a larger Markovian input-output system in which
the Markovian input and output fields interact with an intermediate
bath, which is then coupled to the plant we consider.
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FIG. 4. (Color online) Schematic diagram of the linear non-
Markovian cavity.

introduce the Born approximation to omit the backactions on
the bath from the plant, the Markovian input-output system
can be described by an effective non-Markovian input-output
model by averaging out the degrees of freedom of the bath,
and the non-Markovian interaction between the effective input
field and the plant is determined by the spectrum of the bath.
Such a picture can be used, e.g., to describe a model in a
complex circuit, in which the input and output fields of the
whole circuit interact indirectly with the central element we
consider. In general, we do not know the dynamics of the whole
circuit, but we know the spectra of the intermediate elements.
We can then obtain an effective non-Markovian input-output
model for such a complex circuit by using this method.

C. Example: Single-mode cavity

For a single-mode cavity coupled to an external input
field (see Fig. 4), the system Hamiltonian HS and dissipation
operator L are given by HS = ω0a

†a and L = a, where ω0,
a (a†) are respectively the frequency and the annihilation
(creation) operator of the cavity mode. The mode has an
arbitrary non-Markovian coupling to the field modes outside
the cavity. The quantum stochastic differential equation for a
cavity operator X is then

Ẋ = −i[X,ω0a
†a] + {b̃in[a†,X] + [X,a]b̃†in}

+
∫ t

0
{γ ∗(t − τ )a†(τ )[X(t),a(t)]

+ γ (t − τ )[a†(t),X(t)]a(τ )}dτ. (20)

From Eq. (20), we can obtain the equation of motion for the
cavity mode, which is

ȧ = −iω0a −
∫ t

0
γ (t − τ )a(τ )dτ − b̃in, (21)

and we can solve this linear differential equation using the
Laplace transform, defined as

O(s) =
∫ ∞

0
exp(−st)O(t)dt. (22)

The solution in terms of the Laplace variable s is

a(s) = − κ(s)

s + γ (s) + iω0
bin(s), (23)

where κ(s), γ (s), a(s), bin(s) are the Laplace transforms of
κ(t), γ (t), a(t), bin(t). The resulting input-output relation is

bout(s) = s + γ (s) − κ2(s) + iω0

s + γ (s) + iω0
bin(s). (24)

Note that this result is exact as far as the frequency dependence
of the coupling to the bath is concerned. Because the system is

linear we can obtain results without deriving a master equation.
This input-output formula shows exactly how the coupling
profile applies a low-pass filter to the input field to produce the
output field.

Remark 2. If we consider a Markovian cavity with damping
rate γ , then we have κ(s) = √

γ , γ (s) = γ /2, from which
we can obtain the traditional input-output relation for a lossy
cavity from Eq. (24) (see Eq. (45) in Ref. [17])

bout(s) = s − γ /2 + iω0

s + γ /2 + iω0
bin(s). (25)

D. Example: non-Markovian coherent feedback network

Feedback control for classical systems involves gathering
information about the system, and using this to apply controls
in real time. For quantum systems this process can be im-
plemented by making explicit measurements, and processing
the resulting classical information using a classical system
[54–58]. Alternatively a fully quantum version of this process
can be realized by coupling the system to a second quantum
system without making explicit measurements [9–14,35,62].
It is this second method that we consider here, referred to as
coherent feedback control.

Coherent feedback is a superset of measurement-based
feedback [59], and it has been shown that coherent feedback
can achieve better performance than measurement-based
feedback in a number of settings, including noise reduction and
cooling in linear systems [60,61], as well as noise reduction
under bounded controls [59]. It has also been applied to
generating nonlinear effects in mesoscopic systems [13,62].
Previous studies of coherent feedback networks have been
restricted to the Markovian setting. Here we show that non-
Markovian effects can significantly change the properties of a
feedback network.

The coherent feedback control system we consider here is
shown in Fig. 5(b). We consider the control of a two-level
atom inside an optical cavity by coupling this cavity to a
second optical cavity in a feedback loop. We will refer to
the cavity containing the atom as the “plant” cavity, and the
second cavity as the controller. This configuration can also be
realized in a mesoscopic circuit, in which the atom is replaced
by a superconducting qubit [4]. Apart from the addition of
the atom the configuration of the cavities is the same as that
analyzed in Ref. [11]. Each cavity is a four-mirror ring cavity in
a folded configuration. We will use our formalism to determine
the effect of the finite bandwidth of the cavities on the control
loop.

Let ωq , ωp, and ωc be the transition frequency of the atom,
the angular frequency of the plant resonator, and the angular
frequency of the controller resonator. The coupling constant
between the atom and the plant resonator is represented by g,
while γp and γc are the total decay rates of the plant resonator
and the controller resonator. The part of these decay rates
that are due to transmission through each input/output coupler
mirror will be denoted by k. The system parameters are chosen
to satisfy the resonance condition ωq = ωp = ωc. We further
introduce the weak-coupling assumption

γp � g2, (26)
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FIG. 5. (Color online) Schematic diagrams of (a) the bare system
and (b) the system with coherent feedback modified from the
experimental setup in Ref. [11]. The controlled quantum system
(plant) and the quantum controller are two four-mirror folded ring
resonators with angular frequencies ωp, ωc and total decay rates γp

and γc. Also, k is the partial rate associated with transmission through
the coupler mirror. A two-level atom with transition frequency ωq is
placed in the plant resonator and the coupling constant between the
cavity mode and the atom is g. The control object is to steer the
dynamics of the bath of the atom to protect the atom state.

under which we can omit the back-action effects imposed by
the atom on the cavity mode [see the derivation presented in
Eqs. (52) through (53)]. If the external input field w is in a
vacuum state, the cavity mode in the plant resonator can be
seen as a vacuum bath interacting with the atom. In this case,
the assumption (26) leads to the Born approximation, under
which we can obtain the non-Markovian master equation for
the degrees of freedom of the atom by Eq. (18) in the interaction
picture

ρ̇ =
∫ t

0
{γ (t − τ )[σ−ρ(τ ),σ+] + H.c.}dτ. (27)

We can further obtain the following equation for the nondiag-
onal entries of the density matrix ρ of the atom

〈σ̇±〉q = −
∫ t

0
γ (t − τ )〈σ±〉q(τ )dτ, (28)

where σ± are the raising and lowering operators for the atom
and 〈σ±〉q = tr(σ±ρ). The function γ (τ ) in Eq. (27) is the
correlation function of the cavity mode in the plant resonator,
which is defined by

γ (τ ) = g2〈a(t)a†(t + τ )〉vac, (29)

where a(t) (a†(t)) is the annihilation (creation) operator of the
cavity mode in the Heisenberg picture and 〈·〉vac is the average
taken on the vacuum state. It can be seen from Eq. (28) that
the decay rate of the atomic state is determined by γ (τ ). The
correlation function γ (τ ) can be calculated in the frequency
domain by

γ (τ ) = 1

2π

∫ ∞

−∞
exp(−iωτ )〈Sa(ω)〉dω, (30)

where Sa(ω) = g2〈a(ω)a†(ω)〉vac is the power spectrum of
the cavity mode in the plant cavity and a(ω) is the Fourier
transform of a(t).

To study the effects induced by the feedback loop, let us
compare the dynamics of the atom under open-loop control
(without feedback) and feedback control (see Fig. 5). For the
open-loop case, we can obtain the equation of the cavity mode

ȧ = −γpa −
√

2κw, (31)

which can be solved in the frequency domain as

a(ω) = −
√

2κ

−iω + γp

w(ω), (32)

where w(ω) is the Fourier transform of the external input signal
w(t). It can be seen from Eq. (32) that the vacuum input field
w(t) is filtered by the cavity to generate a Lorentz-type bath
in the plant resonator, which leads to a Lorentz spectrum

Sa(ω) = 2kg2

ω2 + γ 2
p

,

and the correlation function can be calculated by

γop(τ ) = g2k

γp

exp(−γpτ ).

From the connections depicted in Fig. 6 we obtain the
following relationships between the various quantum signals
in frequency space:

u(ω) = Kuy(ω)y(ω)

= Kuy(ω)[Gyu(ω)u(ω) + Gyw(ω)w(ω)], (33)

a(ω) = Gop(ω)[u(ω) + w(ω)]. (34)

Here Gop(ω) = −√
2k/(γp + iω) is the open-loop transfer

function from w(t) to a(t) obtained from Eq. (31); Gyu(ω) =
−2k/(γp + iω) and Gyw(ω) = 1 − 2k/(γp + iω) are respec-
tively the transfer functions from signals u to y and w to

FIG. 6. (Color online) Diagram of the input-output model of the
coherent feedback system in Fig. 5(b).
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FIG. 7. (Color online) Dynamics of the coherence function
C(t) =

√
〈σx〉2

q + 〈σy〉2
q of the two-level atom. The red curve with

plus sign and the blue solid curve represent the cases (a) without
feedback and (b) with coherent feedback. The decoherence of the
atom slows down obviously under coherent feedback control. Here
τ = 1μs.

y; and Kuy(ω) = 2k/(γc + iω) is the transfer function of the
controller (the expressions for these transfer functions can be
found in, e.g., Ref. [11]).

By substituting Eq. (33) into (34) to eliminate u(ω), we
obtain

a(ω) = Gop(ω)w(ω)

{
1 + Kuy(ω)Gyw(ω)

1 − Kuy(ω)Gyu(ω)

}
, (35)

and by substituting this equation into Eq. (30) we obtain the
correlation function γf b(τ ) under feedback control.

In Fig. 7 we compare the decay of 〈σ−〉q with and without
feedback. Specifically, we plot the coherence function f (t) =√

〈σx〉2
q + 〈σy〉2

q in both cases, with the physical parameters

γp/2π = 10 MHz, k/2π = 3 MHz,
(36)

g2/2π = 1 MHz, γc/2π = 8 MHz.

We see that the decoherence of the atom is greatly suppressed
by the coherent feedback loop. This is intuitively reasonable
because the non-Markovian coherent feedback loop compen-
sates the photon decay before the photon is lost and thus
efficiently preserves the coherence dynamics of the cavity
mode in the plant resonator.

IV. NON-MARKOVIAN QUANTUM NETWORKS

A. General theory: quantum cascade systems

To derive the input-output relation for complex non-
Markovian networks, we should first study the dynamics of a
system composed of two cascade-connected subsystems, also
known as the “series product” of two subsystems [10]. The
Hamiltonian of two cascaded subsystems, depicted in Fig. 8

FIG. 8. (Color online) Schematic diagram of the non-Markovian
quantum cascade system. The output from the first subsystem is fed
into the input of the second subsystem.

can be expressed as

Heff = H1 + i

{[∫ +∞

−∞
κ1(τ − t)b†1,in(τ )dτ

]
L1 − H.c.

}

+H2 + i

{[∫ +∞

−∞
κ2(τ − t)b†2,in(τ )dτ

]
L2 − H.c.

}
,

(37)

where Hi=1,2 and Li=1,2 are the free Hamiltonian and
dissipation operator of the ith subsystem; and κi(t) is the
corresponding coupling strength between the ith subsystem
and the ith input field. If we omit the time delay for the quantum
field transmitting between the two input-output components,
then we have

b2,in(t) = b1,out(t) = b1,in(t) +
∫ t

0
κ1(t − τ )L1(τ )dτ. (38)

Substituting Eq. (38) into Eq. (37), we have

Heff = H1 + H2 + H12 + i
∑
j=1,2

[b̃†j,inLj − L
†
j b̃j,in]

where

H12 = −i

∫ t

0

[
γ θ

12(τ − t)L2L
†
1(τ ) − H.c.

]
dτ (39)

is the interaction Hamiltonian between the two subsystems
introduced by the transmitting field; the parameter γ θ

12(τ − t)
is defined by

γ θ
12(t − t̃) =

∫ +∞

−∞
κ∗

1 (τ − t)κ2(τ − t̃)θ (t − τ )dτ ;

and θ (t) is the step function

θ (t) =
{

1, t � 0;

0, t < 0.
(40)

The two equivalent non-Markovian input fields that interact
directly with the two subsystems via the dissipation operators
L1 and L2 are defined as

b̃l,in(t) =
∫ +∞

−∞
κl(t − τ )bin(τ )dτ,

and these satisfy the following commutation relation

[b̃r,in(t),b̃†l,in] = γlr (t − t̃), (41)

where

γlr (t − t̃) =
∫ +∞

−∞
κr (t − τ )κ∗

l (t̃ − τ )dτ. (42)

The dynamics of the total system can then be expressed as
the following quantum stochastic differential equation

Ẋ = −i[X,HS] +
n∑

l=1

{b̃l,in[L†
l ,X] + [X,Ll]b̃

†
l,in},

+
2∑

l,r=1

∫ t

0
{γ ∗

lr (t − τ )L†
l (τ )[X(t),Lr (t)]

+ γlr (t − τ )[L†
r (t),X(t)]Ll(τ )}dτ, (43)
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where HS = H1 + H2 + H12. The input-output equation of the
cascade system can be expressed as

bout(t) = bin(t) +
∫ t

0
κ1(t − τ )L1(τ )dτ

+
∫ t

0
κ2(t − τ )L2(τ )dτ. (44)

Remark 3. In the Markovian limit, we have κl(t) = √
γlδ(t),

γ θ
lr (t − t̃) = γlr (t − t̃) = √

γlγrδ(t − t̃), and b̃l,in = bin. Thus,
the dynamical equation (47) can be re-expressed as

Ẋ = −i[X,HS] + 1
2 {L†[X,L]

+ [L†,X]L}bin[L†,X] + [X,L]b†in, (45)

where

HS = H1 + H2 + i
√

γ1γ2

2
(L†

1L2 − L1L
†
2)

L = √
γ1L1 + √

γ2L2,

and output equation (50) can be rewritten as

bout(t) = bin(t) + √
γ1L1(t) + √

γ2L2(t). (46)

These equations coincide with those obtained for Markovian
systems using the series product (see, e.g., Ref. [10]).

The dynamical equation (43) can be extended readily
to n cascade-connected subsystems to obtain the following
quantum stochastic differential equation

Ẋ = −i[X,HS] +
n∑

l=1

{b̃l,in[L†
l ,X] + [X,Ll]b̃

†
l,in}

+
n∑

l,r=1

∫ t

0
{γ ∗

lr (t − τ )L†
l (τ )[X(t),Lr (t)]

+ γlr (t − τ )[L†
r (t),X(t)]Ll(τ )}dτ, (47)

where γlr (t − t̃) is defined by Eq. (42);

HS =
n∑

l=1

Hl +
∑
l<r

Hlr ; (48)

Hl=1,...,n is the free Hamiltonian of the lth subsystem; and Hlr

is the field-mediated interaction Hamiltonian

Hlr = i

∫ t

0

[
γ θ

lr (τ − t)LrL
†
l (τ ) − H.c.

]
dτ. (49)

The function γ θ
lr (t − t̃) is defined by

γ θ
lr (t − t̃) =

∫ +∞

−∞
κ∗

l (τ − t)κr (τ − t̃)θ (t − τ )dτ,

where θ (t) is the step function defined by Eq. (40). The output
equation can be written as

bout(t) = bin(t) +
n∑

l=1

∫ t

0
κl(t − τ )Ll(τ )dτ. (50)

FIG. 9. (Color online) Schematic diagrams of two cascade-
connected Cooper-pair box and transmission-line resonator (CPB-
TLR) input-output systems.

Transforming this into the Schrödinger picture, we can obtain
the following second-order master equation

ρ̇ = −i[HS,ρ] +
n∑

l,r=1

∫ t

0

{
γ ∗

lr (t − τ )
[
Lrρ(τ ),L†

HS,l(τ − t)
]

+ γlr (t − τ )
[
LHS,l(τ − t),ρ(τ )L†

r

]}
dτ,

where

LHS,l(t) = exp(iHSt)Ll exp(−iHSt).

B. Example: non-Markovian qubit networks
in superconducting circuits

As a relatively simple, but experimentally relevant example,
we consider how to couple two distant qubits—single Cooper
pair boxes (CPBs)—by a microwave field. As shown in
Fig. 9 we embed the two CPBs into two superconducting
transmission-line resonators (TLRs), and couple the TLRs
via a transmission line. When we average over the degrees
of freedom of the TLRs, the interactions between the CPBs
and the input fields become non-Markovian. This can be
understood by noting that the TLRs work as microwave
cavities, and these act as low-pass filters. The white-noise input
fields are filtered by the TLRs and changed into non-Markovian
Lorentz noises, and these in turn interact with the CPBs. Thus,
the qubit network considered here is a typical non-Markovian
quantum network.

Near the charge-degenerate point, with ngj = 0.5, the two
lowest-energy levels of the jth CPB are close to each other and
far separated from higher-energy levels. Because of this we can
treat a single CPB as a two-level system. If we additionally
place an ac voltage Vgj = V0j cos(ωgj t) on the gate of the
jth CPB, where V0j and ωgj are the amplitude and frequency
of the voltage, the effective Hamiltonian for the jth CPB in
the rotating frame becomes Hqj = (�qj/2)σ (j )

z , where �qj =
Ej − ωgj and EJ is the Josephson energy of the CPB. The
cavity modes in the TLRs are connected by a transmission
line. The total Hamiltonian of the jth SCB-TLR system, and
its input field bin,j is

Htot,j = �qj

2
σ (j )

z + ωcja
†
j aj + gj (a†

j σ
(j )
− + ajσ

(j )
+ )

+ i
√

γj (a†
j bin,j − b

†
in,jaj ), (51)

where γj is determined by the coupling between the cavity
mode and the input field. We now eliminate the degrees of
freedom of the cavity mode to obtain a description of the

032117-7



ZHANG, LIU, WU, JACOBS, AND NORI PHYSICAL REVIEW A 87, 032117 (2013)

qubits alone. First, it can be shown from Eq. (51) that

ȧj = −
(

iωcj + γj

2

)
aj + √

γj bin,j − igjσ
(j )
− . (52)

We now introduce the following weak-coupling assumption

ωcj , γj � g2
j ,

so we can omit the last term in Eq. (52) when we consider the
dynamics of the cavity mode, and the resulting solution is

aj (t) = √
γj

∫ t

0
exp[−(iωcj + γj/2)(t − τ )]bj,in(τ )dτ. (53)

Substituting Eq. (53) into the Hamiltonian Htot,j in Eq. (51), we
can obtain an effective Hamiltonian for the coupling between
the jth qubit and the effective input field

H̃eff,j = �qj

2
σ (j )

z + i(b̃†in,jσ
(j )
− − σ

(j )
+ b̃in,j), (54)

where

b̃in,j(t) =
∫ t

0
igj

√
γje

−(iωcj +γj /2)(t−τ )bin,j(τ )dτ. (55)

By comparing Eqs. (55) and (11), we can see that the jth CPB
is now directly coupled to the effective non-Markovian field
b̃in,j with κj (t) = igj

√
γj exp[−(ωcj + γj/2)t]. Additionally

we can see that the total system we consider here is just
a cascade-connected two-qubit system mediated by a non-
Markovian field. If bin,j is a white noise, it can be easily verified
that the spectrum of b̃in,j(t) is of Lorentz type. In fact, it can
be calculated in the frequency domain that

b̃in,j(ω) = κj (ω)bin,j(ω)

= igj
√

γj

γj /2 + i(ω − ωcj )
bin,j(ω), (56)

where b̃in,j(ω), bin,j(ω), and κ(ω) are the Fourier transforms of
bin,j(t), bin,j(t), and κ(t). From Eq. (15), it can be shown that

γ̃j (ω) = |κj (ω)|2 = g2
j γj

γ 2
j /4 + (ω − ωcj )2

.

Note that

[b̃in,j(t),b̃
†
in,j(t̃)] = γ̃j (t − t̃) =

∫ ∞

0
e−iω(t−t̃)γ̃j (ω)dω

= g2
j exp[−γj |t − t̃ |/2].

We can see that b̃in,j(t) is a Lorentz-type noise.
To simplify our discussion, let us assume that the two qubits

have the same parameters, so that �q = �q1 = �q2, g = g1 =
g2, and γ = γ1 = γ2. If we further assume that �q = EJ −
ωg = 0, we can write down the master equation for this non-
Markovian two-qubit system using Eq. (51), and the result is

ρ̇ = −i[α(t)σ (1)
− σ

(2)
+ + α∗(t)σ (1)

+ σ
(2)
− ,ρ]

+
∫ t

0
{β(t − τ )[J−ρ(τ ),J+] + H.c.}dτ, (57)
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FIG. 10. (Color online) Evolution of the concurrence (a) for
various non-Markovian correlation rates γ (the blue curve, red
triangle curve, and the green plus-sign curve correspond to γ =
0.2/τ, 0.5/τ, 1/τ ) and (b) for various coupling strengths g (the blue
curve, red triangle curve, and the green plus-sign curve correspond
to g = 0.1/τ, 0.2/τ, 0.3/τ ). Here τ = 10 ns. The decay of the
concurrence speeds up when increasing the correlation rate γ

of the non-Markovian noises and the qubit-environment coupling
strength g.

where Jα=z,± = σ (1)
α + σ (2)

α is the collective two-qubit opera-
tor, and

α(t) = i
2g2

γ
[1 − exp(−γ t/2)],

(58)
β(t) = g2 exp(−γ t/2).

It can be verified that both α(t) and β(t) are monotonic
functions of γ . This means that both the coherent interaction
between the two qubits and the damping induced by the
transmitting field decrease as the correlation time of the
Lorentz noise increases.

In Fig. 10 we show the evolution of the concurrence of the
two qubits. The concurrence is defined by

C(ρ) = max{λ1 − λ2 − λ3 − λ4,0}.
where ρ is the system density matrix given by Eq. (57), the λi

are the square roots of the eigenvalues of

M(ρ) = ρ
(
σ (1)

y σ (2)
y

)
ρ∗(σ (1)

y σ (2)
y

)
;

in decreasing order, and ρ∗ is the complex conjugate of ρ.
From Fig. 10 we see that the damping rate of the concurrence
decreases as the bath coupling strength g decreases, but
increases when the correlation time of the environment
(τenv = 1/γ ) increases. This means that in non-Markovian
environments the two-qubit entanglement is preserved longer
than in a Markovian environment. This is reasonable because
the decay rates of the two superconducting microwave cavities
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decrease in the non-Markovian regime and thus the coherent
evolution between the qubits and the cavities protect the
quantum entanglement efficiently.

The two-qubit dynamics given by Eq. (57) can be extended
to multiqubit networks [63] to study many-body physical
phenomena, such as quantum entanglement and correlations.

V. CONCLUSION

In summary, we have extended quantum input-output the-
ory to arbitrary non-Markovian networks of systems connected
via continuous-wave fields. We have derived the Heisenberg
picture quantum stochastic differential equation for the sys-
tems in the network, the corresponding perturbative master
equations, and all the input-output relations. We have applied
this general formalism to a model of two superconducting
charge qubits interacting via a cascade connection. We showed
that this system was non-Markovian because the cavities with
which the qubits connect to each other act as filters for the
quantum noise. For this system we analyzed the dynamics of
the entanglement between the qubits, and showed that it was
affected by the non-Markovian nature of the network. We also
used our model to analyze the dynamics of a non-Markovian
coherent feedback network in which the controller has a fast
response time. It is clear from our analysis that non-Markovian
effects can change the behavior of mesoscopic quantum
networks in significant ways, and the analysis of these effects
may be important for future quantum devices.
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APPENDIX: DERIVATIONS OF THE NON-MARKOVIAN
DYNAMICAL AND OUTPUT EQUATIONS

From the system Hamiltonian (1), we can obtain the
Heisenberg equation of an arbitrary system operator X

Ẋ = −i[X,Hsys] +
∫

dω{κ(ω)b†(ω,t)[X,L]

− κ∗(ω)[X,L†]b(ω,t)}, (A1)

and the equation of the bath operator b(ω)

ḃ(ω,t) = −iωb(ω,t) + κ(ω)L. (A2)

We can solve Eq. (A2) and obtain

b(ω,t) = e−iωtb(ω) + κ(ω)
∫ t

0
e−iω(t−τ )L(τ )dτ, (A3)

where b(ω) = b(ω,0) is the initial condition of b(ω,t). Simi-
larly,

b(ω,t) = e−iω(t−t1)b(ω,t1) − κ(ω)
∫ t1

t

e−iω(t−τ )L(τ )dτ, (A4)

where t1 � t . The input and output fields bin(t) and bout(t)
are defined as the Fourier transform of b(ω) and b(ω,t1)
respectively

bin(t) = 1√
2π

∫ +∞

−∞
b(ω)e−iωt dω,

bout(t) = 1√
2π

∫ +∞

−∞
b(ω,t1)e−iω(t−t1) dω.

From Eqs. (A3) and (A4), we have

bout(t) = bin(t) +
∫ t1

0
κ(t − τ )L(τ )dτ, (A5)

where κ(t) is the Fourier transform of κ(ω) defined in Eq. (12).
Let t1 → t , we can obtain the output equation (17).

Furthermore, using the identities

b̃in =
∫ +∞

−∞
κ(t − τ )bin(τ )dτ

=
∫ +∞

−∞
κ(ω)e−iωtb(ω)dω,

and

γ (t − t̃) =
∫ +∞

−∞
κ∗(t − τ ) κ(t̃ − τ )dτ

=
∫ +∞

−∞
κ(ω) κ∗(ω)e−iω(t̃−t) dω,

we can obtain Eq. (16) by substituting Eq. (A3) into Eq. (A1).
To derive the master equation (18), we first change into the

interaction picture, in which the effective Hamiltonian Heff can
be rewritten as

HI,eff = i
[
b†in(t)LHS (t) − LHS (t)bin(t)

]
, (A6)

where LHS (t) is given in Eq. (19). The density operator ρI,tot

satisfies the following Liouville equation

ρ̇I,tot = −i[HI,eff(t),ρI,tot]. (A7)

Integrating the two sides of Eq. (A7), we have

ρI,tot(t) = −i

∫ t

0
[HI,eff(τ ),ρI,eff(τ )]dτ. (A8)

Substituting Eq. (A8) into Eq. (A7), we can obtain

ρ̇I,tot =
∫ t

0
[HI,eff(t),[HI,eff(τ ),ρI,tot(τ )]]dτ. (A9)

Tracing over the degrees of freedom of the input field, we can
obtain the dynamical equation of the system density operator
ρI = trBρI,tot

ρ̇I =
∫ t

0
trB{[HI,eff(t),[HI,eff(τ ),ρI,tot(τ )]]}dτ. (A10)
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Let us then introduce the Born approximation and assume that
the input field stays in the vacuum state, we have

ρI,tot(t) = ρI(t) ⊗ |0〉BB〈0|. (A11)

Notice that it can be shown that

〈bin(t)b†in(t̃)〉 = δ(t − t̃),

〈b†in(t)bin(t̃)〉 = 〈b†in(t)b†in(t̃)〉 = 〈bin(t)bin(t̃)〉 = 0, (A12)

where 〈·〉 is defined by 〈R〉 = 〈0|b|0〉B . Substituting Eqs. (A6),
(A11), and (A12) into Eq. (A10), we can verify that

ρ̇I =
∫ t

0

{
γ (t − τ )

[
LHS

(t)ρI (τ ),L†
HS

(τ )
] + H.c.

}
. (A13)

We can derive Eq. (18) by transforming Eq. (A13) back into
the Schrödinger picture.
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