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Photon blockade, in analogy to Coulomb’s or phonon blockades, is a phenomenon when a single photon in a
nonlinear cavity blocks the transmission of a second photon. This effect can occur in Kerr-type systems driven
by a laser due to strong nonlinear photon-photon interactions. We predict the occurrence of higher-order photon
blockades where the transmission of more than two photons is effectively blocked by single- and two-photon
states. This photon blockade can be achieved by tuning the frequency of the laser driving field to be equal to the
sum of the Kerr nonlinearity and the cavity resonance frequency. We refer to this phenomenon as two-photon
blockade or two-photon state truncation via nonlinear scissors, and can also be interpreted as photon-induced
tunneling. We also show that, for a driving-field frequency fulfilling another resonance condition and for higher
strengths of the driving field, even a three-photon blockade can occur but less clearly than in the case of
single- and two-photon blockades. We demonstrate how various photon blockades can be identified by analyzing
photon-number correlations, coherence and entropic properties, Wigner functions, and spectra of squeezing. We
show that two- and three-photon blockades can, in principle, be observed in various cavity and circuit quantum
electrodynamical systems for which the standard single-photon blockade was observed without the need of using
higher-order driving interactions or Kerr media exhibiting higher-order nonlinear susceptibility.
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I. INTRODUCTION

In nonlinear optical systems driven by a coherent classical
light in a cavity, a single photon can impede the transmission
of other photons. This phenomenon is referred to as photon
blockade (PB) [1], in close analogy to the phenomenon of
Coulomb’s blockade [2], where electron transport is blocked by
a strong Coulomb interaction in a confined structure. In PB the
next photon can enter the cavity only if the first photon has left
it; thus, a sequence of single photons can be generated and such
system can act as a single-photon turnstile device. Evidently,
the PB changes classical light into highly nonclassical light
exhibiting, in particular, photon antibunching and sub-Poisson
photon-number statistics.

The PB can be interpreted as nonlinear optical-state
truncation or nonlinear quantum scissors [3,4], since the
infinitely dimensional Fock-state expansion of a classical
driving field is truncated at the single-photon Fock’s state. The
required nonlinearity can be induced by a strong interaction
between the cavity and the two-level (natural or artificial) atom.

The PB has been predicted in various setups in cavity
quantum electrodynamics (QED) [5–11], and recently also
in circuit QED [12,13]. The PB was first demonstrated
experimentally with a single atom trapped in an optical
cavity [14]. This experiment was considered “a landmark
event in the field of quantum optics and laser science” [15]. In
solid-state systems, the PB was experimentally demonstrated
with a quantum dot in a photonic crystal cavity [16] and with a
single superconducting artificial atom coupled to a microwave
transmission-line resonator (superconducting “cavity”)
[12,13]. The PB was also predicted in quantum optomechani-

cal systems [17]. An analogous phenomenon of phonon block-
ade was predicted for an artificial superconducting atom cou-
pled to a nanomechanical resonator [18]. The phonon blockade
can be detected via the PB if this system is additionally
coupled with, e.g., a superconducting microwave cavity [19].

The PB can have applications in quantum state engineering
for the controllable generation of a train of single photons
exhibiting highly nonclassical photon statistics. This suggests
that the PB (together with phonon blockades) can also be
used as an indicator of nonclassicality of mechanical systems
[18,19]. As another example of quantum engineering, the PB
was also studied in the context of cavity electromagnetically
induced transparency in, e.g., Refs. [6,9]. The possibility of
tunable (by a classical driving field) transmission from photon
blockade to photon transparency in circuit-QED systems was
described in Ref. [20].

Moreover, single-photon tunneling, in close analogy to
single-electron tunneling, was experimentally observed during
light transmission through individual subwavelength pinholes
[11]. This effect was explained in terms of the PB, analogously
to the Coulomb blockade demonstrated in single-electron
tunneling. A close analogy between the PB and Coulomb
blockade was also analyzed in Ref. [20] by presenting, e.g.,
a photonic analog of the Coulomb staircase. Such studies
shed more light on quantum simulations of condensed-matter
phenomena via optical effects and vice versa.

In this paper, we show the possibility of observing the
multiphoton blockade in the standard cavity QED and circuit
QED systems, where the single-photon blockade was already
observed. These systems consist of a Kerr nonlinearity in a
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cavity driven by a classical weak field. We will show how to
change the intensity and frequency of the driving field for a
given cavity frequency and the Kerr nonlinearity in order to
observe the two- and three-PBs.

Those multi-PBs can also be explained as photon-induced
tunneling. That is, when there is a photon inside the cavity,
then the second or third photon can be absorbed by the cavity
via two-photon or three-photon processes.

Effects leading to multi-PB were already studied in the
literature as generalizations of the single-PB. For example,
several systems based on higher-order parametric driving
processes and/or higher-order Kerr nonlinearity were analyzed
in Refs. [21–23] for the observation of the nonstationary-field
multi-PB. In the Conclusions, we will briefly discuss the
formal differences and crucial experimental advantages of our
approach over these methods.

There is another approach to the PB, which is based
on linear systems, while the nonlinearity is induced by
measurements. This method is usually referred to as the
linear optical state truncation or linear scissors [24]. The
multiphoton state truncations (or multi-PBs) implemented via
linear scissors were studied in Refs. [25,26], as a generalization
of the single-photon state truncation [24,27]. It is worth
stressing that the PBs studied in this paper are based on
completely different principles and resources. We use, as
in the original single-PB proposals [1,3], nonlinear systems
(which cause nonlinear photon-photon interactions) without
measurements. Thus, the method used here can be referred to
as nonlinear scissors [4].

The paper is organized as follows. In Sec. II, we explain
the occurrence of the single-PB and describe the method to
observe blockades up to two and three photons. In Sec. III,
we demonstrate analytically the occurrence of the two-PB
in comparison to the single-PB. In Sec. IV, we discuss
various signatures of the two-PB revealed by the photon-
number statistics, entropies, Wigner functions, and spectra of
squeezing. We summarize our main results in the concluding
section.

II. FROM SINGLE-PHOTON TO
MULTIPHOTON BLOCKADES

A. Hamiltonians

Photon-blockade effects can be observed in a cavity with
a nonlinear medium coherently driven by a laser field as
described by the following effective Hamiltonian [1,3]:

Ĥ = h̄ω0â
†â + h̄χ (â†)2â2 + h̄ε(âeiωd t + â†e−iωd t ), (1)

where â (â†) denotes the annihilation (creation) operator, ω0

is the resonance frequency of the cavity, ωd is the driving laser
frequency, χ > 0 is the Kerr nonlinearity, i.e., the photon-
photon interaction strength proportional to the real part of the
third-order nonlinear susceptibility Re(χ (3)), and ε > 0 is the
driving strength (the Rabi frequency of the laser).

Equation (1) presents an effective Hamiltonian, which can
be obtained from various microscopic Hamiltonians describing
a variety of systems. For example, one can analyze a quantum
two-level system (qubit) off-resonantly coupled to a driven
cavity. This system can be described in the rotating-wave

approximation by the following Hamiltonian:

Ĥ = 1
2h̄ωσ̂z + h̄ω′

0â
†â + h̄g(σ̂+â + â†σ̂−)

+ h̄ε(âeiωd t + â†e−iωd t ), (2)

where the first three terms correspond to the standard Jaynes-
Cummings Hamiltonian and the last term, as in Eq. (1),
describes the interaction between the quantum cavity mode
and the classical driving field with strength ε. Moreover,
σz = |e〉〈e| − |g〉〈g| denotes the Pauli operator, σ+ = |e〉〈g|
(σ− = |g〉〈e|) is the qubit raising (lowering) operator, |g〉
(|e〉) is the ground (excited) state of the qubit, ω is the
qubit transition frequency, and ω′

0 is the resonance frequency
of the cavity in Eq. (2). Moreover, other quantities are
explained below Eq. (1). This Hamiltonian in the dispersive
approximation, where the qubit remains in its ground state,
can be reduced to the Hamiltonian, given by Eq. (1) (for a
derivation see, e.g., Refs. [18,28] in the circuit QED context).

The unitary operation Û = exp(−iωd â
†ât) transforms the

Hamiltonian (1) into

Ĥrot = Û †Ĥ Û − ih̄Û † ∂

∂t
Û . (3)

Thus, in the rotating frame, one obtains the following time-
independent Hamiltonian:

Ĥ
(1)
rot = h̄�1â

†â + h̄χ (â†)2â2 + h̄ε(â + â†), (4)

where �1 = ω0 − ωd . The single-PB can be observed in the
resonant case ωd = ω0 assuming that the driving strength ε

is much smaller than the Kerr nonlinearity χ . This effect can
be interpreted as the single-photon Fock state blockading the
generation of two or more photons.

We observe that Hamiltonian (4) can be rewritten as
follows:

Ĥ
(k)
rot (�k) = h̄�kâ

†â + h̄χâ†â(â†â − k) + h̄ε(â + â†), (5)

where the frequency mismatch is

�k = ω0 + χ (k − 1) − ωd (6)

for some positive k. For convenience, we shall refer to k

as a tuning parameter. In the special case of k = 1, this
Hamiltonian reduces to the standard form, given by Eq. (4).

B. Steady states as a function of the tuning parameter k

The evolution of the system, given by Eq. (5), for the
reduced density operator ρ̂(t) under Markov’s approximation,
can be governed by the standard master equation [29], which
for the steady state ρ̂ss = ρ̂(t → ∞) is given by

0 = − i

h̄

[
Ĥ

(k)
rot (�k),ρ̂ss

] + γ

2
n̄th(2â†ρ̂ssâ − ââ†ρ̂ss − ρ̂ssââ†)

+ γ

2
(n̄th + 1)(2âρ̂ssâ

† − â†âρ̂ss − ρ̂ssâ
†â), (7)

where γ denotes the damping constant, n̄th =
{exp[h̄ω/(kBT )] − 1}−1 is the mean number of thermal
photons, kB is the Boltzmann constant, and T is the reservoir
temperature at thermal equilibrium. The master equation
can be given in terms of a Liouvillian superoperator and the
steady-state solution ρ̂(t) can be obtained by applying, e.g.,
the inverse power method [30].
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FIG. 1. (Color online) Schematic energy-level diagram explain-
ing the occurrence of the k-photon blockade (and the k-photon-
induced tunneling) in terms of the k-photon transitions induced
by the driving field satisfying the resonance condition �k = 0,
which corresponds to the driving-field frequency ωd = ω

(k)
d = ω0 +

χ (k − 1). Due to the Kerr-type nonlinearity (induced by, e.g., a
qubit), the cavity-mode levels E(0)

n = nh̄ω0 (shown on the left)
become nonequidistant as �En+1,n = En+1 − En �= const, where
En ≈ n[h̄ω0 + (n − 1)χ ] (for n = 0,1, . . .) are the eigenvalues of
the Hamiltonian Ĥ , given by Eq. (1), assuming ε 	 χ .

The single-PB can occur if the conditions

γ 	 ε 	 χ (8)

are satisfied. Hereafter, we only analyze the resonant case
�k = 0, which is related to the resonant k-photon transitions
shown in Fig. 1. This condition implies that the tuning
parameter k is related to the Kerr nonlinearity and the driving-
field and cavity frequencies as follows:

k = (ωd − ω0)/χ + 1. (9)

Figure 2 shows how the photon-number probabilities Pn

of the steady states depend on the tuning parameter k. By
analyzing this figure, one can discover various kinds of PB
effects, which appear not only for the standard resonant case
of k = 1 but also for k �= 1. For example, in the special case of
k = 2, a higher-order effect occurs with at most two photons
effectively generated in the system. We refer to this effect
as the two-photon blockade, which means that the single-
and two-photon Fock states blockade the generation of more
photons.

Figure 2(b), which is similar to Fig. 2(a) but obtained
assuming larger driving strength ε, clearly shows a three-
photon blockade for k = 3, which refers to a phenomenon
where the Fock states |m〉 (for m = 1,2,3) blockade the
transmission of the Fock states |n〉 with higher photon number
(i.e., n > 3). Note that, in Fig. 2(a) for k = 3, the probabilities
of generating |1〉, |2〉, and |3〉 are nonzero but are much lower
than the probability of observing the vacuum state. So, this
behavior for the parameters of Fig. 2(a), contrary to Fig. 2(b),
cannot be considered a genuine three-PB.

It is also quite evident why it is necessary to increase the
strength of the driving field to obtain a good-quality three-
PB since we need a larger average photon number. For weak
driving, the average photon number of the driving field is
less than three photons, thus this is not enough to induce a
three-photon transition as shown in Fig. 1.
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FIG. 2. (Color online) Photon-number probabilities Pn =
〈n|ρ̂ss|n〉 for the steady-state solutions ρ̂ss of the master equation
for the Hamiltonian Ĥ

(k)
rot (0) as a function of the tuning parameter

k assuming the driving strengths (a) ε = 5γ and (b) ε = 11.56γ .
Moreover, we assume the Kerr nonlinearity χ = 30γ , the damping
constant γ = 1, and the mean number of thermal photons n̄th = 0.01.
Figures also show the truncation fidelity Fm (for m = 2,3) and
the Fano factor F . Note that the field exhibits sub-Poisson (super-
Poisson) photon-number statistics if F < 1 (F > 1). It is seen in
both figures that resonances at k = 1 and 2 can be interpreted as the
single- and two-photon blockades, respectively. But the three-photon
blockade at k = 3 is apparent in (b) only.

In Fig. 2, in particular, we show the fidelity of the m-photon
truncation defined as

Fm(ρ̂ss) =
m∑

n=0

Pn =
m∑

n=0

〈n|ρ̂ss|n〉. (10)

We refer to the m-PB if the truncation fidelity Fm ≈ 1 and
Fn 	 1 for n < m. In Fig. 2(a), it is seen that F1 ≈ 1 at k = 1
(F2 ≈ 1 at k = 2) corresponding to the single-PB (two-PB).
But the resonance at k = 3, for the chosen driving strength,
can hardly be considered the three-PB for the driving strength
ε = 5γ . By contrast, F3 ≈ 1 at k = 3 for the much higher
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driving strength (ε = 11.56γ ), as shown in Fig. 2(b). Thus,
we interpret the latter case as the true three-PB, as already
mentioned.

By analyzing the dependence of the photon-number proba-
bilities Pn = 〈n|ρ̂ss|n〉 on the tuning parameter k, as shown
in Fig. 2(a), we observe that there is a clear dip in the
vacuum-state probability P0 and a peak in the single-photon
probability P1 at k = 1 and 2. The two-photon probability
P2 is nonzero only near k = 2. The peak maximum in P2

does not occur at k = 1 but it is evident at k = 2, which
implies that the single-photon truncation fidelity F1 differs
from 1 near k = 2. By contrast, the two-photon truncation
fidelity F2 on the scale of Fig. 2(a) is practically equal to
one. Thus, the contribution of Fock’s states with three or
more photons is negligible. For these reasons, we refer to
the two-PB at k = 2. One can see in Fig. 2(a) a very slight
dip in P0 at k = 3, which can be, however, much deeper for
the approximately twice-larger driving strength ε, as shown
in Fig. 2(b). The dip in P0 at k = 3 is accompanied by the
clear appearance of the peaks of Pn for the photon numbers
n = 1,2,3. It is seen that for k = 3 (but also close to this
point), the three-photon truncation fidelity F3 ≈ 1 contrary
to F2 	 1. This explains why we refer to this effect as the
three-PB at k = 3 for a suitably large driving strength ε as, e.g.,
in Fig. 2(b).

Figure 3 shows how by increasing the driving strength ε one
can change the steady-state probabilities of the generation of
n photons for chosen values of the Kerr nonlinearity, damping
constant, and for the resonance conditions (a) k = 2 and
(b) k = 3. We also depicted the two- and three-photon
truncation fidelities, which practically equal to 1 for all the
values of ε in Figs. 3(a) and 3(b), respectively. It is seen that
for the small driving strength one cannot generate photons
in the cavity in the steady-state limit, as P0 ≈ 1. This is a
trivial case, which can be interpreted as the zero-PB. For
larger values of ε, the true single- and two-PB effects are
observed. In particular, it is seen in Fig. 3(b) that for the driving
strength ε = 11.56 the probabilities Pn of observing n =
0,1,2 photons are approximately the same. The three-photon
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FIG. 3. (Color online) Photon-number probabilities Pn =
〈n|ρ̂ss|n〉 and fidelities Fm = ∑m

n=0 Pn of the m-photon truncation for
the Hamiltonian Ĥ

(k)
rot (0) for the resonances at (a) k = 2 and (b) k = 3

as a function of the driving strength ε assuming the Kerr nonlinearity
χ = 30γ , the damping constant γ = 1, and the mean thermal-photon
number n̄th = 0.01. Note that P0 ≈ P1 ≈ P2 for the driving strength
ε = 11.56 and k = 3. This value of ε is chosen in Figs. 2(b), 5, and
8 (for k = 3), and 11. Also note that in (a) for k = 2, there are two
crossings, one for P0 = P1 and another one for P0 = P2.

probability is smaller but still nonzero. We have chosen this ε

to analyze various properties of the three-PB in Fig. 2 and other
figures.

III. ANALYTICAL DESCRIPTION
OF PHOTON BLOCKADES

A. Steady-state photon blockade

Here, we explain analytically the standard (i.e., steady-
state) PB effects, i.e., by including dissipation in the system in
the infinite-time limit.

We start from the infinite-dimensional Hamiltonian, given
by Eq. (5) in the resonant case �k = 0 for a given k, and
formally truncate it to a finite-dimensional Hilbert space.
For example, to show explicitly the two-PB (k = 2), one
should analyze the Hamiltonian at least in the four-dimensional
Hilbert space:

Ĥ
(2)
trunc(0) =

⎛
⎜⎜⎜⎝

0 ε 0 0

ε −χ
√

2ε 0

0
√

2ε 0
√

3ε

0 0
√

3ε 3χ

⎞
⎟⎟⎟⎠ , (11)

which is given in the standard Fock basis. We have to show
that the contribution of three-photon terms 〈3|ρ̂(2)

ss |n〉 (for
n = 0,1,2,3) in the steady-state density matrix is negligible.

The conditions given by Eq. (8) should be fulfilled to
observe a PB effect, so let us denote

γ

ε
= δ,

ε

χ
= dδ, (12)

where δ 	 1 and dδ 	 1. To find an analytical approximate
steady-state solution for ρ̂(2)

ss , we substitute the truncated four-
dimensional Hamiltonian into the master equation, given by
Eq. (7), and solve the set of equations for each of the Fock-state
elements of the density matrix 〈m|ρ̂(2)

ss |n〉, for m,n = 0,1,2,3.
Then we expand these solutions in power series of δ and neglect
terms proportional to δ2 or higher powers. Thus, we find the
following approximate steady-state solution up to δ1:

ρ̂(2)
ss ≈ 1

1 + 8d2

⎛
⎜⎜⎜⎜⎜⎝

1 + 2d2 x∗δ id
√

2 z∗δ
xδ 4d2 y∗δ 0

−id
√

2 yδ 2d2 − 2
3

√
3d3δ

zδ 0 − 2
3

√
3d3δ 0

⎞
⎟⎟⎟⎟⎟⎠

,

(13)

where x = −2d3 − 2id2 + d, y = −√
2d2 (2d + i) , and z =

1
3 i

√
6d2. Our numerical solutions slightly differ from Eq. (13)

for the parameters chosen in Fig. 2(a), but it is clearly seen that
the contribution of the three-photon terms 〈3|ρ̂(2)

ss |3〉 can be ne-
glected, contrary to the terms 〈m|ρ̂(2)

ss |m〉 with smaller number
m of photons. Also other elements 〈3|ρ̂(2)

ss |m〉 are either equal
to zero (for m = 1) or proportional to δ 	 1 (for m = 0,2),
so they can be neglected. Thus, our solutions explain the
two-PB.

For comparison, let us analyze the single-PB described by
the infinite-dimensional Hamiltonians, given by Eqs. (4) or (5)
for k = 1, but truncated to the three-dimensional subspace, as
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given by

Ĥ
(1)
trunc(0) =

⎛
⎜⎝

0 ε 0

ε 0
√

2ε

0
√

2ε 2χ

⎞
⎟⎠ . (14)

By performing calculations analogous to the former case, we
find the following steady-state solution up to δ2:

ρ̂(1)
ss ≈

⎛
⎜⎜⎝

1
2 + 1

16 (1 − 4d2)δ2 x∗δ y∗δ2

xδ 1
2 − 1

16δ2 − 1
4

√
2dδ

yδ2 − 1
4

√
2dδ 1

4d2δ2

⎞
⎟⎟⎠ , (15)

where x = − 1
4 (2d + i) and y = 1

8

√
2d (d + i), which reduces

to

ρ̂(1)
ss ≈ 1

2

⎛
⎜⎝

1 −(d − 1
2 i)δ 0

−(d + 1
2 i)δ 1 − 1

2d
√

2δ

0 − 1
2d

√
2δ 0

⎞
⎟⎠ (16)

assuming δ2 ≈ 0. It is seen in Eq. (16) that 〈2|ρ̂(1)
ss |n〉 vanishes

for n = 0,2 and is ∼δ 	 1 for n = 1. So, the contribution of all
the two-photon states can be neglected, which clearly explains
the physical meaning of the single-PB for k = 1. Note that
〈2|ρ̂(2)

ss |2〉 �= 0 as described by Eq. (13), which corresponds to
the two-PB for k = 2.

B. Photon blockade without dissipation

Here, we shortly describe nonstationary-state PB assuming
no dissipation. The main results of this section are summarized
in Figs. 4 and 5.
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FIG. 4. (Color online) Two-photon blockade without dissipation:
Evolution of the photon-number probabilities Pn for the tuning
parameter k = 2 according to our precise numerical calculations
(thin curves) in the 100-dimensional Hilbert space and approximate
solutions (thick curves), given by Eqs. (17)–(22), obtained in the
truncated four-dimensional Hilbert space. Excellent agreement of
these solutions implies that the truncation fidelity F2 = P0 + P1 + P2

is almost exactly equal to one (as shown by the black line).
This explains the meaning of the optical-state truncation or the
nonstationary-state two-photon blockade. It is seen that the main
contribution to F2 is from the Fock states |0〉 and |2〉, which
corresponds to the two-photon transitions shown in Fig. 1.
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FIG. 5. (Color online) Three-photon blockade without dissipa-
tion: Evolution of the photon-number probabilities Pn as in Fig. 4
but for k = 3 and all the parameters (except γ = 0) as in Fig. 2(b).
It is seen that the three-photon truncation fidelity F3 slightly deviates
from one. For clarity, we present here only precise solutions obtained
in a large-dimensional Hilbert space. It is evident that solely the
Fock states |0〉 and |3〉 are interchangeably highly populated, which
corresponds to the three-photon transitions shown in Fig. 1. The
probabilities Pn for n = 1,2 are relatively small but not negligible,
while Pn for n > 3 can practically be ignored (e.g., P4 is shown by
the broken curve).

To describe the two-PB, let us formally confine the Hilbert
space of our system to four dimensions. Thus, we use the
Hamiltonian, given by Eq. (11). Its exact eigenvalues and
eigenvectors can be calculated analytically, but they are too
lengthy to be presented here. Instead of this, we define a small
parameter δ 	 1 as the ratio of the driving strength ε and the
Kerr nonlinearity χ as given in Eq. (12) but, for simplicity, we
assume here d = 1. Then, we find the power-series expansion
in δ and keep the terms up to δ2 only. Thus, we find the
following eigenvalues:

λ1 ≈ −χ (3δ2 + 1), λ2 ≈ χδ2x−,
(17)

λ3 ≈ χδ2x+, λ4 ≈ χ (δ2 + 3),

and the corresponding eigenvectors:

|λ1〉≈ N1[2
√

2δ|0〉 − 2
√

2(3δ2 + 1)|1〉 + 4δ|2〉 −
√

3δ2|3〉],
(18)

|λ2〉≈ N− [(δ2 + 3)|0〉 + 3x−δ|1〉 + (x−δ2 − 3)|2〉 +
√

3δ|3〉],
(19)

|λ3〉≈ N+[(δ2 + 3)|0〉 + 3x+δ|1〉 − (x+δ2 − 3)|2〉 −
√

3δ|3〉],
(20)

|λ4〉 ≈ N4[δ2|1〉 + 2
√

2δ|2〉 + 2
√

6|3〉], (21)

where x± = 1 ± √
2, and the normalization constants are

N−2
1 ≈ 8(1 + 9δ2), N−2

± ≈ 6(3 + 5 ± 2
√

2δ2), and N−2
4 ≈

8(3 + δ2). So, assuming no damping and no photons initially
in the cavity, the time evolution of the truncated system can be
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given by

|ψ(t)〉 =
3∑

j=1

exp(−iλj t)〈λj |0〉|λj 〉 + O(δ3). (22)

Note that, since the initial state is |0〉, there is no contribution
of |λ4〉. After substituting Eqs. (17)–(21) into Eq. (22), we find
that

〈3|ψ(t)〉 =
√

6

2
δ(e−iλ2t − e−iλ3t ) + O(δ3)

= δ3

√
3

(2 − 3eit + i6t) + O(δ3) = O(δ3), (23)

which shows explicitly the negligible contribution from the
three-photon Fock state in the generated state |ψ(t)〉. Analo-
gously we can show no important contribution from the Fock
states with more photons. Thus, we conclude the occurrence
of two-PB in the dissipation-free system.

In Fig. 4, we compare (i) the analytical approximate
solution, given by Eq. (22), with numerical solutions obtained
in the Hilbert spaces of dimension (ii) Ndim = 100 (which
effectively corresponds to Ndim = ∞) and (iii) Ndim = 4
(without applying expansions in the power series of δ) for
some parameters satisfying the conditions (8). On the scale of
Fig. 4, there is apparently no difference between the solutions
(ii) and (iii) at all, and very tiny discrepancy between them and
the analytical approximate solution (i) for the relatively large
δ = 1/6. This excellent agreement between the approximate
and precise solutions, convincingly demonstrate the blockade
up to the two-photon state |2〉. It is worth stressing that,
although the contribution of the three-photon state |3〉 is very
small, the calculations have to be performed in the Hilbert
space including the state |3〉.

For comparison, we recall that the truncated three-
dimensional Hamiltonian Ĥ

(1)
trunc(0) under standard conditions,

given by Eq. (8), leads to the following simple evolution:

|ψ(t)〉 = cos(εt)|0〉 − i sin(εt)|1〉 + O(δ2), (24)

assuming |ψ(0)〉 = |0〉. As shown by Leoński and Tanaś in
Ref. [3], this solution well approximates the precise numerical
evolution of the infinite-dimensional system. This effect we
refer to as the nonstationary-state single-PB, but it is usually
called the single-photon optical truncation [4].

Finally, we note that these PB effects can also be interpreted
as photon-induced tunneling studied in the context of PB in,
e.g., Refs. [11,16,31]. An especially simple interpretation can
be found for the dissipation-free PBs. Specifically, we can
say that the PB effect for k = 2, as shown in Fig. 4, mainly
corresponds to the dominant transition from the ground to the
second-excited state with the two-photon resonant transition
condition as schematically presented in Fig. 1. Analogously,
the PB effect for k = 3, as shown in Fig. 5, describes mainly
the three-photon resonant transition from the ground to the
third-excited state, which can be explained with the help of
Fig. 1. Due to amplitude dissipation, the population of lower-
excited states increases, as seen by comparing Figs. 2(a) and
4 for the two-PB, as well as Figs. 2(b) and 5 for the three-PB.

IV. QUANTUM SIGNATURES OF PHOTON BLOCKADES

A. Photon-number signatures of photon blockades

We have already discussed some photon-number signatures
of the PB effects by analyzing Fig. 2. Now, we focus on
demonstrating the nonclassicality of the generated steady
states. We recall that the nonclassicality (or quantumness) of a
bosonic system is usually understood if the system is described
by a nonpositive Glauber-Sudarshan quasiprobability function
[32] or, equivalently, by a negative normally ordered matrix of
moments [33,34]. In particular, the nonclassicality can often
be revealed by analyzing photon-number properties only.

Thus, in Fig. 2, we plotted the Fano factor, which is defined
by [32]

F (ρ̂ss) = 〈n̂2〉 − 〈n̂〉2

〈n̂〉 . (25)

A given state exhibits sub-Poisson (super-Poisson) photon-
number statistics if F < 1 (F > 1). The sub-Poisson statistics
is a nonclassical effect.

It is seen that the generated state exhibits the sub-Poisson
photon-number statistics for k < 1.5 and near k = 2 as
described by the Fano factors for the parameters chosen
in Fig. 2(a). Global and local minima of the sub-Poisson
statistics occur for the single-PB (k = 1) and two-PB (k = 2),
respectively. Note the occurrence of local maxima of the Fano
factors at points relatively close to k = 2. There are also local
maxima at k = 3 and 4 for the parameters ε, χ , and γ chosen in
Fig. 2(a). However, for the approximately twice-larger driving
strength ε as in, e.g., Fig. 2(b), we can also observe at k = 3 a
local minimum below 1 of the Fano factor, which corresponds
to the sub-Poisson statistics of the three-PB.

B. Coherence and entropic signatures of photon blockades

In order to show how the steady-state solutions ρ̂ss depend
on the tuning parameter k, we also analyze their coherence
properties.

Off-diagonal elements ρnm = 〈n|ρ̂ss|m〉 (for n �= m) of the
density matrix ρ̂ss, which are also often called coherences, are
shown in Fig. 6. It is seen that almost all plotted coherences
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FIG. 6. (Color online) Off-diagonal elements ρnm = 〈n|ρ̂ss|m〉 of
the steady states ρ̂ss as a function of the tuning parameter k for
the same parameters as in Fig. 2(a). These nonzero coherences
demonstrate that the steady states are not maximally mixed even
when k is not an integer.
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FIG. 7. (Color online) The purity μ(ρ̂ss), von Neumann entropy
S(ρ̂ss), thermalization Ttherm(ρ̂ss), and coherence C(ρ̂ss) as a function
of the tuning parameter k for the mean thermal-photon numbers (a)
n̄th = 0 and (b) n̄th = 0.05 with other parameters chosen the same as
in Fig. 2(a). This figure shows how thermal photons strongly affect
μ, S, and Ttherm, but do not much affect C.

do not vanish in the steady states even for off resonances (i.e.,
when the tuning parameter k is not an integer). This means
that the generated steady states are not completely mixed.

Our deeper analysis of the coherence properties of the
steady states presented in Fig. 7 includes the following mea-
sures: the purity μ(ρ̂ss) = tr (ρ̂2

ss) and the coherence parameter
C(ρ̂ss) defined as the sum of all off-diagonal terms of the
density matrix ρ̂ss (see, e.g., [35]):

C(ρ̂ss) =
∑
n�=m

|ρnm|2 = tr [(ρ̂ss − ρ̂diag)2] = μ(ρ̂ss) − μ(ρ̂diag),

(26)

where ρ̂diag = ∑
n ρnn|n〉〈n|. Thus, this parameter is just the

total-state purity after subtracting the diagonal-state purity. It is
worth noting that C is sometimes additionally normalized [35].

It is seen that decoherence, understood as the vanishing of the
off-diagonal elements of a density matrix, can intuitively be
quantified by C(ρ̂ss).

To describe the mixedness of the generated steady state, we
calculate the von Neumann entropy S(ρ̂ss) = −tr (ρ̂ss ln ρ̂ss)
and the thermalization parameter defined for a finite-
dimensional system as [35]

T (ρ̂ss) = SL(ρ̂ss)√
tr [(ρ̂ − ρ̂0)2] tr [(ρ̂ − ρ̂max)2]

= SL(ρ̂ss)√
[1 + μ(ρ̂ss) − 2p0][1 + μ(ρ̂ss) − 2pmax]

, (27)

which is defined as a properly normalized linear en-
tropy SL(ρ̂ss). Here, ρ̂0 = |0〉〈0|, ρ̂max = |nmax〉〈nmax|,
p0 = 〈0|ρ̂ss|0〉, pmax = 〈nmax|ρ̂ss|nmax〉, and |nmax〉 is the up-
permost Fock state generated in the system. As explained in
Ref. [35], this normalization of the linear entropy is done
to exclude somehow the contribution of the ground state
ρ̂0 = |0〉〈0|, which has a double nature: It is both a pure
state and a completely decoherent equilibrium state (as in
our model without the driving force). Moreover, the linear
entropy SL(ρ̂ss), which is another parameter of mixedness, can
easily be obtained from the purity (depicted in Fig. 7), since
SL(ρ̂ss) = 1 − μ(ρ̂ss). Other aspects of the quantum entropies
and mixedness in the discussed model (but only in the special
case of k = 1) were studied in Ref. [36].

One can clearly see in Fig. 7 that the entropy S(ρ̂ss) and
thermalization Ttherm(ρ̂ss) reach maxima and, equivalently, the
purity μ(ρ̂ss) and coherence C(ρ̂ss) parameters have minima
at (or very close to) k = 1, 2, 3. It is worth comparing this
behavior with the Fano factor F (ρ̂ss) shown in Fig. 2(a) for
the same parameters, where maxima are observed only for
k = 1 and 2 (where the PBs are predicted), while for k = 3 the
minimum occurs, which corresponds to the case where the PB
is practically not observed for the chosen parameters, as we
conclude by analyzing the probabilities Pn shown in Fig. 2(a).
By contrast, the coherence parameter C(ρ̂) has minima at
k ≈ 1,2 and very small maximum at k = 3. By comparing
Figs. 7(a) and 7(b) obtained for the system coupled to a zero-
and nonzero-temperature reservoir, we can easily see how the
PBs are sensitive to temperature or, equivalently, to the number
n̄th of thermal photons. Even by adding a very small number
of thermal photons, such as n̄th = 0.05, the linear and von
Neumann entropies together with the thermalization parameter
are noticeably increased. This is not the case for the coherence
parameter C(ρ̂ss).

C. Phase-space description of photon blockades

The dynamics of quantum systems can equivalently be
described by using the phase-space formalism of Wigner func-
tions. This formalism is particularly useful for distinguishing
different PB effects as we show below. The Wigner function
can be defined as [37]

W (α) = 2

π
tr [D̂−1(α)ρ̂D̂(α)P̂ ], (28)

where D̂(α) = exp(αâ† − α∗â) is the displacement operator
with a complex number α, and P̂ = exp(iπâ†â) is the parity
operator, so its action on Fock states is simply given by
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FIG. 8. (Color online) Wigner functions W (α = x + ip) for the
k-photon blockades corresponding to the steady-state solutions of
the master equation for the Hamiltonian Ĥ

(k)
rot (0), with the same

parameters as in Fig. 2(a) except the driving strength ε = 11.56γ for
k = 3. It is seen that the Wigner function for the k-photon blockade
has k peaks and k dips. For k = 3 the peaks are deformed (due to
interference in phase space) but still are visible.

P̂ |n〉 = (−1)n|n〉. The Wigner function can be generalized
to the s-parametrized Cahill-Glauber quasiprobabilities [37].
Nevertheless, contrary to other definitions, Eq. (28) shows a
direct method (i.e., without the necessity of applying quantum
state tomography) to measure the Wigner function [38]. This
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FIG. 9. (Color online) Spectra of squeezing (a) S0(ω) and
(b) Sπ/2(ω) for the single-photon blockade for the same parameters
as in Fig. 2(a). Broken curves show the spectra for the Hamiltonian
Ĥ

(k)
rot (0) with off-resonance values of the tuning parameter k.
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FIG. 10. (Color online) Spectra of squeezing for the two-photon
blockade analogously to those in Fig. 9 but for the resonance k = 2
and off-resonance values of the tuning parameter k. It is seen
that either S0 or Sπ/2 only for the off-resonant cases has a clear
negative dip.

direct method was experimentally applied in, e.g., cavity QED
[39] and circuit QED [40] systems.

In Fig. 8, we show the Wigner function for the blockades of
up to k photons for k = 1,2,3 by properly choosing parameters
in order to satisfy the resonance condition �k = 0 together
with γ 	 ε 	 χ . The k-peak and k-dip (antipeak) structures
of the Wigner functions clearly correspond to the k-PB.

D. Spectrum of squeezing for photon blockades

The PBs can also be revealed in two-time correlations. Let
us analyze the two-time normally ordered (::) and time-ordered
(T ) correlation function

T 〈: X̂θ (τ )X̂θ (0) :〉
≡ lim

t→∞ T 〈: X̂θ (t + τ )X̂θ (t) :〉
= 〈â†(τ )a(0)〉 + 〈â†(0)a(τ )〉

+ e−2iθ 〈â(τ )a(0)〉 + e2iθ 〈â†(0)a†(τ )〉 (29)

of the quadrature phase distribution

X̂θ (t) = â(t)e−iθ + â†(t)eiθ . (30)

The spectrum of squeezing is defined as the Fourier transform
of the covariance [41]:

Sθ (ω) =
∫ ∞

−∞
dτ e−iωτT 〈: X̂θ (τ ),X̂θ (0) :〉, (31)

where the covariance is defined by the general formula
〈A,B〉 = 〈AB〉 − 〈A〉 〈B〉. In Figs. 9–11, we demonstrated
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FIG. 11. (Color online) Spectra of squeezing for the three-photon
blockade analogous to those in Figs. 9 and 10 but for the resonance
k = 3 and off-resonance values of the tuning parameter k (assuming
the driving strength ε = 11.56γ ). Analogously to the two-photon
blockade, the off-resonance spectra have a negative dip either for
θ = 0 or π/2, which does not appear for the resonant case for k = 3.
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distinctive properties of the spectra of squeezing for the
single-PB (Fig. 9), two-PB (Fig. 10), and three-PB (Fig. 11)
for the tuning parameters at the resonance, k = k0, and slightly
out of the resonance, k = k0 ± δ, where δ 	 1 and k0 = 1,2,3.
Surprisingly, the spectra of squeezing as a function of the
tuning parameter k are more sensitive indicators of the two-
and three-PBs instead of those of the single-PB.

V. CONCLUSIONS

We studied nonlinear photon-photon interaction at the
single-photon level in a system consisting of a cavity with
a Kerr nonlinearity driven by a weak classical field. This is
a standard prototype model, where the Kerr-like nonlinearity
can be induced by the interaction of, e.g., a qubit with a cavity
field in the dispersive regime.

By finding the master-equation solutions of the model in
the steady-state limit for a properly chosen frequency of the
classical driving field, we observed a blockade of more than
one photon. This is a generalization of the single-PB for
the multiphoton (say m-photon) case, which means that the
Fock states with n = 0,1, . . . ,m photons are, practically, the
only generated in this nonlinear cavity. This effect can also
be interpreted as the multiphoton-state truncation realized by
nonlinear quantum scissors or multiphoton-induced tunneling
corresponding to multiphoton transitions as schematically
shown in Fig. 1.

It is worth noting that some generalizations of the single-
photon nonlinear truncation processes for the multiphoton
cases were already discussed by, e.g., Leoński et al.(see
Ref. [4] for a review). Nevertheless, all these proposals assume
either higher-order driving processes, as described in Ref. [21]
by the Hamiltonian H

(l)
drive = ε(l)[âl + (â†)l], or higher-order

Kerr nonlinearity, corresponding to the Hamiltonian H
(k)
Kerr =

χ (k+1)(â†)k+1âk+1 in Ref. [23], or both ε(k) and χ (l) [22]
for k,l = 2,3, . . . . In our approach, we assume the lowest-
order parametric driving (l = 1) and the lowest-order Kerr
nonlinearity (k = 1), which is the same as in the standard
single-PB. Also, in the mentioned generalizations, only the
free evolution was analyzed. Thus, these effects can solely be
interpreted as nonstationary-field effects; so, they are almost
unmeasurable. The dissipation effects were later studied, but
only for the short-time evolution regime in Ref. [42]. In this
paper, we focused on measurable effects, thus, we studied
(except only one section) the steady-state solutions of the
master equation in the infinite-time limit.

We described, as given by Eq. (9), how to choose the
resonance frequency ωd of the driving field for a given cavity
frequency ω0 and the Kerr nonlinearity χ and how to increase
the driving strength ε (see Fig. 3) in order to observe the
blockade at the multiphoton Fock state.

In our presentation we focused on the blockades of k = 2
and 3 photons in order to achieve high fidelity Fk of the

k-photon truncation and with a contribution of the k-photon
state which cannot be neglected, which means that Fk−1 	 1.

We showed analytically and numerically that these PBs
occur both for nondissipative and dissipative systems. In par-
ticular, we showed an excellent agreement (i.e., no differences
on the scale of Fig. 4) for the two-PB between the numerical
solutions obtained in the Hilbert spaces of infinite dimension
(practically Ndim = 100) and of finite dimension (Ndim = 4).
Our approximate analytical solutions only slightly differ from
the numerical ones (as shown in Fig. 4 for a relatively large δ).

We demonstrated a variety of quantum properties revealing
the unique nature of the single-, two-, and three-PBs as a
function of the tuning parameter k. In particular, we studied
photon-number statistics (as shown in Fig. 2), as well as
coherence and entropic properties (in Figs. 6 and 7). We gave
a clear comparison of the Wigner functions of the steady states
corresponding to the blockades of k = 1,2,3 photons (see
Fig. 8). Moreover, we showed clear differences in the spectra of
squeezing of the steady states in the resonant cases at k = 1,2,3
and slightly off the resonances (as shown in Figs. 9–11).

We suggested that the two-PB and three-PB can be observed
in various systems, where the single-PB has already been
experimentally observed [13,14,16] or, at least, theoretically
predicted [17].

Analogously, a blockade of phonons instead of photons
can be considered. Namely, a two-phonon generalization of
the standard single-phonon blockade can be predicted in the
nanomechanical systems studied in Refs. [18,19]. The crucial
point is that the effective Hamiltonians, given by Eqs. (1)
and (5), under proper conditions, can be obtained from other
standard models in cavity QED, circuit QED, and quantum
optomechanics.

The single-photon blockade has attracted considerable
interest, with potential applications in quantum state engi-
neering, quantum information, and quantum communication.
We believe that the multiphoton blockades described in this
paper can also find some useful quantum applications and
in addition, at a fundamental level, they can show a deeper
analogy between condensed-matter and optical phenomena.
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