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Spin squeezing under non-Markovian channels by the hierarchy equation method
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We study the decoherence of spin squeezing under non-Markovian channels and consider an ensemble of N

independent spin-1/2 particles with exchange symmetry. Each spin interacts with its own bath, and the baths are
independent and identical. For this kind of open system, the spin squeezing under decoherence can be investigated
from the dynamics of the local expectations. The reduced dynamics is obtained by the exact hierarchy equation
method. The numerical results show that the spin squeezing may display both sudden and asymptotic vanishing;
however, the revival phenomenon does not happen. In contrast, the concurrence shows multiple sudden vanishing
and revival phenomena.
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I. INTRODUCTION

Spin squeezing has attracted much attention for decades
[1–8]. An important application of spin squeezing is to detect
quantum entanglement [9–11]. As a multipartite entanglement
witness, spin squeezing is relatively easy to generate and
measure [2,12–14]. Many efforts have been devoted to finding
relations between spin squeezing and entanglement [1–7,15–
17]. Another application of spin squeezing is to improve
the precision of measurements. For example, spin squeezing
plays an important role in making more precise atomic clocks
[2,6,18,19] and gravitational-wave interferometers [20–22]
and so on.

Spin-squeezed states are useful resources for quantum
information processing. However, in practice, decoherence is
inevitable and harmful to spin squeezing and entanglement
[23–29]. Generally, when the system-bath coupling strength
is weak enough, the decoherence is studied by using the
master equation method, which is derived by employing
the Born approximation [23,24]. In addition, the Markov
approximation can be applied if the time scale of the bath
is much shorter than that of the system. To overcome the
above approximations, a set of hierarchical equations were
established by Tanimura et al. [30–36]. It provides an exact
way to obtain the reduced dynamics of the system [37–49].
However, for numerical reasons, it is hard to treat systems
with a large number of particles straightforwardly. Here, we
show that, for the open system we consider, we can reduce the
multiparticle dynamics into a two-particle one, and then we ef-
ficiently use the hierarchy equation method to make numerical
calculations.

As we know, spin squeezing is a multipartite entanglement
witness. Reference [50] has shown that for a many-particle sys-
tem with exchange symmetry, the spin-squeezing parameters
of the total system can be expressed in terms of local expecta-
tions and correlations. Here, we consider such an ensemble of
N independent spin-1/2 particles. Each particle interacts with
its own bath, and the baths are independent and identical. Thus,
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the exchange symmetry is not affected by the decoherence,
and the spin-squeezing parameters of the open system can
also be expressed by the dynamics of the local expectations
and correlations. For the system under consideration, we find
that the dynamics of any two particles is governed only by the
local Hamiltonian of the two particles and their baths. Then, we
use the hierarchy equation method to calculate the dynamics
of the local expectations and correlations. Reference [50]
has also shown that the spin squeezing has close relations
with pairwise entanglement if the state of the collective spin
system lies in the J = N/2 sector, where J is the collective
angular momentum of the system. Therefore, since the state
of the system will not lie in the J = N/2 sector any longer
under decoherence, the ability of spin squeezing in detect-
ing pairwise entanglement needs to be further studied and
clarified.

This paper is organized as follows. In Sec. II, we introduce
the Hamiltonian and the initial state of the open system.
The definition of the spin-squeezing parameters is given in
Sec. III, and we also discuss the symmetry of the system
and reduce the multiqubit dynamics into the two-qubit one.
In Sec. IV, we introduce the hierarchy method and give an
alternative form of the hierarchy equation. We numerically
calculate spin-squeezing parameters and the rescaled concur-
rence of the open system under decoherence and compare
their behaviors in Sec. V. Finally, a summary is given in
Sec. VI.

II. HAMILTONIAN AND INITIAL STATE

The spin-boson model is one of the most important
theoretical models in the study of dissipation and decoherence
in quantum systems [51–53]. The model is composed of a
two-level system and a bath of harmonic oscillators. Although
the model is simple, it is fundamental and useful in the study
of physics of open quantum systems. Here, we consider a
generalized spin-boson model, which contains an ensemble of
N independent spin-1/2 particles with exchange symmetry,
and each particle interacts with its own bosonic bath. The N

baths are independent and identical. The Hamiltonian of the
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total system is (h̄ = 1)

H = HS + HB + HSB

=
N∑

α=1

ω0

2
σαz +

∑
k

ωkb
†
kbk +

N∑
α=1

∑
k

gαkσαx(b†k + bk),

(1)

where the first term is the Hamiltonian of the system with
σkα(α = x,y,z) being the Pauli matrices for the kth spin
and ω0 being the frequency for all qubits. The second term
describes the bosonic bath, where bk and b

†
k are the creation

and annihilation operators of the kth mode with frequency ωk .
The system-bath coupling is characterized by the third term,
with gαk being the coupling strength for qubit α. Here, we
study N independent baths, i.e., the bath can be divided into
N parts, and gαk is only nonzero when mode k belongs to the
αth part.

The initial state of the total system is set to be a product
state,

ρT (0) = ρS(0) ⊗ ρB(0), (2)

in which the system and bath are uncorrelated. The bath is in
a thermal state,

ρB(0) =
∏
k

exp(−βωkb
†
kbk)

Zk

, (3)

with the inverse temperature β = 1/(kBT ) and partition
function Zk = Tr exp(−βωkb

†
kbk) for mode k, and in this

paper we take kB = 1. For ρS(0) = |�(0)〉〈�(0)|, we choose
a standard one-axis twisted state [1],

|�(0)〉 = e−iθJ 2
x /2|1 · · · 1〉, (4)

with

Jα = 1

2

N∑
k=1

σkα (5)

being the total angular momentum operators and |1 · · · 1〉 being
the ground state of Jz. This state is prepared by the one-axis
twisted Hamiltonian H = χJ 2

x , with the coupling constant χ

and θ = 2χt being the twist angle. For our case, the system of
N spin-1/2 behaves like an effective large spin N/2.

III. SPIN SQUEEZING AND REDUCING THE
MULTIQUBIT DYNAMICS INTO A TWO-QUBIT ONE

In this section, we give the definitions of two spin-squeezing
parameters. By discussing the symmetry of the open system
under consideration, we know that the spin squeezing can be
expressed by the local expectations and correlations. Since we
can reduce the multiqubit dynamics into a two-qubit one, the
spin squeezing can then be calculated by the dynamics of the
local expectations and correlations.

A. Spin-squeezing definitions

There are various measures of spin squeezing related to
various inequality criteria [1–3,5,8], and we consider two of

them as follows:

ξ 2
KU = 4(�J⊥)2

min

N
, (6)

ξ 2
T = λmin

〈 �J 2〉 − N
2

. (7)

Here, the minimization in the first equation is over all
directions denoted by ⊥, which are perpendicular to the mean
spin direction 〈 �J 〉/|〈 �J 〉|. λmin in the second equation is the
minimal eigenvalue of the matrix

 = (N − 1)γ + C, (8)

where

γkl = Ckl − 〈Jk〉〈Jl〉, k,l ∈ {x,y,z}, (9)

is the covariance matrix and

Ckl = 1
2 〈JlJk + JkJl〉 (10)

is the global correlation matrix. The parameter ξ 2
KU was defined

by Kitagawa and Ueda [1], and ξ 2
T was defined by Tóth et al.

[5]. If ξ 2
T < 1, spin squeezing occurs, and we can safely say

that the multipartite state is entangled [5,8].
From the definitions, we know that the spin-squeezing

parameters are based on the expectations and correlations of
the collective operators. For the limitation of the hierarchy
equation method, it is hard to calculate the decoherence of a
many-particle system straightforwardly.

B. Simplification of the spin-squeezing parameters

Since the baths are independent and identical, the exchange
symmetry is not affected by decoherence. Therefore, the global
expectations or correlations of collective operators can be
written as [50]

〈Jα〉 = N

2
〈σ1α〉, (11)

〈
J 2

α

〉 = N

4
+ N (N − 1)

4
〈σ1ασ2α〉, (12)

〈[Jα,Jβ]+〉 = N (N − 1)

4
〈[σ1α,σ2β ]+〉,(α �= β), (13)

which only depend on the expectation values of the local Pauli
operators, e.g., 〈σ1ασ2β〉 and 〈σ1α〉.

The initial one-axis twisted state we use here has a parity
symmetry leading to 〈Jx〉 = 〈Jy〉 = 0, namely, the mean-spin
direction is along the z axis. Moreover, the mean-spin direction
does not change during decoherence. The proof is given as
follows.

The Hamiltonian (1) displays only one symmetry, i.e., the
parity symmetry. The parity operator is given by

� = �1 ⊗ �2

= (−1)N ⊗ (−1)
∑

k a
†
kak

= (−1)N+∑
k a

†
kak , (14)

where N = Jz + N/2 describes the numbers of excitations of
up spins. Obviously, we have

�H� = H, (15)

�1ρS(0)�1 = ρS(0), (16)
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�2ρB(0)�2 = ρB(0), (17)

�ρT (0)� = ρT (0); (18)

namely, the Hamiltonian and the initial state have a fixed parity.
Since the exchange symmetry leads to 〈Jx〉 = N〈σ1x〉/2, we
obtain

〈σ1x〉 = Tr[σ1xU (t)ρT (0)U †(t)]

= Tr{σ1x�[�U (t)�][�ρT (0)�][�U †(t)�]�}
= Tr[σ1x�U (t)ρT (0)U †(t)�]

= Tr[�σ1x�U (t)ρT (0)U †(t)]

= −〈σ1x〉, (19)

which leads to 〈Jx〉 = 0. Similarly, 〈Jy〉 = 〈JyJz〉 = 〈JxJz〉 =
0 can be proved. Therefore, during the evolution the mean
spin direction is always along the z axis. In this case, the
spin-squeezing parameters reduce to [7,28]

ξ 2
KU = 1 + 2(N − 1)(〈σ1+σ2−〉 − |〈σ1−σ2−〉|), (20)

ξ 2
T = min

{
ξ 2
KU,ς2

}
(1 − 1/N)〈�σ1 · �σ2〉 + 1/N

, (21)

where

ς2 = 1 + (N − 1) (〈σ1zσ2z〉 − 〈σ1z〉〈σ2z〉) . (22)

For convenience, hereafter we use

ζ 2
k = max

(
0,1 − ξ 2

k

)
, k ∈ {KU,T} (23)

to characterize spin squeezing. With the above definition, spin
squeezing occurs when ζ 2

k > 0.
Now we only need to calculate the dynamics of the local

expectations and correlations of the spins, and the spin-
squeezing parameters are greatly simplified. Furthermore, we
will prove that the reduced dynamics is only governed by the
Hamiltonian of the two particles and their baths.

C. Reducing the multiqubit dynamics into a two-qubit one

Now we prove that we can reduce the multiqubit dynamics
into a two-qubit one. Generally, we consider a system written
as follows:

H =
N∑

i=1

H (i), H (i) = H
(i)
S + H

(i)
B + H

(i)
SB. (24)

H
(i)
S and H

(i)
B represent the Hamiltonian of a single particle

and its bath, respectively, and their couplings are expressed by
H

(i)
SB . Obviously, each of the particles interacts with its own

bath. The particles do not interact with each other, and the
baths are independent. Equation (1) belongs to this case.

The time-evolution operator of the total system can be
written as

U (t) = e−iH t =
∏

i

e−iHi t =
∏

i

ui(t), (25)

where ui(t) = e−iHi t . Then, the total density matrix at time t

is given by

ρT (t) = U (t)ρT(0)U †(t), (26)

which can be formally written as

ρT (t) = U (t)ρT (0)U †(t)

=
∏

i

ui(t)ρT (0)
∏

i

u
†
i (t). (27)

Here we assume that the initial state is a product state written
as

ρT (0) = ρS(0) ⊗ ρB(0). (28)

By tracing out the baths and N − 2 particles of the system, we
obtain the reduced density matrix of any two particles:

ρ12
S (t) = Tr{B1,2}

[
Tr{S3...N B3...N }

(
N∏

i=1

ui(t)ρT (0)
N∏

i=1

u
†
i (t)

)]

= Tr{B1,2}

[
Tr{S3...N B3...N }

(
2∏

i=1

ui(t)ρT (0)
2∏

i=1

u
†
i (t)

)]

= Tr{B1,2}

[
2∏

i=1

ui(t)
[
ρ12

S (0) ⊗ ρ12
B (0)

] 2∏
i=1

u
†
i (t)

]
,

(29)

where the second equality follows from the fact that

Tr2[(A1 ⊗ A2)ρ12(B1 ⊗ B2)]

= Tr2[A1 ⊗ (B2A2)ρ12(B1 ⊗ I2)], (30)

and the last equality is obtained by substituting the ini-
tial product state (28). ρ12

S (0) = Tr{S3...N }ρS(0) and ρ12
B (0) =

Tr{B3...N }ρB(0) in the equation are the reduced density matrices
of the initial state for the system and bath, respectively.

Equation (29) indicates that the evolution of any two
particles is governed only by the local Hamiltonian of the
two particles and their baths [54]. It is noted that we can reach
this conclusion even when the initial states of the system or the
baths are entangled states. Therefore, the multiqubit dynamics
reduces to a two-qubit one. Then we use the hierarchy equation
method to calculate the reduced dynamics the system, and
the dynamics of the local expectations and correlations in
Eqs. (20)–(22) can also be obtained.

Here we emphasize that the reducing process is obtained
without using exchange symmetry, which means that the
particles are not necessarily identical, and neither are the baths.
Also, the proof can be easily extended to any finite number of
particles.

IV. HIERARCHY EQUATIONS AND INITIAL TWO-QUBIT
REDUCED DENSITY MATRIX

To start with the numerical calculations, we introduce
the hierarchy equation method [36,37] and discuss the spin-
squeezing parameters of the initial state in this section. For
comparison, the definition of a rescaled concurrence is also
given.

A. Hierarchy equations

We choose the Drude-Lorentz spectrum,

J (ω) = 2

π

ωλγ

ω2 + γ 2
, (31)
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where γ represents the width of the spectral distribution of the
bath mode and λ can be viewed as the system-bath coupling
strength. The bath correlation function for the bath operator

Bα(t) =
∑

k

gαk(b†ke
iωkt + bke

−iωkt ) (32)

is given by [37]

〈Bα(t)Bα(τ )〉 =
∞∑

n=0

cne
−νn|t−τ |, (33)

where

νn = 2πn

β
(1 − δn0) + γ δn0 (34)

is the kth Matsubara frequency and

cn = 4λγ

β

νn

ν2
n − γ 2

(1 − δn0) + λγ

[
cot

(
βγ

2

)
− i

]
δn0 (35)

are the expansion coefficients.
With the Drude-Lorentz spectrum, the hierarchy equations

become

ρ̇�n = −[iH×
S + (�n1 + �n2) · �ν]ρ�n

−
2∑

α=1

M∑
k=0

(
2λ

βγ
− iλ −

M∑
k=0

ck

νk

)
V ×

α V ×
α ρ�n

− i

2∑
α=1

M∑
k=0

nαk

(
ckVαρ�n−�eαk

− c∗
kρ�n−�eαk

Vα

)

− i

2∑
α=1

M∑
k=0

V ×
α ρ�n+�eαk

, (36)

where

�n = (�n1,�n2) = (n10, . . . ,n1M,n20, . . . ,n2M ) (37)

is a 2(M + 1)-dimensional vector, a concatenation of two
(M + 1)-dimensional vectors �n1 and �n2. The vectors �ν =
(ν0, . . . ,νM ) and �eαk are defined as 2(M + 1) -dimensional
vectors with only 1 in the αk place and 0’s in other places.
Note that this equation is slightly different and essentially the
same as that given in Ref. [37].

B. Initial two-qubit reduced density matrix

To solve Eq. (36), we need to know the initial state. Since
the mean spin of the initial state (4) is along the z direction, the
two-qubit reduced density matrix can be written in a block-
diagonal form [7]:

ρ12 =
(

v+ u∗

u v−

)
⊕

(
w y

y w

)
(38)

in the basis {|00〉,|11〉,|01〉,|10〉}, where

v± = (1 ± 2〈σ1z〉 + 〈σ1zσ2z〉)/4, (39)

w = (1 − 〈σ1zσ2z〉)/4, (40)

u = 〈σ1−σ2−〉, (41)

y = 〈σ1+σ2−〉. (42)

We notice that if 〈σ1+σ2−〉, 〈σ1−σ2−〉, 〈σ1z〉, and 〈σ1zσ2z〉 are
known, the density matrix is determined. For the one-axis
twisted state, we have [7]

〈σz〉 = − cosN−1

(
θ

2

)
, (43)

〈σ1zσ2z〉 = 1

2
(1 + cosN−2 θ ), (44)

〈σ1+σ2−〉 = 1

8
(1 − cosN−2 θ ), (45)

〈σ1−σ2−〉 = −1

8
(1 − cosN−2 θ )

− i

2
sin

(
θ

2

)
cosN−2

(
θ

2

)
. (46)

Employing the equations above, we obtain the initial two-qubit
reduced density matrix in Eq. (38). Then we use Eq. (36)
to calculate the dynamics of the reduced density matrix
numerically.

Meanwhile, we can also use Eqs. (43)–(46) to discuss the
spin-squeezing parameters for the initial state. For the initial
state (4), we obtain

ζ 2
KU(0) = ζ 2

T(0) = 1

4

{[
(1 − cosN−2 θ )2 + 16 sin2

(
θ

2

)

× cos2N−4

(
θ

2

) ]1/2

− 1 + cosN−2 θ

}
, (47)

which implies that the two spin-squeezing parameters for the
initial state coincide.

It is known that spin squeezing has close relations with
concurrence if the state of the collective spin system lies in the
J = N/2 sector [50], such as the initial state of the system.
During the decoherence, the state of the system does not lie in
the J = N/2 sector any longer. It is necessary to compare the
behaviors of spin squeezing and pairwise entanglement.

The concurrence is defined as [55]

C = max(0,λ1 − λ2 − λ3 − λ4), (48)

where λ1 � λ2 � λ3 � λ4 are the square roots of eigenvalues
of ρ̃ρ. Here ρ is the reduced density matrix of the system, and

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy), (49)

where ρ∗ is the conjugate of ρ.
For the reduced density matrix of (38), the concurrence is

given by [56]

C = 2 max{0,|u| − w,y − √
v+v−}. (50)

Therefore, we can also obtain the concurrence of the initial
state by employing Eqs. (39)–(46).

For convenience, here we use a rescaled concurrence

Cr = (N − 1)C, (51)

and thus Cr (0) = ζ 2
KU(0) = ζ 2

T(0). Then we know that the two
spin-squeezing parameters and the rescaled concurrence are
the same for the initial state.
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V. SPIN SQUEEZING AND CONCURRENCE UNDER
DECOHERENCE

The initial one-axis twisted state considered in this work is
a symmetric state which can be expressed as a superposition
of symmetric Dicke states. In other words, the N qubits
behave effectively like a large spin N/2. After decoherence,
not only will the symmetric Dicke states be populated but
also states with lower symmetry. Therefore, it is not sufficient
to describe the system with only an (N + 1)-dimensional
space. However, the exchange symmetry is not affected by the
decoherence. In other words, a state with exchange symmetry
does not necessarily belong to the maximally symmetric
space [57]. Now by employing the hierarchy equation method,
we calculate the spin-squeezing parameters and the rescaled
concurrence under decoherence and compare their behaviors.

As an example, we set the initial state given in Eq. (47) with
θ = π/10. The parameters of the Drude-Lorentz spectrum in
Eq. (31) are chosen to be λ = 0.03ω0 and γ = 0.15ω0. In this
section, we study the effects of the particle number N and
bath temperature T on the dynamics of spin squeezing and
concurrence.

Figures 1(a) and 1(b) show the time evolution of ζ 2
KU,

ζ 2
T , and Cr with two different particle numbers, N = 10

and N = 20. The inverse temperature is set to β = 4/ω0.
Figures 1(a) and 1(b) show that the decay rate of Cr increases
with N . Although the rescaled concurrence of the initial
state for N = 20 is larger than that for N = 10, it vanishes
earlier. Also, the revival, after a sudden vanishing, becomes
weaker with increasing N . Both ζ 2

KU and ζ 2
T decay in an

oscillatory way. We observe that ζ 2
T vanishes suddenly, while,

interestingly, ζ 2
KU decays to zero asymptotically (t → ∞), as

shown in the insets. Comparing Figs. 1(a) and 1(b), we find
that for spin squeezing, the vanishing time changes little with
increasing N .

Now we focus on the effects of the bath temperature on the
dynamics of spin squeezing and rescaled concurrence, which
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FIG. 1. (Color online) Time evolution of the spin-squeezing
parameters ζ 2

KU and ζ 2
T and the rescaled concurrence Cr as a function

of dimensionless quantity ω0t for (a) N = 10 and (b) N = 20.
The inverse temperature is taken as β = 4/ω0. The insets show
the magnifications in the region where ζ 2

KU nearly vanishes. The
horizontal x axes are logarithmic, but the inset x axes are linear.
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C
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FIG. 2. (Color online) Time evolution of the rescaled concurrence
as a function of dimensionless quantity ω0t for different values of the
inverse temperature β. Here, we choose N = 10.

are shown by Figs. 2– 4. These figures are plotted with a fixed
particle number N = 10 and different temperature T . Here we
choose the inverse temperature β = 4/ω0,3/ω0,2.5/ω0,2/ω0,
and we particularly take β = 0.5/ω0 for ζ 2

KU. First, let us
discuss the time evolutions of Cr , which are shown in Fig. 2. As
expected, Cr is suppressed with increasing temperature. When
we choose a low temperature, such as β = 4/ω0, Cr decays
with multiple revivals. When the temperature increases, the
revivals become weaker. Cr even vanishes completely without
revival when β = 1/ω0.

The spin squeezing is also suppressed with increasing T .
As shown in Fig. 3, ζ 2

KU decays without sudden vanishing and
approaches zero asymptotically (t → ∞) when temperature
is not high enough, which is shown in the inset. Interestingly,
when the temperature reaches β = 0.5/ω0, ζ 2

KU decays to zero
quickly and suddenly without revival. The behavior is quite
different from Cr . However, ζ 2

T decays and suddenly vanishes
even with low temperature, as shown in Fig. 4, which is similar
to Cr .

From the comparison, although they have close relations,
we find that spin squeezing is not a satisfactory indicator of
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FIG. 3. (Color online) Time evolution of the spin-squeezing
parameter ζ 2

KU as a function of dimensionless quantity ω0t for different
values of β, with N = 10. The inset shows the magnification in the
region where t is large.
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FIG. 4. (Color online) Time evolution of the spin-squeezing
parameter ζ 2

T as a function of dimensionless quantity ω0t for different
values of β, with N = 10.

pairwise entanglement under decoherence for the open system.
Also, it is noted that instead of decreasing monotonically, the
spin squeezing and concurrence both decay with oscillations.
There is a theorem that entanglement does not increase
under local operations and classical communication (LOCC).
However, the oscillations of the concurrence do not violate
the theorem. Actually, only the process from t0(t0 = 0) →
t(t > 0) is an LOCC, while the process from an intermediate
time t ′(t ′ > 0) to t(t > t ′) is not an LOCC. As we know,
a process is called an LOCC only if it can be expressed
as [58]

ρ →
∑

μ

KμρK†
μ, (52)

where Kμ = ⊗N
i=1l

i
μ are the Kraus operators and liμ is a local

operation on particle i, with
∑

μ liμ
†
liμ � 1. It is evident that, if

the dynamics of an open system can be expressed as Eq. (52),
the system and bath should be initially separated. Obviously,
the process from t0 → t in our work is an LOCC since Eq. (2)
is a product state. As we can see from Figs. 1 and 2, the
concurrence at t(t > 0) is less than that at t0, which implies that

the theorem is not violated. However, since our method does
not involve the Born-Markov approximation, the system and
bath are correlated during the evolution. Therefore, in general,
a process from t ′ → t cannot be expressed as Eq. (52), and it
is not an LOCC. Detailed discussions are given in [54,59].

VI. CONCLUSION

In this work, we consider an ensemble of N spin-1/2
particles interacting with identical independent bosonic heat
baths. The one-axis twisted state is chosen to be the initial
state. The mean spin direction of the initial state is along
the z axis, and it does not change during the decoherence
dynamics. For the open system we consider, we proved that
the multiqubit dynamics can be reduced into a two-qubit one.
Then we use the hierarchy equation method to study the spin
squeezing and concurrence under decoherence. This is an
exact method without using rotating-wave and Born-Markov
approximations.

From the numerical results, we find that the decay rate of
the rescaled concurrence increases with the particle number
N as well as the bath temperature T , and the revivals become
weaker over time. For the spin squeezing, it is suppressed with
increasing temperature, as expected, while the vanishing time
changes little with N . The spin-squeezing parameter ζ 2

KU van-
ishes asymptotically with low bath temperature and disappears
suddenly when bath temperature is high enough. Interestingly,
ζ 2

T vanishes suddenly even when bath temperature is low,
which is similar to Cr .
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