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Excitation spectrum for an inhomogeneously dipole-field-coupled superconducting qubit chain
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When a chain of N superconducting qubits couples to a coplanar resonator, each of the qubits experiences a
different dipole-field coupling strength due to the wave form of the cavity field. We find that this inhomogeneous
coupling leads to a dependence of the collective ladder operators of the qubit chain on the qubit-interspacing l.
Varying the spacing l changes the transition amplitudes between the angular momentum levels. We derive an
exact diagonalization of the general N -qubit Hamiltonian and, through the N = 4 case, demonstrate how the
l-dependent operators lead to a denser one-excitation spectrum and a probability redistribution of the eigenstates.
Moreover, we show that the variation of l between its two limiting values coincides with the crossover between
Frenkel- and Wannier-type excitons in the superconducting qubit chain.
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I. INTRODUCTION

Superconducting quantum circuits have attracted consider-
able attention because of their capabilities (i) to demonstrate
macroscopically the basic interaction of one “atom” and one
photon in a cavity (e.g., [1,2]), (ii) to serve as a platform for
testing many quantum optical phenomena (e.g., [3–7]), as well
as (iii) to show its potential as a basis for quantum information
processing (e.g., [8–11]).

While research on single-qubit interactions is more com-
mon, many recent articles also studied multiqubit interactions.
Superconducting circuits with such interactions are also known
as quantum metamaterials [12]. To be precise, the circuit sys-
tem we consider here consists of a chain of N superconducting
two-level qubits coupled to a photon mode in a superconduct-
ing coplanar waveguide resonator. Compared to the single-
qubit version, it can manifest even more quantum phenomena,
including plasma waves [13], controllable collective dressed
states [14], and quantum phase transitions [15–18]. It also
promises potential for various applications, including quantum
simulators [19] and quantum memories [20].

Theoretical studies of multiqubit interactions with a photon
often employ the Dicke model [21], where the Pauli operators
are summed and transformed into a bosonic operator. In this
approach, the chain of qubits is treated collectively as an atomic
ensemble and the excited qubits are collectively regarded
as one exciton mode. This theoretical simplification proves
adequate when (i) the number of excitations in the system is
low (e.g., in the so-called “one-photon” processes) and (ii) the
number of qubits is large enough such that the interspacing Lq

between neighboring qubits can be ignored compared to the
photon wavelength Lp in the resonator (i.e., the qubits can be
regarded as a continuum).

However, the question of how excitations arise in su-
perconducting metamaterials when these two conditions are
not met remains unanswered. In a realistic setting for a
superconducting circuit, the number N of qubits present can
range from one to, say, 10, but N would not be as large as
the number of atoms we usually have for an alkaline atomic

ensemble in an optical microcavity, which is typically greater
than 105. Therefore, the Dicke model, which treats N → ∞,
does not apply well to the case of multiqubit superconducting
circuits with N � 10.

When a chain of superconducting circuit qubits is arranged
as a one-dimensional array [i.e., a superconducting qubit chain
(SQC)], each qubit is inhomogeneously coupled to the circuit
photon mode. In other words, each qubit has a different
coupling strength to the photon field. This occurs naturally
since, unlike its optical cavity quantum electrodynamics
(QED) counterpart, the photon wavelength Lp is comparable
to the qubit interspacing Lq in a superconducting circuit. The
coupling strength thus depends on the position of the qubit
relative to the photon wave form. The effect of the varying
coupling strength becomes even more obvious if multimode
couplings are taken into consideration. For example, the qubits
on the antinodes of the wave form will couple most strongly,
whereas those on the nodes will not couple.

The first step to understand and characterize this inho-
mogeneously coupled system (the aim of this article) is to
obtain the energy spectrum of the collective excitation mode
in the chain of qubits and to compare it with that of the
Dicke model. We find that the inhomogeneity of the couplings
incurs an algebraic deformation of the Pauli operators of
the qubits [22–25]. We quantify this deformation through a
“deformation factor,” which is a function of the relative spacing
l = 2Lq/Lp, and characterize the amount the inhomogeneous
system deviates from the homogeneous case. The deformation
factor modifies the spin operators of the collective qubit chain.
Consequently, the excitation spectrum will not only be a
function of the eigenenergy of the photon mode and the qubit
level spacing, but is also highly related to the deformation
factor and hence the relative spacing l.

Note that when atoms are confined to a cavity, the magnetic
or laser field that is exerted on them is uniform. The strength
of the interaction can be uniformly increased or decreased
according to the density of the atoms. This macroscopic
viewpoint does not differentiate between the identities of the

053833-11050-2947/2012/85(5)/053833(10) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.85.053833


HOU IAN, YU-XI LIU, AND FRANCO NORI PHYSICAL REVIEW A 85, 053833 (2012)

atoms. However, for circuit QED, the identities of the qubits
are partially differentiated since the qubits can be categorized
according to the values of their coupling strength to the photon
mode. This partial differentiation has made understanding the
inhomogeneous system a many-body physics question.

Our deformation algebraic approach here is a statistical
approximation method that can be regarded as finding the
average contribution of the coupling strength given by the SQC
as a whole. In the end, the characterization (the excitation
spectrum) of the SQC as an inhomogeneous system is not
parametrized by the individual qubits, but by the relative
spacing l. In other words, the spacing l is one extra degree
of freedom peculiar to the inhomogeneous SQC, not seen in a
homogeneous optical cavity.

We will first introduce the model and derive the deformation
factor in Sec. II. With the deformation factor, new operation
rules for the spin angular momentum operators are found
by solving a difference equation in Sec. III. The general
energy spectrum for n-qubit SQC is given in Sec. IV. We
also derive in Sec. IV a one-excitation spectrum for a four-
qubit SQC as a nontrivial case to show the effects of the
inhomogeneity. Namely, the energy splittings between
the eigenstates of the deformed coupling case shrink, while
the probability amplitudes of the eigenstates are redistributed
such that higher-photon occupations are favored.

In the final Sec. V, we will consider how the collective
excitations on the SQC would emulate the excitons in atomic
lattices, especially on how the varying spacing l can affect
the distinct localizations of the SQC excitons to approach
two limits, emulating the Frenkel and the Wannier exciton,
respectively. Since the cavity photon is a standing wave instead
of a propogating electromagnetic wave in a dielectric solid,
we discuss the localization problem in the Fourier transform
domain and observe from it how the emulated exciton can cross
over from the Frenkel type to the Wannier type. We find that
this crossover depends on a (2N − 1)-th order trigonometric
equation, whose solution corresponds to the asymptotic turn-
ing point from the deformed (inhomogeneously coupled) SQC
to the undeformed (homogeneously-coupled) SQC.

II. INHOMOGENEOUS COUPLING MODEL

A. Inhomogeneous coupling

For a finite number N of spins in the SQC, the problem
discussed here is similar to the Tavis-Cummings (TC) model
[26,27], where all the spins are grouped into a total “large” spin.
However, the exactly solvable TC model applies only when
the coupling is homogeneous and when the eigenfrequencies
between the qubits and the photon mode are equal. When the
coupling is inhomogeneous, the large spin does not obey the
usual commutation relations of the Pauli matrices, which
the TC model assumes.

The new commutation relations of the large spin introduced
by the inhomogeneity are pertinent to the deformed SU(2) Lie
algebras. From these algebraic structures, we can establish a
deformed dipole-field coupling model, of which the TC model
is a special case. In the following discussion, we consider
the typical case where the interqubit spacing is uniform.
The coupling strength of each qubit to the photon field can,
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(b)

FIG. 1. (Color online) (a) Schematic diagram of a fraction of
an SQC with spacing l = 1. The upper strip represents a coplanar
resonator whose potential wave form of wavelength Lp is drawn as a
sinusoidal curve, while the lower one represents a ground strip. The
rectangles between the strips are qubits with interspacing Lq. The
gray dots on the curve indicate the antinodes of the wave form.
The blue dots indicate that only a fraction of the system is shown. (b)
The elongation effect on the large spin due to inhomogeneous
coupling. The ellipsoid shows a case of deformation RN,l = 0.5. The
unit sphere shows the spin under the usual homogeneous coupling.

therefore, be written as a cosine function of a phase factor
which is determined by the position j l of the j th qubit,
where j is the reduced coordinate and l is the relative spacing
introduced above.

The situation is illustrated in Fig. 1(a). A chain of
qubits is sandwiched between the superconducting coplanar
resonator and a superconducting ground strip. The photon
mode providing different potential energies on the spins is
shown by the red sinusoidal curve.

We use the operators {σj,z} to denote Josephson junction
qubits, and {a,a†} to denote the operators for the single-photon
mode. With the wave vector being the reciprocal of the photon
field wavelength on the one-dimensional lattice, k = 2π/Lp,
the dipole-field coupling is of the form σj,x[a cos(jπl) +
H.c.]. Under the rotating wave approximation, the Hamiltonian
can be written as (h̄ = c = 1),

H = ωq

N−1∑
j=0

σj,z + ω0a
†a + η

N−1∑
j=0

cos(jπl)[σj,+a + σj,−a†],

(1)

where ωq is the eigenenergy of the spins, ω0 the mode
frequency of the photon, and η the coupling amplitude.

To diagonalize the Hamiltonian in Eq. (1), we introduce the
“large spin” operators: the magnetic moment or z-direction
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collective spin operator,

Sz =
N−1∑
j=0

σj,z, (2)

which is no different from the homogeneous case, and the
paired raising and lowering operators,

S+ =
N−1∑
j=0

σj,+ cos(jπl), (3)

S− =
N−1∑
j=0

σj,− cos(jπl), (4)

which have the special sinusoidal dependence on l due to the
inhomogeneity. The commutator of the paired ladder operators
no longer equals to 2Sz but has an additional term due to the
cosine coefficients (i.e., [S+,S−] = 2�z) with

�z = Sz +
N−1∑
j=0

sin[jπ (1 + l)] sin[jπ (1 − l)]σj,z. (5)

The detailed derivation is shown in Appendix A 1. Note that in
the usual circuit QED system [2], where only one spin is placed
at midway, the spacing l equals to 2, for which the latter term
in �z vanishes. This is the limiting case which corresponds to
the Wannier type of excitation, where the set of spin operators
retains the usual structure of an undeformed SU(2) algebra.

B. Deformed algebraic structure

When the second term of �z does not vanish, the algebraic
structure is called deformed [22–25]. In order to quantify the
deformation, the commutator of the ladder operators needs to
be expressed as a function of Sz [i.e., �z = f (Sz)]. To find this
function f , we consider an underlying manifold, on which
there is a local point, say the origin 0, where we define a
tangent space with the Pauli z matrices {σj,z} being its basis
vectors, since these matrices are linearly independent. The
operator Sz, defined above with uniform coefficients, can be
deemed a vector in this tangent space; the operator �z is then
another vector dependent on the parameter l and is a deviation
or deformation from Sz. Thus, the first-order approximation of
�z with respect to Sz is its projection onto the vector Sz. That
is, since the cosine coefficients are bounded, we can use their
Hilbert-Schmidt norm,

〈�z,Sz〉 = tr(�∗
z Sz) = N +

N−1∑
j=0

cos(2jπl), (6)

and the Schmidt decomposition [28] to write �z = RN,lSz as
a deformation of the original z-spin operator where

RN,l = 1

4N

{
2N + 1 + sin[(2N − 1)πl]

sin(πl)

}
(7)

is the deformation factor (cf. Appendix A 2 for this derivation).
The commutator of the ladder operators can now be expressed
as

[S+,S−] = 2RN,lSz, (8)

where RN,l has a limiting value of one when l → 0 or l → ∞,
for which the usual structure used in the TC model is retained.

Since the deformation factor RN,l does not affect the
commutation relations between the ladder operators and the
z spin, the large-spin operators {Sz,S+,S−} form a specific
deformed algebra [22,23] and not the more general type [24].
The Casimir operator,

C = S−S+ + h(Sz), (9)

of the algebra, which equals to the undeformed spin mo-
mentum square, S2 = S2

x + S2
y + S2

z , for the homogeneous
coupling case, is accordingly deformed. Through solving a
recursive relation (cf. Appendix A 3 for details), we find
h(Sz) = RN,l(S2

z + Sz) and hence,

C = S2
x + S2

y + RN,lS
2
z , (10)

which shows that the spin momentum is reduced along the z

direction:

S2 = S2
x + S2

y + RN,lS
2
z . (11)

To visualize this reduction of the spin momentum, we can take
a unit value for the spin moment and let the Casimir operator be
represented by a unit sphere in three-dimensional space for the
undeformed case. With RN,l � 1, the deformation would be an
elongation of the unit sphere, along the z axis, to an ellipsoid,
while the x- and y-semi-minor axes remain unchanged, as
shown in Fig. 1(b).

III. OPERATION RULES

If we consider the unit sphere of Fig. 1(b) as a Bloch
sphere on which the large spin prescribes its N levels, its
elongation due to deformation will accordingly modify the
transitions between the levels. Since the spin-up and the
spin-down momenta do not change, which are still ωqN/2 and
−ωqN/2, the narrow part of the ellipsoid effectively squeezes
the transition probabilities.

More precisely, we consider an arbitrary eigenstate |r,m〉,
for which

Sz |r,m〉 = m |r,m〉 , (12)

S2 |r,m〉 = r(r + 1) |r,m〉 . (13)

The ladder operators result in an (r,m)-dependent off-diagonal
matrix element α(r)

m , that is,

S+ |r,m〉 = α(r)
m |r,m + 1〉 , (14)

S− |r,m〉 = α
(r)
m−1 |r,m − 1〉 . (15)

By examining the diagonal elements of the commutator of
the ladder operators, we find a difference equation (α(r)

m )2 −
(α(r)

m−1)2 = −2mRN,l . With the value α
(r)
−r = 0, the equation can

be solved to give the deformed off-diagonal matrix elements
or transition probabilities for the ladder operators,

α(r)
m = √

RN,l(r − m)(r + m + 1). (16)

See Appendix B for its derivation.
Geometrically speaking, the deformation process is a

homeomorphism with a redefined metric g = (1,1,RN,l).
Since RN,l � 1, the metric norm is less than unity. The
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FIG. 2. (Color online) (a) The deformation factor RN,l |N=30, as
an oscillating function of the qubit spacing l. (b) Plot of the function
h(Sz) for various values of RN,l . The top and bottom boldened curves
correspond to RN,l = 1 and 0.4, respectively. The gray-shaded double
arrows indicate three spin levels of the underformed SQC, while the
black arrows show the r = 1/2 level of the deformed case.

deformation does not affect the level spacings of the magnetic
moment Sz: The number m still takes (2r + 1) values (i.e., the
ellipsoid is homeomorphic to the sphere). But the transition
amplitudes to traverse the sphere decrease: If we start with a
spin-up state |r,r〉 and finish with a spin-down state |r, −r〉,
then all iterations with S− |r,m〉 = α

(r)
m−1 |r,m − 1〉 have α(r)

m

smaller than the original ᾱ(r)
m = √

(r − m)(r + m + 1) (i.e.,
the ellipsoid is not isometric to the sphere).

The deformation factor expressed in Eq. (7) is an oscillating
function of l, where the sine in the numerator determines
the period of oscillation and the sine in the denominator
determines the period of the envelope. Therefore, the spin
angular momentum of the SQC would be oscillating between
the unit sphere and the ellipsoid, depending on the qubit
spacing l. The plot of RN,l in Fig. 2(a) for an SQC of N = 30

qubits shows a typical case with envelop of period 1 and
local minimum of 0.4. The function h(Sz) associated with
this deformation factor is a parabola of the magnetic moment
Sz. For a nontrivial deformation RN,l < 1, this parabola
flattens and the spin levels become denser. The curvature of
the parabola decreases while its minimum value −RN,l/4
increases. As shown in Fig. 2(b), the black (gray) arrow
indicates the spin level r = 1/2 for the deformed RN,l = 0.4
(undeformed RN,l = 1) case of SQC. So varying l makes
the curve h(Sz) oscillate between the boldened curves that
correspond to RN,l = 0.4 and RN,l = 1, respectively. We can
also observe that the level splittings are reduced, reflecting the
elongated structure of the Bloch sphere in Fig. 1(b) and the
modified operation rule of Eq. (16).

IV. DEFORMED SPECTRUM

Equipped with the modified operation rules, we can
diagonalize the Hamiltonian in Eq. (1). First, we split the
Hamiltonian into two parts:

H0 = ω0(Sz + a†a), (17)

H1 = ω̃0a
†a + η(S+a + S−a†). (18)

Let u be the number of total excitations and hence the
eigenvalue of H0. Let n be the number of photons in the system
such that the SQC magnetic moment is m = u − n. Let ν be
the eigenvalue of the interaction part H1, where ω̃0 = ω0 − ωq.

The eigenvector of the Hamiltonian can then be expanded as
a superposition of different configurations of photon number
and spin states:

|u,r〉 =
∑

n

cn |n; r,u − n〉 . (19)

The expansion coefficients cn satisfy a recursive relation [27]:

cn+1

√
n + 1α

(r)
u−(n+1) − cnṽn + cn−1

√
nα

(r)
u−n = 0, (20)

where ṽn = (v − ω̃0n)/η.
The solution reads

cn =
�n/2	∑
p=0

(−1)p(RN,l)
p−n/2Cn,p. (21)

Cn,p can be regarded as a probability amplitude contribution
to the n-photon state from a set of corresponding qubit chain
states indexed by p:

Cn,p = Pn√
n!

∑
· · ·

∑
〈j1...jk ...j�n/2	〉

p∏
k=1

(jk + 1)

ṽjk
ṽjk+1

[
ᾱ

(r)
u−(jk+1)

]2
, (22)

where Pn = ∏n−1
j=0 ṽj /ᾱ

(r)
u−(j+1) and 〈j1 . . . jk . . . j�n/2	〉 repre-

sents an index set of descending order {∀k < l : 0 � jl �
jk − 2; 0 � j1 � n − 2}. We can see from Eq. (21) that the
operation rules discussed in the preceding paragraphs have
made the probability amplitudes deformation dependent, thus
l dependent. This will consequently lead to a redistribution of
probabilities for different photon states. See Appendix C 1 for
the derivation of these coefficients Cn,p.

The simplest nontrivial example of this deformation effect
can be seen in Table I, where we consider the one-excitation
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TABLE I. Configurations |n; r,m〉 and probability amplitudes cn for the one-excitation spectrum of a SQC
with N = 4 qubits and spacing l = 2/3. Each ◦ indicates one photon while ↑ or ↓ denotes the spin state of
each qubit. Here, ṽn = (v − ω̃0n)/η.

u = 1
r = 2

{
n = 0
m = 1

{
n = 1
m = 0

{
n = 2

m = −1

{
n = 3

m = −2

Photon

Spin config.

−
↓↑↑↑
↑↓↑↑
↑↑↓↑
↑↑↑↓

◦
↑↑↓↓,↓↓↑↑
↑↓↓↑,↓↑↑↓
↑↓↑↓,↓↑↓↑

◦◦
↑↓↓↓
↓↑↓↓
↓↓↑↓
↓↓↓↑

◦ ◦ ◦
↓↓↓↓

cn 1 ṽ0√
6R

ṽ0 ṽ1
6
√

2R
− 1√

2
ṽ0 ṽ1 ṽ2

12
√

6R3/2 − ṽ2+2
√

6ṽ0
12

√
R

(u = 1) spectrum of a four-qubit SQC with spacing l = 2/3.
The deformation factor in this case is RN,l = 5/8. For a weakly
coupled SQC with |ω̃0| � η, the eigenenergies for the four
levels are given by (cf. Appendix C2 for the derivation)

E±,± = ωq + 3
2 ω̃0 ± 1

2

[
5ω̃2

0 ± 4ω̃0
(
ω̃2

0 + 36RN,lη
2
)1/2]1/2

.

(23)

For a deformation factor RN,l < 1, the splittings between these
dressed levels are suppressed. In addition, if we substitute the
value of v into the coefficients cn, we will find that c1 is
greater than that of the undeformed case, c2 (c3) increases by
a greater proportion than c1 (c2), while c0 remains equal to
one. Therefore, the probability distribution shifts toward the
end that favors states with a greater number of photons and
less degeneracy.

V. EXCITONS IN THE QUBIT CHAIN

A. Background on excitons

When an atomic lattice is excited by some incident
radiation, a number of atoms absorb the energy, creating
simultaneously excited electrons from the valence band
and corresponding excited holes from the conduction band
(see Ref. [29] for a concise review). Multiply-excited
electron-and-hole pairs arise at different lattice points in
a crystal, forming an excitation wave. Frenkel showed
that several superposed excitation waves compose a single
excitation packet or exciton that can propagate in the lattice.
However, if the electron-hole attraction energy is sufficiently
large, the electrons are tightly bound to their ionic cores,
unable to propagate in the lattice. In other words, the
electron-hole pairs in their excited orbits are regarded as
localized while the exciton (a.k.a., the Frenkel exciton) is not
necessarily localized to any lattice point. As a result, Frenkel
concluded that certain dielectric materials can conduct heat
current, which are carried by the excitons while they cannot
conduct electric currents, which are carried by the electrons.

Later, Wannier found that even the excited electron-hole
pairs are not necessarily confined to their individual lattice
cell. Due to different electronic configurations, insulators can
have either localized or delocalized electron-hole pairs. He
quantified this argument by showing that a definite portion of
the total multiplicity of the electron states are gapped from
the excited Bloch band. As a result, the electron-hole pairs of
certain dielectric materials are indeed ionizable to the Bloch

continuum and conduct electric current. In such a case, there
is no need to differentiate between the excitation waves, the
excitation packets, and the excitons. The electron-hole pairs
are themselves the excitons, delocalized and propagating in
the atomic lattice (a.k.a., the Wannier exciton).

Whether it is a Frenkel exciton or a Wannier exciton,
the basic phenomenon is that of a collective quasiparticle
excitation, which can be theoretically studied using the Dicke
model; that is, the excitons obey bosonic statistics in the
large-N limit, where N is the total number of atoms in
the atomic lattice. By considering the excitons as bosonic
operators, various aspects and properties of different materials
have been studied. On one hand, the tightly bound Frenkel
excitons are used to study, for example, the radiation and
optical dynamics of a crystal slab of ionic compound [30].
On the other hand, the study of kinetics and scattering in
semiconductors, especially the Bose-Einstein condensates in
semiconducting materials, are modeled after the ionizable
electron-hole pairs or Wannier excitons (see, e.g., [31] for
a detailed review).

Therefore, there are two ways to categorize the collective
excitations into Frenkel excitons and Wannier excitons. One
way accords to the value of the binding energy between
electrons and holes for different dielectrics: the Frenkel
excitons typically possess higher binding energy than the
Wannier excitons. The other way is geometric: by determining
how the photon energy is absorbed. The base of Frenkel
excitons are excitation waves, which designates an uneven
absorption of energy across a group of neighboring atomic
cells in the lattice. The base of Wannier excitons are excited
electron-hole pairs, which stem from independent atomic cells
after each individually absorbs some certain energy quanta.
In fact, according to the latter interpretation, it has been
shown [32] that the Frenkel excitons and the Wannier excitons
coexist in alkali compounds. The two types of excitations are
linear combinations of each other. Recent experiments have
verified that the two types are convertible to each other in
some hybrid semiconductors [33].

B. Emulated excitons and their crossover in SQC

To a large extent, a superconducting qubit macroscopically
emulates the quantum mechanical behavior of a two-level
atom. Their mathematical models are identical for weak
electromagnetic couplings. Extending this concept to many
superconducting qubits, the SQC collectively emulates a
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FIG. 3. (Color online) Semilog plot of the deformation factor
RN,l versus 1/l over one period, showing the Wannier limit on the
left end and the Frenkel limit on the right end of the horizontal axis.
The number of qubits is set to N = 1000.

one-dimensional atomic lattice. Particularly, the excited qubits
are functionally identical to the excited atoms in layered crystal
slabs as described in Ref. [30]. Moreover, the excitations
induced by the cavity photons in the superconducting stripline
obey bosonic statistics in the large-N limit as we have shown
in Sec. II, just like those of the regular excitons.

There remains the question of which type of excitons do
the excitations in SQC emulate. If we adopt the geometric
intepretation, both types of excitons coexist in the SQC lattice
as in the alkali compounds and hybrid semiconductors. The
emulated exciton type depends on whether the neighboring
qubits are excited individually or excited unevenly as a wave.
This dependence relies exactly on the relative spacing l of the
SQC.

In the large l limit [i.e., when the interqubit spacing Lq

is much larger than the photon wavelength Lp (Lq � Lp)]
we assume that the excitation induced by the uniform dipole-
field coupling produces emulated Wannier excitons evenly at
each lattice site. In the small l limit [i.e., when Lq � Lp (in
particular, for the base mode in the strip line, a single-photon
wavelength extending over all the qubits], an excitation wave
is formed on the SQC; this type of excitation is considered as
the emulated Frenkel excitons.

Note that when l tends to either zero or infinity in Eq. (5),
�z falls back to Sz and the regular SU(2) algebra for the
commutators is obtained. Thus, it is justified that in the
large-N limit, the low-energy excitation becomes bosonic for
both Wannier and Frenkel excitons. To determine when the
emulated exciton crosses from Wannier- to Frenkel-type, we
plot in Fig. 3 the deformation factor versus the reciprocal
of the spacing over 10−4 < l < 1, where we can see the
asymmetry between the left edge (1/l → 0) for the Wannier
limit and the right edge (1/l → ∞) for the Frenkel limit.
Setting dRN,l/dl = 0, we obtain the trigonometric equation,

tan[(2N − 1)πl] = (2N − 1) tan(πl). (24)

Transforming Eq. (24) to U2N−1(cos πl) = 2N ×
T2N−1(cos πl), where T2N−1 (U2N−1) is the Chebyshev
polynomial of the first (second) kind, we can observe that it
is a (2N − 1)th-order polynomial equation. Hence, the curve

has (2N − 1) local extrema in exactly (N − 1) oscillations
from the Wannier end to the asymptotic Frenkel end. Between
these two limits, the excitation has various degrees of
deformation and the crossover is continuous. We can regard
the crossover point to be the absolute minimum before the
deformation factor asymptotically approaches one. This point
approaches 0 when N → ∞. For the case illustrated in Fig. 3
with N = 1000, a numerical estimation gives the crossover
at l = 7.16 × 10−4, or a length of 2800 spins per photon
wavelength.

VI. CONCLUSION

We have studied the inhomogeneous coupling between a
SQC and a superconducting coplanar resonator, which leads
to a set of deformation-dependent operation rules of spin
momentum. The modified rules correspond to tighter energy
spacings and a shift of the probability distribution of spin
levels. We also found that the excitations in the SQC emulated
both the Frenkel and Wannier exciton, but at two limiting
length of the qubit spacing l, between which a crossover
can be determined through a polynomial equation with l

as the variable. Since the usual excitons give rise to many
cooperative radiation phenomena such as superradiance and
superfluorescence, we predict that a similar effect will arise in
the SQC when multiple photon modes are filled in the cavity.
These radiation effects, specifically the transportation effect
of the radiated photons from the SQC excitons can be studied
with the applications of quantum information propagation in
our future researches.
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APPENDIX A: DERIVATION OF THE
DEFORMATION FACTOR

1. Commutation relation

The commutator of the ladder operators can be computed
as follows:

[S+,S−] =
N−1∑
j,k=0

cos(jπl) cos(kπl)[σj,+,σk,−]

= 2
N−1∑
j=0

cos2(jπl)σj,z

= Sz +
N−1∑
j=0

cos(2jπl)σj,z.
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To use a consistent notation, we write the right-hand side as
2�z and extract Sz from the second term,

2�z = 2Sz +
N−1∑
j=0

[cos(2jπl) − cos(2jπ )] σj,z

= 2Sz + 2
N−1∑
j=0

sin [jπ (1 + l)] sin [jπ (1 − l)] σj,z,

which gives Eq. (5).
We can also check that other commutation relations are

preserved:

[Sz,S±] =
N−1∑
j,k=0

[σk,z,σj,± cos(jπl)]

=
N∑

j=0

±σj,± cos(jπl)

= ±S±,

from which we conclude that the newly defined operators
{Sz,S+,S−} form a Polychronakos-Rocek type of deformed
SU(2) algebra.

2. Deformation factor

First, we recognize that each qubit σj,z has two orthonormal
basis vectors {|ej 〉,|gj 〉} for a fixed relative coordinate j

and hence {|εk〉 : |εk〉 ∈ {|ej 〉,|gj 〉,j = 0, . . . ,N − 1}} forms
an orthonormal basis for the Hilbert space H that spans
all the qubits on the chain. Then Sz for the original spin
angular momentum and �z for that of the inhomogeneous
SQC become operators on this Hilbert space H. Since the
sinusoidal functions cos(jπl) are bounded, we can define the
Hilbert-Schmidt inner product as

〈�z,Sz〉 = tr(�∗
z Sz) =

2N∑
k

〈εk|�z · Sz|εk〉

=
2N∑
k

〈εk|
N−1∑
j,l=0

cos2(jπl)σj,z · σl,z |εk〉

=
2N∑
k

〈εk| cos2(�k/2	πl)σ�k/2	,z · σ�k/2	,z |εk〉

=
2N∑
k

cos2(�k/2	πl)

=
N∑
j

2 cos2(jπl),

which equals to Eq. (6). We can then write the approximation
of �z as a Schmidt projection on Sz,

�z ≈ 〈�z,Sz〉
〈Sz,Sz〉 Sz

= N + 1 + ∑
j cos(2jπl)

2(N + 1)
Sz

=
⎡
⎣1

2
+ 1

2N

N−1∑
j=0

cos(2jπl)

⎤
⎦ Sz

= RN,lSz,

where RN,l denotes the deformation factor. Its expression can
be further simplified to

RN,l = 1

4N

[
2N + 1 − cos(2Nπl) + sin(2πl) sin(2Nπl)

1 − cos(2πl)

]

= 1

4N

[
2N + 1 − cos(2Nπl) + cos(πl) sin(2Nπl)

sin(πl)

]

= 1

4N

[
2N + 1 + sin[(2N − 1)πl]

sin(πl)

]
,

where the first line is derived by comparing the real parts in a
summation of exponentials.

3. Casimir operator

The Casimir operator for the algebra is

C = S−S+ + h(Sz),

where the second term satisfies a recursive relation [24]:

h(Sz) − h(Sz − 1) = 2RN,lSz.

This relation leads to a solution composed of Bernoulli
polynomials:

h(Sz) = RN,l [B2(−Sz) − B2]

= RN,l

(
S2

z + Sz

)
,

where B2(−Sz) is the second-order Bernoulli polynomial with
the operator Sz as variable and B2 is the second Bernoulli
number. The Casimir operator becomes, then,

C = S−S+ + RN,l

(
S2

z + Sz

)
= 1

2 (S+S− + S−S+) + RN,lS
2
z ,

which equals to Eq. (10) and represents a deformed total spin
operator S2.

APPENDIX B: DERIVING THE OPERATION RULES

Assume the eigenstate of the z-spin momentum operator
Sz to be |r,m〉, that is, r(r + 1) denotes the total spin number
and m the magnetic moment, for which Eqs. (12) and (13)
are satisfied. Furthermore, assume α(r)

m to be the coefficients
when the ladder operators are applied to the state vectors as in
Eqs. (14) and (15), which is indexed by r and m.

By applying the vector |r,m〉 to the commutation relation
Eq. (8), we find

〈r,m|[S+,S−]|r,m〉 = 〈r,m|S+S− − S−S+|r,m〉
= (

α
(r)
m−1

)2 − (
α(r)

m

)2

= 〈r,m|2RN,lSz|r,m〉
= 2RN,lm.

Selecting the second and the fourth line, we arrive at a
difference equation of m:(

α(r)
m

)2 − (
α

(r)
m−1

)2 = −2mRN,l.
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To solve the equation, we list out the iterations until the last
entry where α

(r)
−r−1 = 0 since −r is the minimum value m can

take as the magnetic moment:

(
α(r)

m

)2 − (
α

(r)
m−1

)2 = −2RN,lm,(
α

(r)
m−1

)2 − (
α

(r)
m−2

)2 = −2RN,l(m − 1)

...
...

...(
α

(r)
−r

)2 − (
α

(r)
−r−1

)2 = −2RN,l(−r).

Summing up all the iterations above, we have

(
α(r)

m

)2 = −2RN,l

m+r∑
j=0

(m − j )

= −RN,l(m − r)(m + r + 1), (B1)

which gives Eq. (16). We can verify this result by summing up
instead of summing down, that is, with the condition α(r)

r = 0
and the iterations,

(
α(r)

m

)2 − (
α

(r)
m+1

)2 = 2RN,l(m + 1),(
α

(r)
m+1

)2 − (
α

(r)
m+2

)2 = 2RN,l(m + 2)

...
...

...(
α

(r)
r−1

)2 − (
α(r)

r

)2 = 2RN,lr,

we have, after adding them up,

(
α(r)

m

)2 = 2RN,l

r−m∑
j=0

(m + j )

= RN,l(r − m + 1)(m + r),

which is the same as Eq. (B1).

APPENDIX C: DERIVING THE EXCITATION SPECTRUM
OF THE SUPERCONDUCTING QUBIT CHAIN

1. State vector compositions for a general N-qubit
superconducting qubit chain

The form into which the system Hamiltonian is split as in
Eqs. (17) and (18) ensures that [H0,H1] = 0. The commutation
of these two parts implies that we can find simultaneous
eigenvectors for H0 and H1.

First, for an eigenvector |n; r,m〉 (or written as |u,r〉) of H0,
we have

H0 |n; r,m〉 = H0 |u,r〉 = ωq(m + n) = ωqu,

where {u,n,m} assumes meanings as described in Sec. IV.
Note that the eigenvalue ωqu is degenerate, for different
combinations of m and n that add up to the same u. Therefore
the eigenstate of H0 can be written as a superposition,

|u,r〉 =
∑
n,m

cn |n; r,m〉 δ(u − n − m)

=
∑

n

cn |n; r,u − n〉 �, (C1)

where � is a range delta function,

� =
{

1, −r � u − n � r

0, otherwise,

since we have to ensure the state vectors satisfy the addition
rules of angular momentum.

Our next step is to find those of Eq. (C1) that are also
simultaneous eigenvectors of H1. With the modified operation
rule Eq. (16) and setting m = u − n, we can apply H1 to the
expression and, after reshuffling the terms in the summation
such that vectors with the same total excitation number are
grouped together, we find

H1|u,r〉 =
∑

n

{
cnω̃0n + cn+1η

√
(n + 1)α(r)

u−n−1

+ cn−1η
√

nα
(r)
u−n

}|n; r,u − n〉�. (C2)

Since ν is the eigenvalue of H1, we have

H1 |u,r〉 = v |u,r〉 =
∑

n

cnv |n; r,u − n〉 �. (C3)

Then comparing Eq. (C2) with Eq. (C3), we deduce a
difference equation,

cn+1η
√

(n + 1)α(r)
u−(n+1) − cnṽn + cn−1η

√
nα

(r)
u−n = 0,

where ṽn = (v − ω̃0n)/η and the initial conditions are

c−1 = 0,

cu+r+1 = 0.

In addition, from the definition of the � function, n � u + r .
Now write

cn = Cn√
n!

∏n
j=1 α

(r)
u−j

, (C4)

and we have a simplified difference equation,

Cn+1 − Cnṽn + Cn−1n
(
α

(r)
u−n

)2 = 0.

To find the solution, we multiply each equation starting with
Cj by

∏n
k=j ṽn:

Cnṽn − Cn−1ṽnṽn−1 + (n − 1)ṽnCn−2
[
α

(r)
u−(n−1)

]2 = 0,

...
...

...

C2

n−1∏
j=2

ṽj − C1

n−1∏
j=1

ṽj + C0
[
α

(r)
u−1

]2
n−1∏
j=2

ṽj = 0,

C1

n−1∏
j=1

ṽj − C0

n−1∏
j=0

ṽj = 0.

Then with the terminating conditions C1 = C0ṽ0 and C0 = 1,
we can sum up the equations to eliminate the middle terms and
obtain

Cn − Q0,n−1 +
n−2∑
j=0

(j + 1)Cjα
2
u−(j+1)Qj+2,n−1 = 0,
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where we use a shorthand notation,

Q0,n−1 =
n−1∏
j=0

ṽj .

To find the analytical expression for Cn, we recursively
expand the factor Cj :

Cn = Q0,n−1 −
n−2∑
j=0

(j + 1)Cjα
2
u−(j+1)Qj+2,n−1

= Q0,n−1 −
n−2∑
j=0

Q0,j−1Qj+2,n−1(j + 1)α2
u−(j+1)

+
n−2∑
j=0

j−2∑
k=0

Qj+2,n−1Q0,k−1Qk+2,j−1

× [
(j + 1)α2

u−(j+1)

] [
(k + 1)α2

u−(k+1)

] − · · ·
By observing that Q0,j−1Qj+2,n−1 = Q0,n−1/ṽj ṽj+1 and so on
for each pair of Q’s in the terms of each recursive expansion,
we can recursively factorize out Q0,n−1 and arrive at

Cn = Q0,n−1

�n/2	∑
p=0

(−1)p
∑

· · ·
∑

〈j1...jk ...j�n/2	〉
,

p∏
k=1

(jk + 1)

ṽjk
ṽjk+1

[
α

(r)
u−(jk+1)

]2
,

where 〈j1 . . . jk . . . j�n/2	〉 is the index set described in Sec. IV.
Finally, substituting the above expression back to the transfor-
mation Eq. (C4), we can obtain the coefficients of the excitation
eigenvector as in Eq. (21).

2. One-excitation spectrum for a four-qubit superconducting
qubit chain

The state vector for the one-excitation four-qubit SQC (u =
1, r = 2, and m ∈ {−2, −1,0,1}) can be written as

|u,r〉= c0|0; 2,1〉+ c1|1; 2,0〉+ c2|2; 2,−1〉+ c3|3; 2,−2〉.
If we assume c0 = 1 as a common factor, the rest of the three
coefficients can be written as

c1 = R−1/2C1,0,

c2 = R−1C2,0 − C2,1,

c3 = R−3/2C3,0 − R−1/2C3,1.

After plugging in the expression according to Eq. (22), we
obtain the expressions shown in Table I.

To find v, and hence the excitation energy, consider the
difference equations:

C4 − C3ṽ3 + 3C2
(
α

(2)
−2

)2 = 0,

C3 − C2ṽ2 + 2C1
(
α

(2)
−1

)2 = 0,

C2 − C1ṽ1 + C0
(
α

(2)
0

)2 = 0.

Since C4 = 0 and C1 = ṽ0C0, we derive from the last equation:

C2 = C0
[
ṽ0ṽ1 − (

α
(2)
0

)2]
,

and from the first equation,

C3 = 3C0
[
ṽ0ṽ1 + (

α
(2)
0

)2] (
α

(2)
−2

)2

ṽ3
.

Substitute these expressions into the second equation and with
Eq. (16), we have

12(ṽ0ṽ1 + 6RN,l)RN,l − (ṽ0ṽ1 − 6RN,l)ṽ2ṽ3

+ 12RN,l ṽ0ṽ3 = 0.

Expanding the ṽ, we arrive at a fourth-order polynomial
equation:

v4 − 6ω̃0v
3 + [

11ω̃2
0 − 30RN,lη

2
]
v2 − 6

[
ω̃3

0 − 13ω̃0RN,lη
2
]
v

− 36RN,lη
2
[
ω̃2

0 + 2RN,lη
2
] = 0.

If we consider the case with ω̃0 = 0 (the conventional TC-
model case), we have

v4 − 30RN,lη
2v2 − 72R2

N,lη
4 = 0,

and the roots are

v = ±
√

(15 + 3
√

33)RN,lη.

On the other hand, if we consider a weak coupling case ω̃0 �
η, then the equation becomes

v4 − 6ω̃0v
3 + 11ω̃2

0v
2 − 6ω̃3

0v − 36RN,lη
2ω̃2

0 = 0,

and the solutions are

v = 3

2
ω̃0 ± 1

2

√
5ω̃2

0 ± 4ω̃0

√
ω̃2

0 + 36RN,lη2.

Hence, the excitation energy can be written as in Eq. (23).
Now the coefficient c1 for the highest eigenenergy state is,

since usually ω̃0 < 0,

c1 = v√
6RN,lη

= 3

2
� + 1

2

√
5�2 − 4�

√
�2 + 6,

where � = ω̃0/(η
√

6RN,l). Since RN,l � 1,

|�| �
∣∣∣∣ ω̃0√

6η

∣∣∣∣ ,
which means that the deformation leads to a larger coefficient
c1 than that of the undeformed case. For c2, we have

c2 = 1√
2

(
c2

1 − �c1 + 1
)

>
1√
2

(c1 + 1)2,

since ω̃0 � η and so |�| � 2. This means that c2 increases by
a greater proportion than c1 due to the deformation. Similarly,
c3 increases by an even larger factor. The change in the
coefficients shows that a larger deformation favors the states
with a larger number of photons and a more ordered spin
chain.
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S. Filipp, P. J. Leek, A. Blais, and A. Wallraff, Phys. Rev. Lett.
103, 083601 (2009).

[15] Y.-D. Wang, F. Xue, Z. Song, and C.-P. Sun, Phys. Rev. B 76,
174519 (2007).

[16] N. Lambert, Y.-N. Chen, R. Johannsson, and F. Nori, Phys. Rev.
B 80, 165308 (2009).

[17] P. Nataf and C. Ciuti, Phys. Rev. Lett. 104, 023601 (2010).
[18] L. Tian, Phys. Rev. Lett. 105, 167001 (2010).
[19] I. Buluta and F. Nori, Science 326, 108 (2009).
[20] I. Diniz, S. Portolan, R. Ferreira, J. M. Gérard, P. Bertet, and
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