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Quantum statistics of the collective excitations of an atomic ensemble inside a cavity
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We study the quantum statistical properties of the collective excitations of an atomic ensemble inside a
high-finesse cavity. In the large-detuning regime, it is found that the virtual photon exchange can induce a
long-range interaction between atoms, which results in correlated excitations. In particular, the atomic blockade
phenomenon occurs when the induced long-range interaction effectively suppresses the double atomic excitation,
when the average photon number takes certain values, which makes the two nearest energy levels degenerate. We
also show that quantum phase transitions occur in the indirectly interacting atomic ensemble when the average
photon number reaches several critical points. In this sense, the quantum statistical properties of the collective
excitations are very sensitive to the change of the average photon number. Our model exhibits quantum phase
transitions similar to the ones in the Lipkin-Meshkov-Glick model. Our proposal could be implemented in a
variety of systems including cavity quantum electrodynamics (QED), Bose-Einstein condensates, and circuit
QED.
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I. INTRODUCTION

In quantum optics, photon statistics reflect the essential
properties of the electromagnetic field [1]. Importantly, corre-
lated photon counting by the second-order correlation function
can characterize the very quantum nature of light, such as
bunching and antibunching effects [2], as well as the photon
blockade [3,4], which is also referred to as optical state
truncation [5]. The quantum statistical approach for photon
counting [6] is also applicable to other massive and massless
bosons [7]. The collective excitations of an atomic ensemble
could be regarded as an operational quantum memory [8,9]
and the ensemble behaves as a boson in the large N limit
with low excitations [10]. Therefore, it is expected that the
quantum statistical approach can also work well for atomic
collective excitations. Moreover, the quantum correlations of
these excitations can also be responsible for double-excitation
effects, such as the Rydberg blockade, where double excitation
is strongly suppressed by the dipole-dipole interaction between
highly excited Rydberg atoms [11–13].

The atomic blockade is similar to the Coulomb blockade,
a typical mesoscopic phenomenon where a single electron
prevents an electric current from crossing some confined
nanostructure [14–17]. Similar blockade effects have been
predicted and also observed in quantum optical system for
photons [3,4] and cold atoms [11–13,18]. Recently, phonon
blockade has also been studied [19]. The blockade effect,
whereby a single particle prevents the flow [3,4,14–16,18]
or excitation of many particles, provides a mechanism for
the precise manipulation of quantum states of microscopic
quantum objects at the level of a single particle. In this sense,
it is essential for the implementation of single-particle-based
quantum devices. The photon blockade effect may have
applications in single-photon sources, needed for the physical
implementation of quantum cryptography protocols [20].

In this paper we consider quantum correlation effects for
an atomic system. One of the correlation effects studied is

the Rydberg blockade effect. We consider a similar atomic
blockade effect using an indirect-interaction coupling, which
is induced by some confined photons in a cavity rather than by
dipole-dipole interactions between atoms, as in the Rydberg
blockade. Physical properties of atomic ensembles can also be
quantified via spin squeezing [21].

Specifically, we study the case where an ensemble of
two-level atoms are coupled to a cavity field with a
large detuning frequency. The photons in the cavity can induce
excitation hopping among atoms, which form a collective
excited state described by the number of excited atoms. We
will consider the case where the number of excited atoms is
similar to the difference between the numbers of excited atoms
and unexcited atoms. Furthermore, the variation of half of this
difference equals the variation of the number of excited atoms.

Similar to the generic Coulomb interaction for the Rydberg
blockade [11–13], the induced interaction by cavity photons
is also a long-range interaction and results in inhomogeneous
energy-level spacings. More specifically, the structure of the
energy levels depends on the average photon number. We find
that there will be two degenerate energy levels at an integral
multiple of 1/2 for the average photon number. If the average
photon number slightly deviates from an odd multiple of 1/2,
these two degenerate levels will become nearly degenerate
but far away from other energy levels. Hence, it is difficult
for the atomic ensemble to transit from the nearly degenerate
levels to other levels. This shows that the double excitation
requires higher energy, which is off-resonant to two single
excitations. Therefore, the atomic blockade effect could occur.
If we further change the average photon number, the pair of
nearly degenerate energy levels shifts far away from each other,
but one of them could end up closer to a neighboring energy
level which was far away from this pair before changing
the average photon number. Thus, the occurrence of atomic
blockade can be controlled by the average photon number in
the cavity.
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Meanwhile, a quantum phase transition (QPT) [22–24]
occurs when the average photon number is a half-integer,
for negative detuning (the difference between the atomic
energy-level spacing and the frequency of the cavity field).
This is partially due to the energy-level crossing under the
above conditions. The ground state changes drastically around
the critical points characterized by the average photon number.
This QPT behavior is similar to that of the Lipkin-Meshkov-
Glick (LMG) model [25], which was studied in the quantum-
information-process context in, for example, Ref. [26]. In this
sense, we can regard our system as a modification of the LMG
model. However, the critical points in our system are average-
photon-number dependent. This provides a controllable way
to manipulate the system between different phases.

To characterize various correlation phenomena of the
atomic collective excitation, such as the atomic blockade and
sensitivity of the QPT [27–31], we introduce a generalized
second-order coherence function by replacing the annihilation
(creation) a (a†) operator of photons in the usual second-order
coherence function of photons with the lowering (raising) J−
(J+) operator of the collective atomic excitations. We prove
that the antibunching effect occurs near odd multiples of 1/2
for the photon number, which implies that the double atomic
excitation is suppressed. We also find significantly different
behaviors on either side of the critical points.

This paper is organized as follows. In Sec. II, we describe
the system based on the Dicke model [29,32]. The effective
Hamiltonian is given in terms of the collective excitation
of the atomic ensemble, and the ground state is analyzed
for different APNs. In Sec. III we then coherently drive the
atomic ensemble and derive the effective Hamiltonian near
two critical points nc

a = 1/2 and nc
a = j − 1/2. In Sec. IV,

we introduce the generalized second-order coherence function
and calculate the statistical properties of the excitations of the
atomic ensemble in the cases with and without dissipation.
We discuss the atomic blockade effect and sensitivity of the
QPT to the photon number in Secs. V and VI, respectively.
Finally, we present our conclusions in Sec. VII. The explicit
form of the parameters used in Secs. IV and VI are given in
the Appendix.

II. QUANTUM CRITICALITY OF AN ATOMIC ENSEMBLE
STRONGLY COUPLED TO A CAVITY FIELD

A. Model and Hamiltonian

As shown in Fig. 1, the system we consider consists of
an ensemble of atoms confined to a single-mode cavity of
frequency ω. The cavity field is described by the annihilation
(creation) operator a (a†). This model can be implemented in
a variety of systems including cavity QED [33], Bose-Einstein
condensates [34], and circuit QED [35].

Our model is described by the Dicke Hamiltonian
[29,32,35–40] (hereafter, we take h̄ = 1),

H1 = ωa†a + ωA

2

N∑
�=1

σ (�)
z + g0√

N

N∑
�=1

(a†σ (�)
− + aσ

(�)
+ ), (1)

under the rotating-wave approximation. Here, we use the
Pauli matrices σ

(j )
z = |e〉jj 〈e| − |g〉jj 〈g|, σ

(j )
+ = |e〉jj 〈g|, and

σ
(j )
− = |g〉jj 〈e| to describe the atomic transition of the j th

FIG. 1. (Color online) (a) Schematic of a cavity field of frequency
ω coupled to an atomic gas consisting of N two-level atoms with
energy-level spacing ωA. A driving field of strength �d and frequency
ωd is applied to the atoms. (b) The coupling diagram of one of the
two-level atoms in the cavity. Here, � is the detuning between the
atomic level spacing ωA and the cavity field frequency ω, namely,
� ≡ ωA − ω, and ωd is the frequency of the drive.

atom with energy-level spacing ωA, where |e〉j and |g〉j are
the excited and ground states of the j th atom, respectively.

For an atomic gas with size smaller than the wavelength
[29,31], we assume that all the atoms are located near the
origin and interact with the cavity field at the homogeneous
coupling rate g0/

√
N . Here, the factor

√
N in the denominator

of the coupling strength originates from the fact that the
coupling strength is inversely proportional to the square root
of the volume of the cavity field 1/

√
V . The volume V is

approximately equal to the total volume occupied by the atoms,
which is N times the volume of a single atom. Hence we can
write the factor

√
N explicitly in the coupling strength.

We would like to point out that, the superradiant phase
transition based on the Dicke model in a real atomic system
does not exist due to the inclusion of electromagnetic vector
potential A2 term [29,37,41,42]. However, the following
arguments about QPT are based on the LMG model [25], which
will be derived from the above Dicke model, even including
the A2 term. The similar A2 term (V 2 term) in circuit QED
system will not influence the Hamiltonian significantly, except
for just a little shift of the critical point [43].

The atoms we consider are largely detuned from the
frequency ω of the cavity field; namely, the detuning �
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(≡ωA − ω) is much larger than the corresponding coupling
strength g0/

√
N , that is, |�| � |g0/

√
N |. In this case,

one can use the Fröhlich-Nakajima transformation [44,45]
(or adiabatic elimination method), to obtain the effective
Hamiltonian,

H1 = ωa†a + 1

2
(ωA + W )

N∑
�=1

σ (�)
z + W

N∑
�=1

a†aσ (�)
z

+ 1

2
W

N∑
�1,�2=1

(σ (�1)
+ σ

(�2)
− + σ

(�1)
− σ

(�2)
+ ), (2)

where W = g2
0/(N�) is the strength of the effective interaction

among the atoms, which is induced by the virtual photon
exchanges. The form of the Hamiltonian is very similar to
the dipole-dipole interaction of atoms in free space. We note
that the Fröhlich-Nakajima transformation is equivalent to
the approach based on the adiabatical elimination and some
perturbation theories [46]. Furthermore, the photon number
a†a becomes a conserved number.

B. Symmetric Hilbert space and the LMG model

We now describe the Hilbert space of the symmetric
excitation. The Hilbert space of N two-level atoms is spanned
by 2N basis vectors {|gl〉,|el〉} with l = 1,2, . . . ,N . In the
present case, all the atoms have identical transition frequencies
and coupling constants with the cavity field. Here, we consider
the symmetric collective excitation subspace V [j ] of dimension
(N + 1). We now introduce the collective operators,

J± =
N∑

�=1

σ
(�)
± , Jz = 1

2

N∑
�=1

σ (�)
z , (3)

which obey the following angular momentum commutation
relations,

[Jz,J±] = ±J±, [J+,J−] = 2Jz. (4)

Furthermore, we define the Dicke basis vectors |j,m〉
(j = N/2, m = −j,−j + 1, . . . ,j − 1,j ), which satisfy
J 2|j,m〉 = j (j + 1)|j,m〉, and Jz|j,m〉 = m|j,m〉. One can
conclude straightforwardly from Eq. (3) that the magnetic
quantum number m equals the half difference between the
numbers of excited atoms and the ground-state atoms. In terms
of the Dicke states, the symmetric excitation subspace, V [j ],
is

|j,m〉 = NmJ
j+m
+ |j,−j 〉 = Nm

[
N∑

�=1

σ
(�)
+

]j+m

|G〉, (5)

where Nm = √
(j − m)!/[(2j )!(j + m)!] and |G〉 =

|g1,g2, · · · ,gN 〉.
According to Eq. (3), we can find

J±|j,m〉 =
N∑

�=1

σ
(�)
± |j,m〉

=
√

(j ± m + 1)(j ∓ m) |j,m ± 1〉. (6)

It follows from Eq. (6) that the ladder operators J± describe
the action of pumping one more (J+) or less (J−) atom from

the ground state |g〉 to the excited state |e〉. Accordingly,
the magnetic quantum number m increases or decreases by
one. Therefore, when the ladder operator J+ acts on the
collective-excitation state s (0 � s � N ) times, there will be s

atoms being excited, and the magnetic quantum number m will
increase by s accordingly: namely |j,m〉 → |j,m + s〉, which
is implied in Eq. (5). As for the ladder operator J−, the effect
is inverse. Therefore, the variance of the magnetic quantum
number m represents the variance of the atomic-collective-
excitation number.

In terms of the above collective operators, the Hamiltonian
(2) can be rewritten as

H1 = ωa†a + (ωA + W )Jz + 2Wa†aJz

+ W

2
(J+J− + J−J+). (7)

In the interaction picture defined with respect to the free
Hamiltonian, Hfree = ωa†a + (ωA + W )Jz, the Hamiltonian
reads

H
(I )
1 = ε(n̂a)Jz + W

2
(J+J− + J−J+), (8)

where n̂a = a†a and ε(n̂a) = 2Wn̂a . The effective Hamilto-
nian (8) is photon-number dependent. This is a special case of
the LMG model [25] with V = 0. The LMG model can also be
implemented using superconducting circuits [47,48]. Through
the relations (J+J− + J−J+)/2 = J 2

x + J 2
y , the Hamiltonian

can be expressed as

H
(I )
1 = −W

[
(Jz − n̂a)2 − n̂2

a − J 2
]
. (9)

As is well known, the LMG model possesses a critical point,
at which a QPT occurs. On either side of the critical point,
the number of excited atoms of the ground states are different;
thus the ground states are essentially different [28,49,50]. In
our system, a similar critical point also exists. To see this
effect explicitly, we calculate the ground state for the above
Hamiltonian in the next section.

The last two terms of Eq. (8) describe the interaction
among atoms induced by photons in the cavity. This interaction
between atoms is intrinsically caused by the hopping of
photons between different atoms. And the hopping of photons
induces a second-order indirect interaction among atoms. On
account of this interaction, the system shows an obvious
nonlinearity with respect to the excitation number, as shown
by Eq. (9).

C. Quantum phase transition behavior of the ground state

We now analyze the discontinuous change of the ground-
state symmetry when varying the photon number. For a given
Fock state of the field, ε(n̂a) is a definite c number. For a
general photon state |ψ〉 we replace ε(n̂a) by its mean value
such as ε(〈n̂a〉) [or ε(na)] when our studies only concern the
atomic ensemble. According to Eq. (9), the eigenstates of the
system are the common eigenstates of {J 2, Jz}: {|j,m〉; m =
−j,−j + 1, . . . ,j − 1,j}, for j = N/2, that is,

H
(I )
1 |j,m〉|ψ〉 = E(0)

m |j,m〉|ψ〉, (10)
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FIG. 2. (Color online) Diagram of the ground state of atoms
consisting of N two-level atoms controlled by the cavity photon
number when � < 0. (a) Diagram of the energy levels versus the
magnetic quantum number m. The upper figure in (a) shows the
ground state located at m = na = j − (n + 1)/2; the lower figure
in (a) shows the two degenerate ground states located at m =
j − (n + 1)/2, j − (n − 1)/2, respectively, while na = j − n/2.
(b) Diagram of the ground states corresponding to different average
photon numbers in the cavity.

with eigenenergies,

E(0)
m = −W

[
(m − na)2 − n2

a − j (j + 1)
] ≡ ωm. (11)

Clearly, the ground state is photon-number dependent, that is,

|G〉 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|j,[na]〉, 0 � na � j − 1
2 , � < 0,

|j,j 〉, na � j − 1
2 , � < 0,

|j,−j 〉 or |j,j 〉, na = 0, � > 0,

|j,−j 〉, na > 0, � > 0,

(12)

where [n] denotes the (half) integer nearest to n. This fact
means that the ground-state symmetry changes suddenly when
the photon number is varied from one domain to another.

In the following discussions, we restrict the analysis to
the negative detuning � < 0. As shown in Fig. 2, when the

value of the photon number na is varied in the domain of
0 � na � j − 1/2, the atoms will experience different ground
states, which implies that QPTs occur.

There are energy-level crossings at nc
a = j − n/2, (n =

1, 3, 5,. . . , 2j − 1). In the domain j − (n + 2)/2 < na <

j − n/2 , the ground state of the system is |G〉 = |j,j −
(n + 1)/2〉 , where as in the next domain j − n/2 < na <

j − (n − 2)/2, the ground state of the system is |G〉 =
|j,j − (n − 1)/2〉. If na increases from j − (n + 2)/2 to
j − (n − 2)/2, the energy level of the excited state crosses the
energy level of the ground state at nc

a = j − n/2. At the level
crossing, the excited state |j,j − (n − 1)/2〉 and the ground
state |j,j − (n + 1)/2〉 are degenerate. On the right side of this
critical point nc

a , the original excited state |j,j − (n − 1)/2〉
in the domain of j − (n + 2)/2 < na < j − n/2 will become
a new ground state for the system in the domain of j − n/2 <

na < j − (n − 2)/2, which implies that a QPT occurs. In
this sense, we can use the average photon number na to
control the occurrence of the quantum phase transition. At
the critical point nc

a = j − n/2; both |j,j − (n + 1)/2〉 and
|j,j − (n − 1)/2〉 are the ground states. Moreover, at this
point, the ground state is highly degenerate, thus the system is
in a symmetric phase.

In other domains, namely, when � < 0 and na > j − 1/2,
or, � > 0, the ground state is |j,j 〉 or |j,−j 〉. In these cases,
all the atoms are fully polarized. As all the two-level atoms
can be considered as quasispins, the system is ferromagnetic in
this domain, and the rotational symmetry is broken. Thus the
system is in a symmetry-broken phase. Notice that in the left
vicinity of the critical points nc

a , under the condition � < 0,
the ground state is |j,m = [na]〉 and possesses one less atomic
excitation than that in the first excited state |j,[na] + 1〉. It is
clear that |j,[na]〉 and |j,[na] + 1〉 are nearly degenerate, but
their energies are much less than that of |j,[na] + 2〉. Thus,
there exists an energy gap that makes exciting two more atoms
difficult, but easy for exciting one more atom. We call this
effect “atomic blockade.”

III. DRIVEN ATOMIC ENSEMBLE

As there exists a level crossing for the photon-dressed
atomic ensemble at na = nc

a , we apply a weak classical driving
to the atomic ensemble. The interaction is described by the
Hamiltonian,

H2 = �

N∑
�=1

(σ (�)
− eiωd t + σ

(�)
+ e−iωd t ), (13)

where � is the Rabi frequency and ωd is the driving frequency
of the drive. The total Hamiltonian H = H1 + H2 becomes

H (R) = H
(I )
1 + (ωA + W − ωd )Jz + �(J− + J+) (14)

in a rotating frame with rotation exp[i(ωdJz + ωa†a)t]. In
this driven case, the photon number a†a still is a conserved
number. Therefore the photon number does not change in
the dynamical evolution even though we apply a classical
driving field. As a result, we can treat the photon number as
an independent external parameter, which is decoupled from
the atomic dynamics. We tune the frequency ωd to satisfy the
resonance condition ωA + W − ωd = 0. Then the simplified
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Hamiltonian is H (R) = H
(I )
1 + H ′ with H ′ = �(J− + J+).

When the optical field is prepared in a coherent state |α〉,
the Hamiltonian, after this average n̂a → na = 〈n̂a〉, reads

H (R) = −W
[
(Jz − na)2 − n2

a − J 2
] + �(J− + J+), (15)

where 〈n̂a〉 = |α|2, for na ≡ 1/2 + δ. Here δ is the deviation
from the degenerate (critical) point. To see if the atomic block-
ade effect occurs, we express the above-averaged Hamiltonian
in the angular momentum basis as

H (R) =
j∑

m=−j

ωm|j,m〉〈j,m|

+
j−1∑

m=−j

�m+1(|j,m + 1〉〈j,m| + H.c.), (16)

where �m = �
√

(j − m + 1)(j + m). We can then more
readily observe the transition from |j,m〉 to |j,m + 2〉 by
exciting two more atoms around the critical point nc

a .

A. Reduced dynamics on the subspace with m = 0,1

When the photon number na is in the vicinity of 1/2, the
nearly degenerate energy levels m = 0,1 (|j,0〉 and |j,1〉) will
be strongly coupled with each other as a result of the driving,
but weakly coupled with other energy levels. Then the two
energy levels (m = 0,1) form a relatively stable subsystem.
Hence we can treat the transitions from the subsystem to
other levels by a perturbative approach. In terms of the states
with definite quantum number m, the Hamiltonian H (R) =
H0 + HI can be decomposed in two parts, the nonperturbative
Hamiltonian,

H0 = ω0|j,0〉〈j,0| + ω1|j,1〉〈j,1|
+�

√
j (j + 1)|j,1〉〈j,0| + H.c., (17)

and the perturbation,

HI = �2|j,2〉〈j,1| + �0|j,0〉〈j,−1|

+
j∑

m=−j,m
=0,1

ωm|j,m〉〈j,m|

+
j−1∑

m=−j,m
=−1,0,1

�m+1|j,m + 1〉〈j,m| + H.c. (18)

To see clearly if the atomic blockade effect occurs, namely,
if it is difficult to excite two more atomic excitations, we need
to find the transition amplitude for the system initially prepared
in the subspace spanned by |j,0〉 and |j,1〉 to the doubly
excited state |j,2〉 around the critical point na = 1/2. To make
|j,0〉 and |j,1〉 nearly degenerate, we restrict 0 < na < 1.
We note that we can also choose any other pair of nearly
degenerate states around the corresponding critical point which
makes the pair nearly degenerate. We first diagonalize the
nonperturbative Hamiltonian (17) as

H0 = λ0|λ0〉〈λ0| + λ1|λ1〉〈λ1|. (19)

The two eigenstates are

|λr〉 = A−1
r [ξr |j,0〉 + |j,1〉], r = 0,1, (20)

with corresponding eigenenergies,

λr = jW + j 2W + Wδ + (−1)r+1p, (21)

where Ar =
√

|ξr |2 + 1 are normalization constants with

ξr = −Wδ + (−1)rp

�
√

j (j + 1)
, (22)

and

p ≡
√

W 2δ2 + j�2 + j 2�2. (23)

We note that 〈j,m|λr〉 = 0 for m 
= 0,1. Therefore, |λ0〉, |λ1〉
and |j,m〉 (m 
= 0,1) form a complete basis of the Hilbert space
for a given j . In this basis, HI can be expressed as

HI = �2[η1|j,2〉〈λ0| + η2|j,2〉〈λ1|]
+�0[η3|λ0〉〈j,−1| + η4|λ1〉〈j,−1|]

+
j∑

m=−j,m
=0,1

ωm|j,m〉〈j,m|

+
j−1∑

m=−j,m
=−1,0,1

�m+1|j,m + 1〉〈j,m| + H.c., (24)

where

η1 = ξ1A0

ξ1 − ξ0
, η2 = − ξ0A1

ξ1 − ξ0
,

(25)

η3 = A0

ξ0 − ξ1
, η4 = − A1

ξ0 − ξ1
,

which satisfy |η1|2 + |η2|2 = 1 and |η3|2 + |η4|2 = 1. It fol-
lows from Eq. (24) that the transition between |λ0〉 and |λ1〉 is
inhibited, which is shown in Fig. 3. In order to calculate the
correlation function g(2) with the perturbed Hamiltonian, we
move to the interaction picture by choosing

H ′
0 = λ0|λ0〉〈λ0| + λ1|λ1〉〈λ1| +

j∑
m=−j,m
=0,1

ωm|j,m〉〈j,m|

(26)

FIG. 3. (Color online) Energy-level diagram of the m = 0,1
subsystem of the driven atomic ensemble. (a) The two nearly
degenerate energy levels |j,0〉 and |j,1〉 are strongly coupled with
each other, when the average photon number in the cavity is na ≈ 1/2,
but weakly coupled with other energy levels. (b) The effective
subsystem spanned by |λ0〉 and |λ1〉 when using the perturbation
approach.
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as the free Hamiltonian. In the interaction picture, the
Hamiltonian H (R) = H ′

0 + H ′
I , where

H ′
I =

j∑
m=−j,m
=0

�m+1|j,m + 1〉〈j,m| + H.c. (27)

becomes

VI (t) = �2|j,2〉(η1〈λ0|ei�2,0t + η2〈λ1|ei�2,1t )

+�0(η3|λ0〉e−i�−1,0t + η4|λ1〉e−i�−1,1t )〈−1,j |

+
j−1∑

m=−j,m
=−1,0,1

�m+1|j,m + 1〉〈m,j |eiωm+1,mt + H.c.,

(28)

which is time dependent. Here, we have defined

�m′,r ≡ ωm′ − λr , ωm,l ≡ ωm − ωl , (29)

where m′ 
= 0,1, r = 0,1, and �m′,r is the energy difference
between the diagonalized almost-degenerate energy levels
labeled by |λr〉 (r = 0,1) and the other energy levels labeled
by |j,m〉 (m 
= 0,1).

B. Reduced dynamics on the subspace with m = j − 1, j

Here we consider the effect of the QPT on the higher-order
quantum coherence around the critical point na = j − 1/2.
Similar to the previous section, it can be seen that the states
|j,j − 1〉 and |j,j 〉 form a relative stable subsystem. We can
also treat the transitions from the subsystem (m = j − 1,j ) to
other energy levels by using a perturbative method. To this end
we diagonalize the Hamiltonian in the subspace spanned by
the two nearly degenerate energy levels |j,j − 1〉 and |j,j 〉. It
follows from Eq. (16) that, the nonperturbative Hamiltonian is

Hc
0 = ωj |j,j 〉〈j,j | + ωj−1|j,j − 1〉〈j,j − 1|

+�j |j,j 〉〈j,j − 1| + H.c.

≡ λc
0

∣∣λc
0

〉〈
λc

0

∣∣ + λc
1

∣∣λc
1

〉〈
λc

1

∣∣, (30)

with the eigenenergies,

λc
r = 2−1[−1 − 2na + 4j (1 + na)]W

+ 2−1(−1)r+1pc, r = 0,1, (31)

and eigenvectors,∣∣λc
r

〉 = (
Ac

r

)−1[
ξ c
r |j,j − 1〉 + |j,j 〉], r = 0,1, (32)

where Ac
r = √|ξ c

r |2 + 1 (r = 0,1) are normalization constants
with

ξc
r = [2�

√
2j ]−1[(−1 + 2j − 2na)W + (−1)r+1pc], (33)

and

pc ≡
√

(1 − 2j + 2na)2W 2 + 8j�2. (34)

Similar to the above Sec. III A, we also note that 〈j,m|λc
r〉 = 0

for m 
= j − 1,j . Therefore, |λc
0〉, |λc

1〉 and |j,m〉 (m 
= j −
1,j ) form a compete basis of the Hilbert space for a given j .
In terms of |λc

0〉 and |λc
1〉, the residual terms of the Hamiltonian

(16) Hc
I = H (R) − Hc

0 read as

Hc
I = �j−1

[(
ηc

3

∣∣λc
0

〉 + ηc
4

∣∣λc
1

〉)〈j,j − 2| + H.c.
]

+
j−2∑

m=−j

ωm|j,m〉〈j,m|

+
j−3∑

m=−j

�m+1(|j,m + 1〉〈j,m| + H.c.), (35)

where we used the expressions,

|j,j 〉 = ηc
1

∣∣λc
0

〉 + ηc
2

∣∣λc
1

〉
,

∣∣j,j − 1
〉 = ηc

3

∣∣λc
0

〉 + ηc
4

∣∣λc
1

〉
,

(36)

with coefficients defined by

ηc
1 = ξ c

1 Ac
0

ξ c
1 − ξ c

0

, ηc
2 = − ξ c

0 Ac
1

ξ c
1 − ξ0

,

(37)

ηc
3 = Ac

0

ξ c
0 − ξ c

1

, ηc
4 = − Ac

1

ξ c
0 − ξ c

1

,

which satisfy |ηc
1|2 + |ηc

2|2 = 1, |ηc
3|2 + |ηc

4|2 = 1. It follows
from Eq. (35) that there is no transition between |λc

0〉 and |λc
1〉,

which is shown in Fig. 4. In order to change to the interaction
picture, we choose the diagonalized terms,

Hc′
0 = λc

0

∣∣λc
0

〉〈
λc

0

∣∣ + λc
1

∣∣λc
1

〉〈
λc

1

∣∣ +
j−2∑

m=−j

ωm|j,m〉〈j,m|, (38)

as the free Hamiltonian, and the corresponding interaction
Hamiltonian,

Hc′
I =

j−2∑
m=−j

�m+1(|j,m + 1〉〈j,m| + H.c.). (39)

Finally, we obtain the interaction Hamiltonian,

V c
I (t) = �j−1

(
ηc

3

∣∣λc
0

〉
e−i�c

j−2,0t + ηc
4

∣∣λc
1

〉
e−i�c

j−2,1t
)〈j,j − 2|

+
j−3∑

m=−j

�m+1|j,m + 1〉〈j,m|eiωm+1,mt + H.c., (40)

FIG. 4. (Color online) Energy-level diagram of the subsystem
composed of m = j − 1,j of the driven atomic ensemble. (a) The
two nearly degenerate energy levels |j,j − 1〉 and |j,j〉 are strongly
coupled with each other, when the average photon number in the
cavity is na ≈ j − 1/2, but weakly coupled with other energy
levels. (b) The effective subsystem spanned by |λc

0〉 and |λc
1〉 by the

perturbative approach.
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in the interaction picture where

�c
m′,r ≡ ωm′ − λc

r , ωm,l ≡ ωm − ωl , (41)

for m′ 
= j − 1,j , r = 0,1, and �c
m′,r is the energy difference

between the diagonalized almost degenerate energy levels
labeled by |λc

r〉 (r = 0,1) and the other energy levels labeled
by |j,m〉 (m 
= j − 1,j ).

Note that Figs. 3 and 4 show transitions between three-
level systems, where some of the transitions are turned on and
off. Indeed, it is also possible to turn on and off transitions
between three energy levels using artificial atoms made of
superconducting qubits [51].

IV. STATISTICAL PROPERTIES OF THE ATOMIC
EXCITATIONS

Since J− (J+) can decrease (increase) a single excitation,
their roles are similar to the actions of the annihilation
(creation) operator of photons a (a†) for the usual bosonic
system. Using the Holstein-Primakoff transformation [52], the
angular momentum operators can be expressed in terms of a
single bosonic mode,

J+ = b†
√

N− b†b, J− = (
√

N− b†b)b, Jz = b†b − N

2
.

(42)

The angular momentum operators will become bosonic op-
erators in the limit of large N and low excitations, namely,
〈b†b〉 � N [29]. Specifically, in this condition, one can expand
the square term

√
N − b†b on the order of (b†b)/N and keep

to the zeroth order of b†b/N . Then it is straightforward to see
that J+  b†

√
N and J−  √

Nb [29]. Then we can define a
generalized second-order coherence function,

g(2)(τ,t) = 〈J+(t)J+(t + τ )J−(t + τ )J−(t)〉
〈J+(t)J−(t)〉〈J+(t + τ )J−(t + τ )〉 , (43)

for the symmetric collective excitations of the atomic en-
semble, which can be regarded as a normalized correlation
function. Please note that this definition is in normal order
on the angular momentum operators J+ and J−, which
satisfy that the average of any analytical function of J+J−
in normal order over the ground state |j,−j 〉 equals zero,
that is, 〈j,−j | : f (J+J−) : |j,−j 〉 = 0. Here j is a conserved
quantity. This property satisfies the conventional normal order
definition about the bosonic operators 〈0| : f (b†b) : |0〉 = 0
in the second coherence function. This coherence function
g(2)(τ,t) is proportional to the joint probability of observing
one excited atom at time t and another one at time t + τ .
To study the generalized second-order coherence function
g(2)(τ,t) in the stationary state, below we consider it in a unitary
evolution case (without dissipation) and also in a dissipation
case but at a steady state.

A. The case without dissipation

Firstly, we consider the case where the system is free of
dissipation. In this case, 〈· · · 〉 in Eq. (43) for g(2)(τ,t) denotes

the average of an observable over the initial pure state,

|ψ(0)〉 =
j∑

m=−j

cm|j,m〉, (44)

where
∑j

m=−j |cm|2 = 1.
We next calculate the generalized second-order coher-

ence function around the point δ = 0 (i.e., na = 1/2).
Since U (τ ) = U0(τ )UI (τ ), where U0(τ ) = exp(−iH ′

0τ ) and
UI (τ ) = T exp [−i

∫ τ

0 VI (τ ′)dτ ′] are the free evolution and
the dynamics due to the interaction, respectively. We note
that U

†
0 (τ )J+J−U0(τ ) = J+J− is useful in the following

calculations. Using this result, the generalized second-order
coherence function g(2)(τ,0) becomes

g(2)(τ,0) = 〈ψ ′(0)|U †
I (τ )J+J−UI (τ )|ψ ′(0)〉

〈ψ ′(0)|ψ ′(0)〉〈ψ(0)|U †
I (τ )J+J−UI (τ )|ψ(0)〉

,

(45)

where |ψ ′(0)〉 = J−|ψ(0)〉. We will calculate analytically the
generalized second-order coherence function by applying
standard perturbation theory, with VI (t) as a perturbation.
Let us first consider the conditions where the perturbation
approach is valid. If we tune the atom-field detuning � and
the Rabi frequency � of the driving field to be suitable and
place an appropriate number of atoms in the cavity, we can
make the perturbation theory valid, that is, for m′ = 2, − 1,
r = 0,1, and m 
= −1,0,1 these conditions explicitly are

�2η1 � �2,0, �2η2 � �2,1,

�0η3 � �−1,0, �0η4 � �−1,1, (46)

�m+1 � ωm+1,m.

Under the above conditions, we can treat the time-evolution
operator UI (τ ) perturbatively. When na is in the vicinity of the
critical point nc

a (for m = 0,1, nc
a = 1/2 ), the energy levels

of |λ0〉 and |λ1〉 are nearly degenerate. The energy differences
�i,j and ωm+1,m (m 
= −1,0,1) are very large compared with
the level spacing between |λ0〉 and |λ1〉. Hence, under this
constraint, the above conditions (46) can be satisfied by varying
the Rabi frequency �. Since the state |j,0〉 is the ground state
when 0 < na < 1/2, then |j,1〉 is the state by exciting one
more atom. Similarly, |j,2〉 has two more excitations than
the ground state, and has a much higher energy than that of
|j,1〉. However, |j,1〉 is the ground state when 1/2 < na <

1, yet |j,0〉 is an excited state which has one less atomic
excitation than the ground state |j,1〉. To see if two excitations
are suppressed, we choose c0 = c1 = 1/

√
2 and cm = 0 (for

m 
= 0,1) in the initial state,

|ψ(0)〉 = c0|j,0〉 + c1|j,1〉 = 1√
2

(|j,0〉 + |j,1〉). (47)

When the average photon number is in the vicinity of nc
a =

1/2, the states |j,0〉 and |j,1〉 are nearly degenerate. Notice that
here the average photon number is in the domain of 0 < na < 1
and around nc

a = 1/2, that is, −1/2 < δ < 1/2, and |δ| is very
small. Using first-order perturbation theory, the generalized
second-order coherence function in Eq. (45) is approximately

g(2)(τ,0)  X

(j + 1)jY
, (48)
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FIG. 5. (Color online) Second-order correlation function g(2)(τ,0)
versus the time interval τ for N = 2 (blue curve), N = 4 (red curve),
N = 6 (cyan curve), and N = 10 (magenta curve), respectively, in
the case without dissipation. Recall that g(2)(τ,0) is proportional to
the joint probability of observing one excited atom at time t = 0 and
another one at time τ . The first-order approximate results are shown
using dashed curves and the exact numerical results are shown using
solid curves. The dashed curves overlap with the solid curves very
well. Other parameters are g0 = 100, g0/� = −0.1, �N = 0.1|W |,
δ = −0.02.

where

X ≡ x1 + x2 + x3 + x4 + x5,
(49)

Y ≡ y1 + y2 + y3.

The parameters x�1 (�1 = 1,2, . . . ,5) and y�2 (�2 = 1,2,3) have
complicated expressions, which are presented in the appendix.
The generalized second-order coherence function given by
Eq. (48) is illustrated in Fig. 5. It is shown that, as N increases,
the value of g(2)(τ,0) approaches unity with some oscillations.
Physically, Eq. (48) describes the joint probability of observing
one excited atom at instant t = 0 and another after a time
interval τ . In Sec. V, we use Eq. (48) to analyze the atomic
blockade effect.

B. The case with dissipation

In this subsection, we consider the system surrounded by
a thermal reservoir at zero temperature. When the system is
prepared in a state with density operator ρs , the generalized
second-order coherence function is written explicitly as

g(2)(τ,t) = Tr[J+J+(τ )J−(τ )J−ρs(t)]

Tr[J+J−ρs(t)]Tr[J+J−ρs(t + τ )]
. (50)

According to Eq. (50), we need to calculate the time-dependent
density operator ρs(t) of the atoms. In the regime of weak
coupling of the driving field [53], which demands the driving
field to only perturbatively change the energy levels, and
assuming the atomic ensemble to be in a common reservoir,
then the master equation is approximately

dρs(t)

dt
= −i[H (R),ρs(t)] + γ

[
J−ρs(t)J+ − 1

2
{J+J−,ρs(t)}

]
,

(51)
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N=2
N=3
N=5
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(d) δ=j−1.1

(b) δ=−0.5

(c) δ=0

(a)

FIG. 6. (Color online) Numerical results for the generalized
second-order coherence function g(2)(0,∞) and g(2)(τ,∞) with
dissipation in the steady state. (a) g(2)(0,∞) versus δ for N = 2 (blue
thick solid curve), N = 3 (red dashed curve), N = 5 (cyan dashed-
dotted curve), and N = 10 (black thin solid curve), respectively;
(b)–(d) g(2)(τ,∞) versus τ with N = 5 for δ = −0.5, δ = 0, and
δ = j − 1.1, respectively. Other common parameters are γ = 1,
g0 = 100, g0/� = −0.1, and �N = 0.1|W |.

where γ is the collective decay rate of the atomic ensemble.
Since the photon number is a conserved number, and the
frequency of photons is in large detuning, it does not influence
the dynamical evolution of the atoms. Then the influence of
the decay of the photons is negligibly small to the atoms. We
resort to numerical calculations to show the results about the
steady state by plotting g(2)(0,t → ∞) versus δ in Fig. 6(a)
and g(2)(τ,t → ∞) versus τ in Figs. 6(b)–6(d). By comparing
them with the results in Fig. 5, we will discuss them in the
next section.

V. DOUBLE EXCITATION EFFECTS I: THE ATOMIC
BLOCKADE EFFECT

In this and the next section, we discuss some physical
effects due to the double collective excitation, according
to their quantum statistics characterized by the generalized
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second-order coherence function g(2)(τ,t) introduced in the
last section. We have calculated the generalized second-order
coherence function in the above section both in the dissipation-
free case and also the case with dissipation. In this section,
we discuss the results in both cases according to the above
calculations. We illustrate the analytical results (48) and
compare them with the numerical results by plotting in Fig. 5
the generalized second-order coherence function g(2)(τ,0)
versus the time interval τ around δc = 0, without dissipation.
The generalized second-order coherence function is plotted for
N = 2,4,6,10 atoms, respectively. It is clear from Fig. 5 that,
close to the critical point δc = 0, our analytical approximate
results (48) (dashed line) agree very well with the numerical
result (43) (solid line). Obviously, g(2)(τ,0) < 1 at any time
interval τ . This shows that the atomic collective symmetric
excitations obey sub-Poissonian statistics. It can also be found
that as N increases, g(2)(τ,0) < 1 oscillates slower and slower
and approaches unity, especially for g(2)(0,0). That is because
the generalized second-order coherence function at τ = 0 is

g(2)(0,0) = 1 − 4

N2 + 2N
. (52)

Hence g(2)(0,0) increases as N increases. In the thermody-
namic limit N → ∞,

g(2)(0,0) → 1. (53)

This shows that when N is smaller, the effect of suppressing
the doubly excited state is enhanced.

Figure 6 shows the results for the dissipative case. Fig-
ure 6(a) shows g(2)(0,∞) versus the average photon number
δ in steady state for N = 2,3,5,10 atoms, respectively. As
shown in this figure, the value of g(2)(0,∞) increases as N

increases for a larger average photon number. For a definite N

and a small value of δ, g(2)(0,∞) increases as δ increases.
At some intermediate time there is a peak in g(2)(0,∞)
followed by a steady decrease, asymptotically approaching
a constant value for large δ. The smallest value of g(2)(0,∞)
occurs at δ = −0.5. This phenomenon is also prominent in
Figs. 6(b)–6(d). Figures 6(b)–6(d) show g(2)(τ,∞) versus τ

for N = 5 and δ = −0.5, 0 and j − 1.1, respectively. The
antibunching effect of collective excitations of an atomic
ensemble is observed since the envelop of g(2)(τ,∞) shows
g(2)(0,∞) < g(2)(τ,∞) with some increasingly rapid oscil-
lations as δ increases in Figs. 6(b)–6(d). Additionally we
note that g(2)(τ,∞) approaches one, as expected, after some
oscillations. This indicates the probability of two collective
excitations of the atomic ensemble at the same time (τ = 0)
is smaller than that at a different time (τ 
= 0). Therefore,
the resonant excitations from the ground state to the doubly
excited state are suppressed. This is a clear signature of the
atomic blockade. Compared with Fig. 5, this result is better and
closer to physical reality. As shown in Fig. 5, the generalized
second-order coherence function only oscillates with time
interval τ and does not approach 1 as we expect when τ → ∞.
In Ref. [54], the photon antibunching effect is also obtained in
only two interacting atoms. However, the antibunching effect
we obtain is about atomic collective excitations, and the photon
number is a conserved number. In this sense, we do not need
to consider the photon correlation.

To conclude this section, we give some remarks about the
atomic blockade. For applications in quantum information,
the atomic blockade provides a novel approach to physical
implementation of scalable quantum logic gates such as
implementing a CNOT gate between two atoms [11–13] and
some kinds of quantum protocols [55–58]. Furthermore, as
double excitation are inhibited in the Rydberg blockade
mechanism, it also supplies a fascinating approach to store
quantum information [11,12]. However, the dipole-dipole
interaction depends on the distance between Rydberg atoms.
To achieve a stronger interaction, it requires the atoms to be
closer in space or to be excited to higher Rydberg states, in
which the principal quantum number is very large, but this will
not be convenient to control the atoms individually [11–13].
Such as the Rydberg levels n = 79 and 90, the corresponding
blockade shift is 2π × 3 and 2π × 9.5 MHz at an interatom
distance 10.2 μm, respectively. To achieve a larger energy-
level shift due to the Rydberg blockade, the distance needs to
be decreased, and thus the coherent manipulation of individual
atoms is difficult. It is this consideration that motivates us
to find a new mechanism inducing a stronger interatom
coupling, valid for long distances and controllable to improve
the dipole-dipole interaction. We note that in Ref. [59],
the coupling strength between atom and photons can reach
2π × 120 MHz in a high-finesse cavity, which leads us to
anticipate that the strong atom-photon coupling will induce
a stronger interatom interaction among atoms. In addition,
this interaction can be feasibly controlled by the volume of
high-finesse microcavities. This fact means that to achieve
a strong interatom interaction among atoms will not take
stringent requirements on manipulating atoms individually.
Therefore, from the point of view of the controllability and
strength of the interaction, the photon-induced interaction
among atoms in our system is better than the dipole-dipole
interaction inducing the Rydberg blockade.

VI. DOUBLE EXCITATION EFFECTS II: SENSITIVITY
OF THE QUANTUM PHASE TRANSITION

As the system possesses QPTs, we now analyze how to
control the QPT by photons in the cavity. To show the effect
of the QPT on g(2)(τ,0) more clearly, we consider the g(2)(τ,0)
around the critical point nc

a = j − 1/2 at a fixed time interval
τ . Then, according to Eq. (44) we choose cj−1 = cj = 1/

√
2

and cm = 0 (m 
= j − 1,j ) in the initial state, namely

|ψc(0)〉 = 1√
2
|j,j − 1〉 + 1√

2
|j,j 〉. (54)

With the relations U (τ ) = Uc
0 (τ )Uc

I (τ ) for Uc
0 (τ ) =

exp(iH c′
0 τ ), Uc

I (τ ) = T exp[−i
∫ τ

0 V c
I (τ ′)dτ ′], it follows from

Eq. (43) that

U
c†
0 (τ )J+J−Uc

0 (τ ) = iα(t)(|j,j − 1〉〈j,j | − |j,j 〉〈j,j − 1|)
+β(t)(|j,j − 1〉〈j,j | + |j,j 〉〈j,j − 1|)
+ γ (t)(|j,j 〉〈j,j | − |j,j − 1〉〈j,j − 1|)
+ J+J−. (55)

The explicit expressions of the coefficients α(t), β(t) and γ (t)
are given in the Appendix.
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FIG. 7. (Color online) Numerical results for the generalized
second-order coherence function g(2)(τ,0). Here t = 0, τ = 3, g0 =
1000 (red thick solid curve), g0 = 3000 (black thin solid curve),
(a) N = 10, δc = 4, (b) N = 20, δc = 9; other parameters are the
same as in Fig. 5.

Next, we use the perturbation approach to calculate the gen-
eralized second-order coherence function under the following
conditions for m′ = j − 2, r = 0,1, and m 
= j − 2,j − 1,j ,

�j−1η
c
3 � �c

j−2,0, �j−1η
c
4 � �c

j−2,1, �m+1 � ωm+1,m.

(56)

Up to first order in V c
I (τ ), we obtain

g(2)(τ,0) 
∑7

�1=1 xc
�1

(3j − 1)
(∑4

�2=1 yc
�2

) , (57)

where the parameters xc
�1

(�1 = 1,2, . . . ,7) and yc
�2

(�2 =
1,2,3,4) have very long expressions, so we give these in the
Appendix.

We also numerically calculate the generalized second-order
coherence function in Eq. (43), and then plot g(2)(τ,0) versus δ

in Fig. 7. As Fig. 7 indicates, the statistical coherence of atomic
excitations is very sensitive tothe critical point nc

a = j − 1/2.
The probability of double atomic excitation is above the dotted
straight line in the left-hand side of the critical point, while
it is below this curve in the right-hand side of the critical
point. Furthermore the envelope exponentially decays. When
the average photon number is in the domain of j − 1 � na �
j − 1/2 (j − 3/2 � δ � j − 1), the energy level of |j,j 〉 is
higher than |j,j − 1〉 but lower than |j,j − 2〉; while in the
domain of [j − 1/2,j ], the energy level of |j,j 〉 is lower than

both |j,j − 1〉 and |j,j − 2〉, and the order of the energy levels
is ωj < ωj−1 < ωj−2 < · · · < ω−j . We also note that, as the
coupling strength g0 increases, g(2)(τ,0) oscillates faster with
respect to δ. In addition, as N increases, the value of g(2)(τ,0)
increases.

Above, we gave a qualitative analysis of the general-
ized second-order coherence function based on perturba-
tion theory. According to our calculations, there is a large
discrepancy between the theoretical analysis and the exact
numerical result. The reason may be as follows. As seen
in the definition of the generalized second-order coherence
function [i.e., Eq. (43)], this is determined by two cor-
relation functions, that is, 〈ψ ′(0)|Uc†

I (τ )J+J−Uc
I (τ )|ψ ′(0)〉

and 〈ψ(0)|Uc†
I (τ )J+J−Uc

I (τ )|ψ(0)〉. As far as the latter is
concerned, we calculate it in the interaction picture. Here, we
approximate the time-dependent wave function Uc

I (τ )|ψ(0)〉
to first-order by perturbation theory. Since the operator J+J−
gives two large and markedly different eigenvalues to the
components |j,j 〉 and |j,j − 1〉, the originally small deviation
in the approximate wave function with respect to the exact one
will be enlarged.

However, when we come to the case with m = 0 and 1, the
situation turns out to be totally different. First of all, let us turn
to the Hamiltonian H = H0 + HI given in Eqs. (17) and (8).
In the large-detuning regime, it only induces a Rabi oscillation
between the two nearly degenerate states |j,0〉 and |j,1〉, while
leaving the populations in the other states almost unchanged.
On account of the conservation of the total probability and
the same eigenvalues of the operator J+J− on the two
relevant states, in the system which is initially in an equal
superposition of |j,0〉 and |j,1〉, the approximate correlation
function 〈ψ(0)|U †

I (τ )J+J−UI (τ )|ψ(0)〉 is expected to be quite
close to the exact one. This situation will not take place for the
case with m = j and j − 1, since the relevant eigenvalues of
the operator J+J− are remarkably different from each other.
A similar analysis can be applied to the numerator in the
generalized second-order coherence function. Consequently,
the generalized second-order coherence function obtained
from the perturbation theory will coincide with the exact one
for the case with m = 0 and 1, while there is an obvious
difference between the results from these two methods for
the case with m = j and j − 1. Therefore, we only give the
numerical results in Fig. 7.

VII. CONCLUSION AND REMARKS

In this paper, we study the statistical properties of atomic
excitations for two cases: with dissipation and without dissi-
pation. We find that this statistical property can be controlled
by the average photon number in the cavity. In addition,
the photon-induced second-order interaction between atoms
is valid in the long range and can be strengthened by a
high-finesse microcavity with a very small effective mode
volume. Furthermore, we find that the double atomic excitation
will be suppressed when the average photon number in the
cavity is in the vicinity of some special points (degenerate
points). We have also studied the critical behavior of this
statistical property of atomic excitations around the critical
point at which the QPT occurs.
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To characterize the statistical property of atomic excita-
tions, we define a generalized second-order coherence function
similar to the second-order coherence function for photons.
Furthermore, in the limit of N → ∞ and low excitations,
it becomes the conventional one. We have demonstrated the
antibunching effect for atomic excitations near the degenerate
points and the characteristic of sub-Poissonian statistics, which
implies the existence of the atomic excitation blockade. Since
this system possesses several critical points, we also study the
critical behavior of the generalized second-order coherence
function of atomic excitations around the critical points. Our
results show the sensitivity of the system dynamics with the
average photon number in the cavity.
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APPENDIX: EXPLICIT EXPRESSIONS FOR THE
PARAMETERS OF g(2)

In this Appendix, we present the expressions for the
parameters used in Eqs. (48) and (57), respectively.

For m = 0,1, the parameters of g(2)(τ,0) given by Eq. (48)
are

x1 = v2
0(j − 1)2(j + 2)2|c1|2|η1η3O2,0 + η2η4O2,1|2,

x2 = v2
0
(j + 1)2j 2|c0|2

(
η3η4

η2η3 − η1η4

)2

|O∗
−1,0 − O∗

−1,1|2,

x3 = j 2(j + 1)2

∣∣∣∣v0c0(η4η1O
∗
−1,1 − η3η2O

∗
−1,0)

η2η3 − η1η4
+ c1

∣∣∣∣
2

,

x4 = j (j + 2)(j 2 − 1)
∣∣v0c1

(
η2

3O−1,0 + η2
4O−1,1

) + c0

∣∣2
,

x5 = v2
0(j − 1)(j 2 − 4)(j + 3)

|c0|2
ω2

−2,−1

|1 − eiω−2,−1τ |2, (A1)

and

y1 = (j + 1)j,

y2 = �2(j − 1)2(j + 2)2|η1(c0η3 + c1η1)O2,0

+ η2(c0η4 + c1η2)O2,1|2,

y3 = v2
0(j − 1)(j + 2)|η3(c0η3 + c1η1)O−1,0

+ η4(c0η4 + c1η2)O−1,1|2, (A2)

where

v0 ≡ �
√

(j + 1)j, Om,n ≡ 1

�m,n

(1 − ei�m,nτ ). (A3)

For m = j − 1,j , the parameters of g(2)(τ,0) given by Eq. (57)
are listed as follows:

xc
1 = 2j |a0(τ )|2,

xc
2 = 2(2j − 1)|a1(τ )|2,

xc
3 = 3(2j − 2)|a2(τ )|2,

xc
4 = 4(2j − 3)|a3(τ )|2, (A4)

xc
5 = −2α(τ )Im[a0(τ )a∗

1 (τ )],

xc
6 = 2β(τ )Re[a0(τ )a∗

1 (τ )],

xc
7 = γ (τ )[|a0(τ )|2 − |a1(τ )|2],

and

yc
1 = j, yc

2 = 2j − 1,
(A5)

yc
3 = 3 (2j − 2) |c2|2 , yc

4 = β(τ ),

where

a0(τ ) = ηc
3η

c
4f

c
(
Oc∗

j−2,0 − Oc∗
j−2,1

)
,

a1(τ ) =
√

j − f c
(
ηc

2η
c
3O

c∗
j−2,0 − ηc

1η
c
4O

c∗
j−2,1

)
,

a2(τ ) =
√

2j − 1

[
1 + f c

√
j

2j − 1
h1(τ )

]
, (A6)

a3(τ ) = �
√

3(2j − 1)(2j − 2)
(1 − eiωj−3,j−2τ )

ωj−3,j−2
,

c2(τ ) = f ch2(τ )√
2(2j − 1)

,

and

α(t) = q0q
−1 sin(qt),

β(t) = q0q
−2(ωj−1 − ωj )[cos(qt) − 1], (A7)

γ (t) = 2q0q
−2�

√
2j [cos(qt) − 1],

with

q0 ≡ −2�
√

2j (j − 1), f c ≡
√

2�(2j − 1)

ηc
2η

c
3 − ηc

1η
c
4

,

(A8)

q ≡
√

(ωj−1 − ωj )2 + 8j�2, Oc
m,n ≡ 1 − ei�c

m,nτ

�c
m,n

.

Here,

h1(τ ) = ηc
2η

c
3O

c
j−2,0 − ηc

1η
c
4O

c
j−2,1,

(A9)
h2(τ ) = ηc

3

(
ηc

2 − ηc
4

)
Oc

j−2,0 − ηc
4

(
ηc

1 − ηc
3

)
Oc

j−2,1.
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