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Multistability of electromagnetically induced transparency in atom-assisted optomechanical cavities
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We study how an oscillating mirror affects the electromagnetically induced transparency (EIT) of an atomic
ensemble confined in a gas cell, which is placed inside a microcavity with an oscillating mirror in one end. The
cavity field acts as a probe of the EIT system and also produces a light pressure on the mirror. The back-action from
the mirror to the cavity field results in several (from one to five) steady-states for this atom-assisted optomechanical
cavity, producing a complex structure in its EIT. The multiequilibrium positions of the oscillating mirror have
been calculated, and then the susceptibility is studied with respect to the different equilibrium positions. We find
that the EIT of the atomic ensemble can be significantly changed by the oscillating mirror, and also the various
steady states of the mirror have different effects on the EIT.
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I. INTRODUCTION

Fast developments are now occurring in studies at the inter-
face between different kinds of physical systems. Examples of
these include: couplings between light and nano- or microme-
chanical systems (e.g., in Refs. [1–10] ), called optomechanical
systems; interactions between superconducting artificial atoms
(e.g., charge or flux qubit); and transmission line resonators
(e.g., in Refs. [11–16]); and so on. These studies are partly
motivated by possible physical implementations of quantum
information processing, to explore potential future devices,
and to study the interesting physics in these hybrid structures.

In optomechanical systems (e.g., in Refs. [1–10]), the
radiation pressure acts on the oscillating mirror and induces
the interaction between the mechanical system and the optical
field. The back-action from the mirror to the cavity field
[17] can result in several steady-state solutions for the
equilibrium position of the mirror, e.g, it has been proved [1]
that this system experiences bistability in some parameter
region. It has also been shown that light pressure can be
used to realize entanglement between the cavity field and a
microscopic object (e.g., a movable mirror) [1–4], and can
also cool down the mirror [5–8]. Furthermore, Refs. [18,19]
studied optomechanical cavities containing a two-level atomic
ensemble. The atomic ensemble effectively enhances the
radiation pressure of the cavity field on the oscillating mirror,
producing a cavity-atom-mirror entanglement [18,19]. In this
paper we consider this atom-optical system with a three-level
atomic ensemble, which can enable quantum interference, e.g.,
electromagnetically induced transparency.

Electromagnetically induced transparency (EIT) is a re-
markable quantum interference phenomenon, which enables
the active control of light propagation in a coherent medium
[20–23]. Usually, the basic population transfer configuration
for the atoms in EIT is of � type, where the two transitions from
a common upper energy level to two lower energy levels are
induced by two different optical fields (e.g., classical control

field and quantized probe field) [24–26], respectively. One is
a strong field, and the other is a weak one. The stronger field
can effectively modify the susceptibility of the medium so that
the weak one (as a probe signal) can pass through the medium
transparently at the two-photon resonance [27–31]. Recently,
it has been shown that this effect can also work well at the
single photon level for the probe light [32], and thus the weak
field must be treated quantum mechanically. In the quantum
approach, a dark state with dressed photons can be invoked to
store quantum information of photons on the atomic ensemble
as quantum memory [33,34]. These quantum manipulations
at the single photon level require frequency matching with
extremely high precision for one- or two-photon resonance.
When the quantum field is provided by a microcavity with a
one-end oscillating mirror, the oscillation of the mirror might
affect such a precise frequency-matching condition and thus
affect the EIT.

Motivated by these works, here we study how the oscillating
mirror changes the properties of the EIT. We will study the
atom-assisted optomechanical microcavity, through which we
explore the possibility to interface other systems, via some
physical mechanism, such as EIT. Here, the three-level atomic
ensemble for each atom with �-type transitions is placed
inside a cavity with a one-end oscillating mirror. Due to the
mirror’s oscillation, the susceptibility of this atomic medium
displays a multistability corresponding to the multiequilibrium
positions of the mirror. Another prediction of our study is that
the mirror’s oscillation significantly alters the properties of
both the real and imaginary parts of the susceptibility, and
thus makes the EIT phenomena change. We also investigate in
detail how the different steady states of the mirror influence
the dispersion relations and absorption properties of the
light.

The paper is organized as follows. In Sec. II, we introduce
the model for the optomechanical system with the EIT. In
Sec. III, we present the Heisenberg-Langevin equations for
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FIG. 1. (Color online) Schematic diagram for the atom-assisted
optomechanical system considered here. There are three main
components: (i) an optical cavity with one fixed mirror; (ii) another
oscillating mirror, which is modeled as a quantum-mechanical
harmonic oscillator (denoted by a black spring); and (iii) an ensemble
of identical three-level atoms, which are confined inside the cavity.
Each atom is assumed to have �-type transitions. Here, �p =
ωa − ω0 + ω0〈x〉/l and �c = ωa − ωc − ν.

this system and obtain several (from one to five, depending on
the system parameters) steady-state solutions for the position
of the oscillating mirror. In Sec. IV, we study the EIT with
susceptibilities for different (from one to two) equilibrium
positions of the mirror. In Sec. V, we summarize our results.

II. ATOM-ASSISTED OPTOMECHANICAL SYSTEM

As shown in Fig. 1, we consider an ensemble of N identical
three-level atoms, which are confined inside an optical cavity
with a one-end oscillating mirror. The excited, metastable,
and ground states of the ith atom are denoted by |a〉i , |c〉i , and
|b〉i . Each atom is assumed to have �-type transitions. That
is, for the ith atom, a classical light field with the frequency
ν induces a transition between |a〉i and |c〉i , which is often
used as a control field. The quantized cavity field, with the
frequency ω0 when the oscillating mirror is fixed, induces the
transition between |a〉i and |b〉i . We assume that this cavity
field acts as a probe field. Here, the transition between |b〉i
and |c〉i is assumed to be forbidden. The oscillating mirror
is modeled as a quantum-mechanical harmonic oscillator
with the frequency ωM and the mass M . This harmonic
oscillator can also be considered as a spring with an elastic
coefficient Mω2

M .
Based on the above considerations, and using h̄ = 1, the

Hamiltonian of the total system

H = HC + HM + HA + HM-C + HA-L (1)

has five terms corresponding to (i) the cavity (HC), (ii) the
oscillating mirror (HM ) of the mass M , (iii) the atom gas
(HA), (iv) the mirror cavity (HM-C), and (v) the atom-light
term (HA-L). Explicitly, these are described below:

(i) the free Hamiltonian

HC = ω0a
†a, (2)

of the single-mode cavity field with the annihilation and
creation operators a and a†; this term (and ω0) refers to a
cavity with two fixed mirrors;

(ii) the free Hamiltonian

HM = p2

2M
+ 1

2
Mω2

Mx2, (3)

of the oscillating mirror, where p is the momentum of the
oscillating mirror with a small displacement x;

(iii) the free Hamiltonian

HA =
N∑

i=1

(
ωaσ

(i)
aa + ωcσ

(i)
cc

)
, (4)

of the N three-level � atoms with the operators σ (i)
αα = |α〉ii〈α|

and α = a, c; here, ωa (ωc) is the energy-level spacing between
|a〉i and |b〉i (|c〉i and |b〉i) for the ith atom, and we have
assumed the ground state |b〉i as an energy reference point;

(iv) the interaction Hamiltonian

HM-C = −ω0

l
x a†a, (5)

between the cavity field and the oscillating mirror [1], presents
a radiation pressure on the mirror due to the small change x of
the cavity length when the mirror oscillates [5], where l is the
cavity length when the mirror is fixed;

(v) the interaction Hamiltonian

HA-L =
N∑

i=1

(
�e−iνt σ (i)

ac + g a σ
(i)
ab + H.c.

)
, (6)

between the three-level atoms and the classical as well as the
quantized fields. In Eq. (6), � is the Rabi frequency associated
with the coupling between the classical field and the three-level
atoms. The frequency ν is assumed to satisfy the condition

ν = ωa − ωc − �c. (7)

Here, �c is the detuning between the frequency of the classical
control field and the transition frequency from the energy level
|a〉i to the energy level |c〉i for the ith atom. The parameter

g = −µ
√

ω0/2V ε0 (8)

in (6) describes the coupling between the quantized cavity
field and the three-level atoms, where µ is the electric-dipole
transition matrix element between levels |a〉i and |b〉i , V

describes the volume of the cavity, and ε0 is the permittivity
of the vacuum. We note that the effect of the oscillating mirror
on the coupling between the atoms and the quantized cavity
field [35] has been neglected when the Hamiltonian in Eq. (1)
was derived, because we do not consider the strong coupling
between the quantized field and the atoms.

The dynamics of the system governed by the Hamiltonian
H in Eq. (1) is depicted by the Heisenberg-Langevin equations

∂tx = p

M
, (9a)

∂tp = − γM

2M
p + ω0

l
a†a − Mω2

M x − √
γMεin(t), (9b)
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∂ta = −γ0

2
a − iω0

(
1 − x

l

)
a − ig

N∑
i=1

σ
(i)
ba + √

γ0ain(t),

(9c)

∂t

N∑
i=1

σ
(i)
ba = −(γ1 + iωa)

N∑
i=1

σ
(i)
ba − i� e−iνt

N∑
i=1

σ
(i)
bc

−ig a

N∑
j=1

[
σ

(j )
bb − σ (j )

aa

] +
√

Nf1(t), (9d)

∂t

N∑
i=1

σ
(i)
bc = −γ2

N∑
i=1

σ
(i)
bc − iωc

N∑
i=1

σ
(i)
bc − i� eiνt

N∑
i=1

σ
(i)
ba

+iga

N∑
j=1

σ (j )
ac +

√
Nf2(t). (9e)

Here, for convenience, we have neglected detailed derivations
as in Ref. [24], and just phenomenologically introduce the
damping γM of the oscillating mirror, the decay rates γ0 for the
cavity field, and the decay rate γ1 (γ2) from |a〉 to |b〉 (|c〉 to |b〉).
The decay from |c〉 to |b〉 is an equivalent result although there
is no direct electric dipole transition between the energy levels
|c〉 and |b〉. Physically, this decay is from the electric dipole
transitions between |a〉 and |b〉 as well as |a〉 and |c〉, which
can be referred to Ref. [24]. We also assume that the quantum
fluctuations of the cavity field, mirror, and the atoms satisfy
the conditions

〈εin (t)〉 = 〈f1 (t)〉 = 〈f2 (t)〉 = 0 (10)

and

〈ain (t)〉 = αin (t) . (11)

Here, αin(t) can be understood as an input driving field. That
is, ain(t) can be rewritten as

ain (t) = αin (t) + δain (t) , (12)

where the quantum fluctuation of the input field δain(t) satisfies
〈δain(t)〉 = 0.

III. HEISENBERG-LANGEVIN EQUATIONS
AND MULTISTABILITY

A. Steady-state positions of the movable
mirror: Analytical results

We are interested in the steady-state solutions. In the
derivation of the Hamiltonian in Eq. (1), we have assumed that
the linear size of the atomic ensemble is much smaller than
the wavelengths of the light fields. In this case, the couplings
between the atoms and the light fields are homogeneous, and
we can define the collective operators of the atomic ensemble
as in Refs. [25,30]:

S =
N∑

i=1

σ (i)
aa , A† = 1√

N

N∑
i=1

σ
(i)
ab , (13a)

T+ = (T−)† =
N∑

i=1

σ (i)
ac , C = 1√

N

N∑
i=1

σ
(i)
bc . (13b)

Together with Eqs. (13a) and (13b), the interaction Hamilto-
nian HA-C in Eq. (6) can be rewritten as

HA-L = �e−iνt T+ + g
√

N a A† + H.c. (14)

by using the collective operators.
Let us now assume: (i) the number N of atoms is large

enough; (ii) most of the atoms are in the ground state, i.e.,
the atomic system is in very low excitation. Based on these
two assumptions, we can find that the collective operators in
Eqs. (13a) and (13b) satisfy the commutation relations as in
Refs. [19,25,30]:

[C†,S] = 0, [A,S] = A, (15a)

[T−,C†] = 0, [T+,C†] = A†, (15b)

[A,C] = 0, [T+,A] = −C, (15c)

[T−,C] = −A, (15d)

[A,C†] = 1

N
T− ≈ 0, (15e)

[A,A†] = 1

N

N∑
j=1

[
σ

(j )
bb − σ (j )

aa

] ≈ 1, (15f)

[C,C†] = 1

N

N∑
j=1

[
σ

(j )
bb − σ (j )

cc

] ≈ 1. (15g)

Here, it is clear that σ
(j )
bb , σ

(j )
aa and σ

(j )
cc are the population

operators that the ith atom is in different states. In the following
calculations, we are interested in the average values in the
steady states. Based on the assumption that most of the
atoms are in the ground state, the average 〈σbb〉 ≈ 1, but
other averages 〈σcc〉 ≈ 0 and 〈σaa〉 ≈ 0. Thus the averages
of collective operators

∑N
j=1 σ

(j )
aa /

√
N and

∑N
j=1 σ

(j )
cc /

√
N

are much smaller than one due to the low excitation in the
excited states |a〉 and |c〉, however,

∑N
j=1 σ

(j )
bb /

√
N , A and

C are large quantities due to the large number of atom in
the ground state |b〉. Moreover our calculations below are not
related to the correlation spectrum, thus the small contributions
of the average of the operator

∑N
j=1 σ

(j )
ac /

√
N , which charac-

terizes the transitions between two upper levels, is neglected
below.

Equations (15a) and (15b) present a dynamical symmetry
in our system described by the semidirect-product algebra
containing the algebra SU(2) with its generators T±. It is
easy to prove, as in Ref. [19], that the collective operators
and the commutation relations can also be given in a similar
way as in Eqs. (6), (15a)–(15g) for the case when the
couplings between different atoms and the light fields are
inhomogeneous. Therefore, our study here can be generalized
to the case of inhomogeneous couplings.

Using the commutation relations in Eqs. (15a)–(15g) in the
low excitation of the atomic system, the Heisenberg-Langevin
equations (9a)–(9e) are now simplified to

∂tx = p

M
, (16a)

∂tp = − γM

2M
p + ω0

l
a†a − Mω2

M x − √
γMεin (t) ,

(16b)
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−∂ta=−γ0

2
a−iω0

(
1− x

l

)
a−ig

√
N A + √

γ0ain (t) ,

(16c)

∂tA = −γ1A − iωaA − i� e−iνt C − ig
√

N a + f1(t),

(16d)

∂tC = −γ2C − iωcC − i� eiνt A + f2(t). (16e)

We note: (i) the equation of motion for the operator T− is
decoupled from the above equations; (ii) we can also derive
the equations of motion without considering the low excitation
approximation first, and then we can obtain the same results
as the above by taking this approximation when we solve the
steady-state equations.

To obtain the steady-state solutions, let us first remove the
fast varying factors by the following rotating transformations:

a = ã exp(−iωLt), (17a)

A = Ã exp(−iωLt), (17b)

C = C̃ exp[i(�p − �c − ωc)t], (17c)

and

ain (t) = ãin (t) exp(−iωLt) (17d)

= [α̃in(t) + δãin (t)] exp(−iωLt), (17e)

where the detuning �p between the transition frequency ωa of
the atom, from the energy levels |a〉 to |b〉, and the effective
frequency ωL of the cavity field, is given by

�p = ωa − ωL, (18)

with the effective cavity frequency

ωL = ω0 − ω0

l
〈x〉. (19)

Here, 〈x〉 denotes the mean value of x. Equation (19) shows
that the effective frequency ωL of the cavity can be changed
by the oscillating mirror.

In the rotating frame, the Heisenberg-Langevin equations
in Eqs. (16b)–(16e) become

∂tp = − γM

2M
p + ω0

l
ã†ã − Mω2

M x − √
γMεin(t), (20a)

∂t Ã = −(γ1 + i�p)Ã − i�C̃ − ig
√

N ã + f̃1(t), (20b)

∂t C̃ = −[γ2 + i(�p − �c)]C̃ − i� Ã + f̃2(t), (20c)

∂t ã = −
[γ0

2
− i

ω0

l
(〈x〉 − x)

]
a − ig

√
N Ã + √

γ0ãin(t),

(20d)

with the fluctuation

f̃1(t) = f1(t) exp

[
iω0

(
1 + 〈x〉

l

)
t

]
(21a)

and

f̃2(t) = f2(t) exp[−i(�p − �c − ωc)t]. (21b)

We are interested in the steady-state regime. Let us now assume
that all the time derivatives of the mean values for the operators
in Eqs. (20a)–(20d) are equal to zero, then we obtain the steady-
state equations

ω0

l
〈ã†〉s〈ã〉s − Mω2

M〈x〉s = 0, (22a)

−γ0

2
〈ã〉s − ig

√
N〈Ã〉s + √

γ0α̃in = 0, (22b)

−(γ1 + i�p,s)〈Ã〉s − i�〈C̃〉s − ig
√

N〈ã〉s = 0, (22c)

−[γ2 + i(�p,s − �c)]〈C̃〉s − i� 〈Ã〉s = 0. (22d)

Here, 〈O〉s (O represents the operator in the above steady-state
equations) is the mean value of the operator O under the
steady state. The parameter �p,s is the detuning described in
Eq. (18) when the system reaches steady-state. In Eqs. (22a)
and (22b), the correlations 〈ã†ã〉s and 〈xã〉s have been ap-
proximately replaced by 〈ã†〉s〈ã〉s and 〈x〉s〈ã〉s , respectively.
These approximations indicate that the correlations between
the fluctuations near the steady states are very small compared
to the corresponding mean values in the steady states. This can
be quantitatively shown as [36]

〈(δã†) (δã)〉s
〈ã†〉s〈ã〉s � 1,

〈(δx) (δã)〉s
〈x〉s〈ã〉s � 1. (23)

From Eqs. (22b)–(22d), when the system reaches the steady-
state, the mean values 〈Ã〉s and 〈ã〉s can be easily derived
as

〈Ã〉s = −ig
√

Nγ0 α̃in �̃(�p,s)

G(�p,s) �̃(�p,s) + γ0

2 �2
(24)

and

〈ã〉s = 2α̃in√
γ0

[
1 − g2N �̃(�p,s)

G(�p,s) �̃(�p,s) + γ0

2 �2

]
, (25)

with the functions

�̃(�p,s) = γ2 + i(�p,s − �c) (26)

and

G(�p,s) = g2N + 1
2γ0(γ1 + i�p,s). (27)

Using Eqs. (22a) and (25), we can self-consistently derive
a nonlinear implicit equation for �p,s as below∣∣∣∣∣1 − g2N �̃(�p,s)

G(�p,s) �̃(�p,s) + γ0

2 �2

∣∣∣∣∣
2

= γ0κ

4α̃2
inω

2
0

(�p,s − �0),

(28)

with the parameters

κ = Mω2
Ml2, (29)

and

�0 = ωa − ω0. (30)

For the detuning �0 between ωa (the highest frequency of the
� atom) and ω0 [the cavity frequency in Eq. (2) when the
two mirrors are fixed]. Equation (28) is a fifth-power implicit
equation for �p,s . Thus the system may have several solutions
(i.e., multistability in some parameter regions, corresponding
to several steady-state positions of the mirror). These mirror
positions are determined by

〈x〉s = ω0〈ã†〉s 〈ã〉s
Mω2

Ml
. (31)
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B. Steady-state positions of the movable
mirror: Numerical results

Let us first analyze the atom-cavity detuning �p,s and the
equilibrium positions 〈x〉s of the mirror. In principle, we can
obtain �p,s by solving the fifth-order equation in Eq. (28).
However, instead of this, we obtain �p,s by plotting the
left YL(�p,s) and right YR(�p,s) hand sides of Eq. (28) as
functions of �p,s , respectively. The real roots of Eq. (28) can be
represented by the crossing points of two curves corresponding
to YL(�p,s) and YR(�p,s). Here, for clarity, these are shown as

YL(�p,s) =
∣∣∣∣∣1 − g2N �̃(�p,s)

G(�p,s) �̃(�p,s) + γ0

2 �2

∣∣∣∣∣
2

, (32)

YR(�p,s) = γ0κ

4α̃2
inω

2
0

(�p,s − �0). (33)

The curve and the lines, corresponding to YL(�p,s) and
YR(�p,s), are schematically shown in Fig. 2, which is used to
analyze the solution of the self-consistent equation in Eq. (28).
In Fig. 2(a), the double-well-like curve and the straight lines
show how YL(�p,s) and YR(�p,s) changes with �p,s for a
given κ but for larger �0 = ωa − ω0, respectively. Figure 2(b)
shows the solution of the self-consistent equation in Eq. (28)

( )p s∆cω ( )
th
cd∆( )

th
bc∆( )

th
ab∆

dcba

(b)

p (s)

p (s)

∆

0∆ = ∆
(a)

FIG. 2. (Color online) Schematic diagram for the functions of
the left YL(�p,s) and the right YR(�p,s) hand sides of Eq. (28) versus
�p,s in (a) for a large value of �0 and (b) for �0 in the region of
(a) indicated by the red dashed box. In (b), the brown triangle, red
crosses, green dot and blue squares denote four different steady state
solutions of the self-consistent equation (28). The brown triangle (far
right) denotes the solution �(1)

p,s , the four blue squares (top left) denote
the solution �(2)

p,s , the red dots on the curve denotes the solution �(3)
p,s ,

and the green dot denotes the solution �(4)
p,s . The solution �(1)

p,s is not

shown in the regions c and d . Here, �
(i)
th (i = ab,bc,cd) denote the

threshold values of �0 that separate regions with different number of
solutions. Namely, �

(ab)
th is the boundary point of the regions a and

b, �
(bc)
th is the boundary point of the regions b and c, and �

(cd)
th is the

boundary point of the regions c and d .

when �0 is in the region inside Fig. 2(a) marked by the red
dashed box.

The slope of the lines in Fig. 2(b) are proportional to κ in
Eq. (29). The different straight lines in Fig. 2(b) correspond
to different values of �0. Recall that �0 is the atom-cavity
detuning when the two mirrors are fixed. Each parameter
region for �0 can have at most five steady-state solutions
and three stable solutions. This system has eight parameters.
However, during most of this study, we will be varying
the atom-cavity detuning �0 (for fixed mirrors) and the
parameter κ as shown in Fig. 2(b). Physically, it is important to
study the solution near the atom-cavity detuning �0, and the
unstable solution shown by the yellow dot in Fig. 2(a) can be
neglected.

In the following discussions on the steady-state solutions,
we only consider the crossing points between two curves
corresponding to YL(�p,s) and YR(�p,s), in the red square
in Fig. 2(a). Inside this red square, the number of real roots
of Eq. (28) can be characterized by three critical values of
the detuning �0: �

(cd)
th , �

(bc)
th , and �

(ab)
th , when κL < κ < ∞.

The space of “roots”are divided into four regions presented
by the four letters a, b, c, d at the bottom of Fig. 2(b):
(a) when the atom-cavity detuning �0 > �

(cd)
th , there is no

real root; (b) when �
(bc)
th < �0 < �

(cd)
th , there always exist two

roots; (c) when �
(ab)
th < �0 < �

(bc)
th , there are four real roots;

(d) when �0 < �
(ab)
th , there are two real roots. Also at the

threshold points for �0 = �
(cd)
th , �

(bc)
th , and �

(ab)
th , the number

of steady-state roots is one, three, and three, respectively.
However, in the case when κ < κL, the threshold value �

(ab)
th

does not exist, and there are only two threshold values, �
(cd)
th

and �
(bc)
th , which divide the �0-parameter space into three

regions for the roots of Eq. (28). In this case, the number of
roots will be explained below for given sets of parameters.

We now simulate the four steady-state solutions

�(i)
p,s ≡ �

(particular solution label)
probe, steady-state , (i = 1, 2, 3, 4)

for given parameters as in Ref. [25], e.g., �c = 0, ωa = 106,
γ0 = 10−6, γ2 = 10−4, g

√
N = 102, � = 2, and ain = 10.

Hereafter, all quantities are measured in units of γ1. With
the above parameters, we can find that the lower bound κL is
about 6400.

We first study the case for κ < κL
∼= 6400, e.g., κ = 102.

In this case, there are two critical values �
(a)
th

∼= 25 and
�

(b)
th

∼= −0.95. Figure 3 shows the steady-state atom-cavity
detunings �(i)

p,s (when the mirror moves) versus �0 (when the
mirror is fixed). We find that when the difference between
the atomic frequency ωa and the cavity frequency ω0 is
larger than 25, there is no steady-state near the detuning �c.
When −0.95 � �0 � 25, there are two steady-state solutions,
i.e., �(1)

p,s and �(2)
p,s shown in Fig. 3. In this region, we

find that �(1)
p,s decreases linearly, but �(2)

p,s increases with
increasing �0. When �0 � −0.95, as shown in Fig. 3,
there are four steady-state solutions, i.e., �(i)

p,s (i = 1, 2, 3, 4).
Figure 3 shows that when the detuning �0 passes through
−0.95, from the right to the left, two additional solutions
(�(3)

p,s and �(4)
p,s) appear. We also find that two solutions

(�(2)
p,s and �(4)

p,s) gradually approach �c = 0 to realize the
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FIG. 3. (Color online) The steady-state solutions �(i)
p,s (i =

1, 2, 3, 4) versus the atom-cavity detunings �0 (when the two mirrors
are fixed) for given parameters, e.g., κ = 102, �c = 0, ωa = 106,
γ0 = 10−6 , γ2 = 10−4, g = 102, � = 2, and ain = 10. Hereafter,
all the quantities are measured in units of γ1. Note that here eight
parameters determine the system. Recall that �p,s is the steady-state
atom-cavity detuning when one mirror is movable. The inset shows
the steady-state solution �(1)

p,s , which corresponds to a very large
displacement of the mirror. As schematically shown in Fig. 2(b),
the dotted blue, dashed red, and continuous green lines denote
the solutions �(2)

p,s , �(3)
p,s , and �(4)

p,s , respectively. For example, the
green cross in Fig. 2(b) corresponds to a single value of �0.
Here, �0 is swept, and the green cross in Fig. 2(b) becomes a
continuous curve. Same for one red dot and one blue square in
Fig. 2(b).

two-photon-resonance condition. Moreover, note that �(3)
p,s

increases almost linearly with increasing �0.
With the same parameters as those in Fig. 3, we have also

plotted in Fig. 4 the �0-dependent location 〈x〉(i)
s of the mirror

corresponding to �(i)
p,s . We find that there is no solution for

the steady-state value of 〈x〉(i)
s when �0 � 25. When −0.95 �

�0 � 25, the mirror’s position 〈x〉(1)
s , corresponding to the

solution �(1)
p,s , exhibits a very large (compared with 〈x〉(2)

s ,

9 6 3 0 3 6
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3

6
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atom cavity detuning 0

x s

10 6

xs
2xs

3

xs
4

4 0 4

94

100

106

xs
1

FIG. 4. (Color online) Steady-state positions 〈x〉(i)
s (i = 1, 2, 3, 4)

for the movable mirror versus the atom-cavity detuning �0, for the
same parameters listed in Fig. 3. Here, the continuous black, dotted
blue, dashed red, continuous green lines denote 〈x〉(1)

s , 〈x〉(2)
s , 〈x〉(3)

s ,
and 〈x〉(4)

s , when the atom-cavity detunings �p,s take the following
steady-state values �(1)

p,s , �
(2)
p,s , �

(3)
p,s, and �(4)

p,s , respectively, as shown
in Fig. 3.

〈x〉(3)
s , 〈x〉(4)

s ) displacement of the mirror, and 〈x〉(1)
s increases as

�0 increases. The mirror’s displacement 〈x〉(2)
s , corresponding

to the solution �(2)
p,s , is nearly zero. When �0 � −0.95, the

four steady-state solutions for the displacement 〈x〉s exist
simultaneously. Two of them, 〈x〉(2)

s and 〈x〉(4)
s , show that

the spring is compressed, and their displacements linearly
increase when �0 decreases. One of them, 〈x〉(3)

s , nearly
vanishes.

From Eq. (19), we know that the oscillating mirror can affect
the two-photon resonance by changing the effective frequency
ωL of the cavity field. Because when the mirror is fixed, the
two-photon resonant condition becomes

�0 = ωa − ω0 = �c. (34)

However, this condition is modified to

�p,s = ωa − ωL = �c , (35)

when the mirror is oscillating. We note that the two-photon
resonant condition in Eq. (35) is further modified to

�(i)
p,s = ωa − ωL = �c , (36)

when the system reaches its steady state. We assume that the
two-photon resonant condition in Eq. (34) is satisfied when the
mirror is fixed. Recall that �c = 0 in Figs. 3 and 4. This means
that the two-photon resonant condition is �(i)

p,s = 0 in this case.
We find that 〈x〉s is nearly zero as shown in Fig. 4 when �0 >

�c = 0. In this case, there is no value of �p,s approaching zero,
as shown in Fig. 3; so the two-photon resonance cannot happen.
From Figs. 3 and 4, we find that the two-photon resonance
�(i)

p,s = �c = 0 might happen when �0 � −0.95. Because in
this region, �(2)

p,s and �(4)
p,s can approach zero as in Fig. 3, which

correspond to the steady-state values of the mirror’s positions
〈x〉(2)

s and 〈x〉(4)
s , respectively, as in Fig. 4.

We now turn to study the steady-state values of �p,s

and 〈x〉s for the case when 6400 � κ < ∞, e.g., κ = 104.
In this case, as schematically shown in Fig. 2(b), there are
three critical values �

(i)
th (i = ab, bc, cd): �

(cd)
th

∼= 2.5 × 103,
�

(bc)
th

∼= −0.22 and �
(ab)
th

∼= −2.5 × 105. The number of solu-
tions for �p,s has the same descriptions as those in Fig. 2(b).
Similarly to Figs. 3 and 4, we plot Figs. 5 and 6 for �(i)

p,s

and their corresponding 〈x〉(i)
s , respectively. The two-photon

resonance condition in Eq. (36) for �c = 0 might also
be satisfied in this case. Because when �0 � −0.22, two
steady-state values (�(2)

p,s and �(4)
p,s) of �p,s are near zero,

as shown in Fig. 5, which correspond to the steady-state
solution of the mirror’s position 〈x〉(2)

s and 〈x〉(4)
s , as shown

in Fig. 6. It is also found that one, 〈x〉(2)
s , of the steady-state

solutions of 〈x〉s nearly vanishes, as shown in Fig. 6, when
�0 > �c = 0.

Finally, we note that there is only one steady state solution
�p,s = �0 for Eq. (28) in the limit κ → ∞. This implies when
the elastic coefficient Mω2

M is very large for given cavity length
l, it is difficult for the photon pressure to make the mirror to
even have a tiny displacement, and the oscillating mirror does
not affect the optomechanical system [30].
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FIG. 5. (Color online) Steady-state solutions �
(i)
p(s) (i = 1, 2, 3, 4)

schematically shown in Fig. 2(b) versus �0 with κ = 104. The other
parameters here are the same as in Fig. 3. The inset shows the steady
state solution �

(1)
p(s) that corresponds to a very large displacement of

the mirror. As shown in Fig. 2(b), the dotted blue, dashed red, and
continuous green lines denote the solutions �

(2)
p(s), �

(3)
p(s), and �

(4)
p(s),

respectively.

IV. ELECTROMAGNETICALLY INDUCED
TRANSPARENCY IN THE

OPTOMECHANICAL SYSTEM

To explore how the mirror’s oscillation affects the EIT, let
us now study the susceptibility of the atomic medium. Because
we can write the probe cavity field as

E(t) =
√

ωL

2V ε0
ae−iωLt + H.c. = εe−iωLt + H.c. , (37)

then the linear response of the atomic ensemble to the weak
probe field E(t) can be described by the susceptibility

χ = 〈p〉
〈ε〉ε0

. (38)

6 3 0 3 6
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6

atom cavity detuning 0

x s

xs
2xs

3

xs
4

4 0 4

9995

10 000

10 006

xs
1

10 6

FIG. 6. (Color online) Steady-positions 〈x〉(i)
s (i = 1, 2, 3, 4) of

the movable mirror versus the atom-cavity detuning �0, with the
same parameters as in Fig. 5. Here, the continuous black, dotted blue,
dashed red, continuous green lines denote 〈x〉(1)

s , 〈x〉(2)
s , 〈x〉(3)

s , and
〈x〉(4)

s , when the atom-cavity detunings �p(s) (for a moving mirror)
takes the following steady-state values: �(1)

p,s , �
(2)
p(s) , �(3)

p,s , and �(4)
p,s ,

respectively, as shown in Fig. 5.

Here, the average polarization 〈p〉 of the atomic ensemble is

〈p〉 = µ

V

N∑
i=1

σ
(i)
ba . (39)

Using Eqs. (24), (37), and (38), we obtain the susceptibility χ

χ = F
γ2� − (�p,s − �c)�

�2 + �2

+iF
γ2� + (�p,s − �c)�

�2 + �2
, (40)

with

F = µ2N

ε0V
, (41)

� = γ1(�p,s − �c) + γ2�p,s, (42)

(where F is proportional to the density N/V ) and

� = �2 − �p,s(�p,s − �c) + γ1γ2. (43)

It is well known that the real part, Re(χ ), and the imaginary
part, Im(χ ), of the susceptibility χ describe the dispersion and
absorption of light, respectively.

As discussed in the last section, one of the solutions
corresponding to x(1)

s and �(1)
p,s is unstable, and another

solution, corresponding to x(4)
s and �(4)

p,s , is similar to the

solution x(2)
s and �(2)

p,s in the region (�(b)
th , �

(c)
th ). Therefore,

we only consider two solutions below. In Fig. 7, Re(χi) and
Im(χi) (i = 1, 2) versus �0 are plotted for the two solutions
�(2)

p,s and �(3)
p,s studied in Fig. 3. Here, χ1 and χ2 denote the

susceptibilities corresponding to �(2)
p,s and �(3)

p,s , respectively.
All parameters in Fig. 7 are the same as those in Fig. 3. It
is found that when �0 > �c = 0, the curves for Re(χ1) and
Im(χ1) are similar to those in the usual EIT phenomenon [30].
This means that the steady-state value 〈x〉(2)

s of the mirror’s
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FIG. 7. (Color online) The susceptibilities χ1 and χ2 for the
detuning between the atom and the control field �c = 0 and κ = 102.
We plot only two susceptibilities because there are three stable
solutions in this parameter region but two of them are quite similar.
Here, the dotted and solid curves correspond to the imaginary and
real parts, respectively. The blue and the green colors correspond to
χ1 and the dark red and brown colors correspond to χ2, respectively.
The EIT-like region is located between the two peaks of Imχ1 and
Imχ2.
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FIG. 8. (Color online) The susceptibilities χ1 and χ2 for �c = 2
and κ = 102. Here, the dotted and solid curves correspond to the
imaginary and real parts, respectively. The blue and the green colors
correspond to χ1 and the dark red and brown colors correspond to χ2,
respectively. The EIT-like region is located between the two peaks of
Imχ1 and Imχ2.

displacement is near zero in this region of parameters, and the
oscillating mirror has no effect on the EIT. However, when
�0 < �c = 0, the mirror’s displacement 〈x〉(2)

s makes the
two-photon-resonance condition �(2)

p,s = ωa − ωL ≈ �c = 0
approximately satisfied. As a result, in this region, each of
the curves Re(χ1) and Im(χ1) is almost close to zero, like an
infinite “tail.” When �0 � −0.95 as shown in Fig. 3, another
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FIG. 9. (Color online) (a) The susceptibilities χ1 and χ2 for
7�c = 0 and κ = 106. (b) The magnified figure of (a) for small �0.

Here, the dotted and solid curves correspond to the imaginary and
real parts, respectively. The blue and the green colors correspond to
χ1 and the dark red and brown colors correspond to χ2, respectively.
It is shown in these two figures that the oscillating mirror’s influence
on EIT can also be observed if the detector’s resolving power is high
enough.

solution �(3)
p,s emerges, thus we also have a �(3)

p,s-dependent
susceptibility χ2.

As shown in Fig. 7, the curves corresponding to the real
part Re(χ2) and the imaginary part Im(χ2) of the susceptibility
χ2 are similar to those in the usual EIT [30], since the mirror’s
displacement 〈x〉(3)

s is nearly zero. From Fig. 7, we find that the
right part of the curve Im(χ2) almost merges with the left part
of the curve Imχ1, so that a transparent “window” is formed.

To know how �c affects the EIT, we can also study
the susceptibility χ for the detuning �c = 2 when other
parameters are assumed to be the same as those in Fig. 7.
As shown in Fig. 8, the steady-state solutions of �p,s and 〈x〉s
are similar to those for �c = 0. The curves corresponding
to these solutions are just rightward shifts for the curves in
Figs. 3 and 4, but the shapes of the curves are almost the same.
Similar to Fig. 7, we choose two steady-state solutions and
plot Re(χi) and Im(χi) (i = 1, 2) versus �0 . Obviously, the
essential conclusions remain unchanged as those in Fig. 7, but
all curves have a rightward shift.

Based on the analysis in Sec. III, �
(bc)
th and �

(ab)
th approach

zero from the left side when κ is increased. When κ > κL,
e.g., κ � 6400 in Figs. 5 and 6, the larger κ corresponds to
shorter “tails” of the curves corresponding to Re(χ1) and Im
when �0 � −0.95. As shown in Figs. 9(a) and 9(b), for the
parameters in the current experiments [7,8], such as κ ∼ 106

discussed as above, the “tails” phenomenon can be detected
if the resolution of the detector is high enough. Actually,
a small elastic constant can be obtained in optomechanical
systems formed by a quantum-degenerate Fermi gas [37],
where the mechanical motion of the fermionic particle-hole
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FIG. 10. (Color online) The susceptibilities for �c = 0 and
κ = 1.6 × 1010. Note that this value of the elastic constant κ is
huge, corresponding to an almost fixed mirror. In this case, the
Reχ1 and Imχ1 occur for mostly positive values of the atom-cavity
detuning. When the spring constant becomes softer, as in Fig. 7, the
Reχ1 and Imχ1 have a response that extend over a huge range of
values of the atom-cavity detuning �0, even for �c � −6. When
κ tends to infinity, the susceptibility becomes the same as that in
the usual EIT phenomenon. This consistency check is reassuring
for our calculations. Here, the dotted and solid curves correspond
to the imaginary and real parts, respectively. The blue and the
green colors correspond to χ1 and the dark red and brown colors
correspond to χ2, respectively. The EIT-like region occurs near zero
detuning �0.
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system behaves as a “moving mirror.” The frequency of the
oscillating “mirror” is about 0.1 MHz. We hope that the above
discussed physical effects for the small elastic constant can be
first observed in such system [37] or other condensed matter
systems. For the real optomechanical systems, the frequency
of the mirror can reach 0.5 ∼ 2 MHz [38,39] with the cavity
length (100 nm) [40].

In the limit κ → ∞, the “tails” (for �0 � 0) disappear
and the right part of the curve Im(χ2) just meets the left part
of the curve Im(χ1) to form a transparent “window.” In this
limit, all the physical properties return to that in the usual
EIT phenomenon. Namely, we recover the standard EIT when
κ → ∞. This asymptotic result is shown in Fig. 10 with a
large κ (e.g., κ = 1.6 × 1010), but other parameters are the
same as in Fig. 3. In Fig. 10, around the point �0 > �c = 0,
the left parts of the curves Re(χ1) and Im(χ1) nearly merge
with the right parts of the curves Re(χ2) and Im(χ2), and thus
transparent windows are formed as in the usual EIT [30].

V. CONCLUSION AND REMARKS

We have studied the effects of the end mirror’s oscillation
on the EIT phenomenon for an atomic ensemble confined in
a gas cell placed in a microcavity. This study can help us
to quantitatively consider the quantum interface between an
optomechanical system and an atomic gas displaying EIT. The
results obtained could be used to improve the measurement
precision based on the EIT effect, when the medium is placed

inside a microcavity with a one-end oscillating mirror and the
cavity acts as the probe light. We have shown that the whole
system exhibits multistability due to the mirror’s vibration,
and we have also numerically obtained the threshold values of
the parameters, which can help determine how many steady
states exist in the corresponding parameter regions. This
multistability can be explicitly displayed through a modified
EIT phenomenon. Consequently, we investigate the effects of
the multi-steady-state solutions on the EIT phenomenon and
find that in some parameter regions there are two solutions that
approximately satisfy the two-photon resonance condition.
Therefore, the properties of both the real and imaginary parts
of the susceptibility are significantly altered. When the spring
elastic constant increases, the mirror becomes less movable,
our study show that in this case all properties of the system
gradually revert to those of the usual EIT phenomenon.
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