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Unified single-photon and single-electron counting statistics: From cavity QED to electron transport

Neill Lambert,1,* Yueh-Nan Chen,2,† and Franco Nori1,3

1Advanced Science Institute, RIKEN, Saitama 351-0198, Japan
2Department of Physics and National Center for Theoretical Sciences, National Cheng-Kung University, Tainan 701, Taiwan

3Physics Department, University of Michigan, Ann Arbor, MI 48109-1040, USA
(Received 24 September 2010; published 30 December 2010)

A key ingredient of cavity QED is the coupling between the discrete energy levels of an atom and photons
in a single-mode cavity. The addition of periodic ultrashort laser pulses allows one to use such a system
as a source of single photons—a vital ingredient in quantum information and optical computing schemes.
Here we analyze and time-adjust the photon-counting statistics of such a single-photon source and show that
the photon statistics can be described by a simple transport-like nonequilibrium model. We then show that
there is a one-to-one correspondence of this model to that of nonequilibrium transport of electrons through
a double quantum dot nanostructure, unifying the fields of photon-counting statistics and electron-transport
statistics. This correspondence empowers us to adapt several tools previously used for detecting quantum behavior
in electron-transport systems (e.g., super-Poissonian shot noise and an extension of the Leggett-Garg inequality)
to single-photon-source experiments.
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I. INTRODUCTION

Cavity QED studies the interaction between a two-level
atom and a single-mode cavity (see, e.g., [1–4]). Vacuum Rabi
oscillations, the coherent excitation transfer between atoms
and cavity photons, can occur if the atom-photon coupling
strength g overwhelms both the loss rate (κ) of the cavity
photons and the emission rate (γ ) into other modes, as shown
schematically in Fig. 1. To observe such a quantum oscillation,
a velocity-selected atomic beam is passed through an open
Fabry-Perot resonator to control the interaction time ti . The
probability Pe(ti) that the atom remains in the excited state |e〉
at time ti can be written [1–3] as Pe = (1 + cos 2gti)/2. This
coherent coupling can be observed by examining the so-called
vacuum Rabi splitting (VRS) in the transmission spectrum of
the cavity. Clear evidence of VRS has been demonstrated not
only in atomic systems [2–4] but also in semiconductor self-
assembled quantum dots [5] and circuit QED [6–8] systems.

In several recent experiments (see, e.g., [1–4]), a cavity-
QED system was used as a source of single photons by
deterministically exciting the atom via periodic ultrashort laser
pulses. Normally, one interprets the total photon statistics from
such an experiment as the ensemble average of a single event:
The atom is excited at t = 0, interacts with the cavity, and
eventually, the cavity photon is emitted at some later time.
All of the recorded single-photon-detection events are then
combined to give the ensemble average of this single situation.

Here we propose a simple alternative method of analyzing
the photon-detection events of this kind of experiment [1–4]
that we term time-adjusted photon counting. We show that the
photon emission spectrum can then be modeled via a Marko-
vian master equation which has a one-to-one correspondence
to a well-studied model of a double quantum dot (DQD)
in the large-bias, Coulomb-blockade regime. This allows us
to reinterpret data from existing (and future) cavity-QED
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single-photon-source experiments as a continuous transport-
like phenomenon, unifying photon and electron statistics. A
summary of this correspondence can be found in Table I.

DQDs are artificial atoms in a solid [9–11]. A variety of
powerful tools have been developed to study transport through
such devices. These tools have revealed unique features like
Coulomb blockade [12], the Kondo effect [12], and coherent
oscillations [13,14]. Our main result here is that the electron-
counting statistics developed for the DQD model (e.g., current,
current noise, and higher order cumulants) can be observed
in existing photon-counting cavity-QED experiments. We
will use the analogy between these two apparently unrelated
systems to show that the photon statistics have a nonnegative
shot-noise feature, complementary to their sub-Poissonian
antibunching statistics, that indicates VRS. Moreover, we
calculate the second-order correlation functions and show that
these violate an extended form [15] of the Leggett-Garg (LG)
inequality [16]. For completeness, we also consider violations
of this inequality by the nonadjusted statistics.

II. STANDARD PHOTON COUNTING

A way to produce [1] single photons from a cavity is the
following: Ultrashort laser pulses with a given time constant
are applied to the atom. The single-photon detector records
the arrival time tn of a photon decaying out of the cavity
with respect to each pulse, as shown Fig. 1. A normalized
histogram of detection times reveals [1] photon antibunching
and oscillations because of the atom-cavity coupling.

Neglecting the emission rate γ into other modes, the normal
cavity-QED system [4] can be described by the Markovian
master equation (setting h̄ = 1 throughout)

ρ̇ = Wc[ρ] = −i[Hc,ρ] + Lc[ρ], (1)

where

Lc[ρ] = κaρa† − κ

2
[a†aρ + ρa†a], (2)

Hc = νa†a + ω

2
σz + g(σ−a† + σ+a). (3)
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TABLE I. Comparison between the properties of the cavity-QED system studied here and a double quantum dot.

System Double quantum dot Cavity QED

Carrier Electrons Photons

Ground state |R〉 = electron in the right dot |g,1〉 = |ground state atom, 1 photon〉
Excited state |L〉 =electron in the left dot |e,0〉 = |excited atom, 0 photons〉
Energy difference �E EL − ER δ/2 = (ω − µ)/2

Rabi rate Tunneling amplitude T Atom-Photon coupling g

Input rate Tunneling rate �L → ∞ Laser pulses with time-adjusted shift

Output rate Tunneling rate �R Cavity loss rate κ

Quantum noise signature Super-Poissonian Fe(ω → 0) > 1 Non-negative Fph(ω → 0) > 0

Extended LG inequality |2〈I (t + τ )I (t)〉 − 〈I (t + 2τ )I (t)〉| |2g(2)(t,t + τ ) − g(2)(t,t + 2τ )|
��R〈I (t)〉 �〈a†(t)a(t)〉−1

Here ω is the atomic level splitting, ν is the cavity frequency,
and κ is the cavity loss rate by which we acquire photons.
Here a† (a) denotes the creation (annihilation) operator of
a cavity photon. The atomic operators are defined as σz ≡
|e〉〈e| − |g〉〈g|, σ− ≡ |g〉〈e|, and σ+ ≡ |e〉〈g|, where |e〉 and
|g〉 denote the excited and ground states, respectively. The
atomic polarization decay γ can be easily included in this
analysis, but for simplicity, we neglect it here. Furthermore,
we omit variations in the coupling strength g that can occur
between each pulse. This could be an important factor, which
can be dealt with by numerically integrating our final result
over a Gaussian spread in g or by including an additional
dephasing term in the master equation.

III. TIME-ADJUSTED PHOTON COUNTING

Now, rather than collating data in the manner shown in
Fig. 1(b), we propose to perform a time-adjusted analysis of the
photon data, as shown in Fig. 1(c). Namely, the time between
a photon-detection event and the next laser pulse (shown in
green in the figure) is eliminated, moving the time of each
laser pulse to the time of the previous photon count, and any
periods of time with no photon detection are eliminated from
the data set. Thus the system can then be viewed as one with
instantaneous feedback that maintains one excitation in the
combined atom-cavity basis.

A. Effective feedback formalism

To show that the time-adjusted data set is governed by a
simple master equation in the single-occupation basis, we em-
ploy an effective feedback formalism based on Refs. [17,18].
First, we describe the measurement of a single photon (which
has leaked from the cavity and is incident on a photodetector)
as

K(dt)1 =
√

κ dt a. (4)

The complementary operator to this one, which is applied
when no photon is detected during the duration dt , is

K(dt)0 = 1 −
(
iHc + κ

2
a†a

)
dt. (5)

Following the reasoning in Refs. [17,18], the nonselective
evolution under this measurement is given by

ρ(t + dt) =
∑

α=0,1

K(dt)α ρ(t)K†(dt)α, (6)

which is equivalent to the normal master equation
[Eqs. (1)–(3)].

As shown in Figs. 1(b) and 1(c), in the time-adjusted frame,
if a photon is observed, then the atom is suddenly excited by the
ultrashort laser pulse. This is an immediate and instantaneous
feedback effect. In other words, we assume that the laser pulse
is so fast that the system does not evolve while it is being
applied (apart from the resulting excitation of the atom), unlike
the more general feedback elucidated in Refs. [17,18]. Such
an assumption is already implicit in the analysis of Ref. [1].
In this case, we can describe this effective feedback (which is
applied to the system following a photon detection and time
adjustment) as

O[· · ·] = |e〉〈g| · · · |g〉〈e|; (7)

that is, the atom is instantaneously and incoherently projected
into its excited state. In general, this is not a trace-preserving
evolution as it is not a Liouvillian evolution and, as mentioned,
is thus different from the class of feedback mechanisms
described in Refs. [17,18]. Alternatively, one could assume a
full Liouvillian evolution according to the coherent dynamics
of a laser pulse causing π -pulse/Rabi oscillations of the atom
from its ground to excited state, via, for example, an operator
like exp −iZ , whereZ = [σx, . . .]. However, in the limit when
this transition is faster than all other dynamics, when the cavity
(κ) and atomic (γ ) decay terms are faster than the time between
laser pulses, and when we are in the single-excitation manifold,
it is equivalent to O[· · ·].

The unnormalized density matrix ρ̃1 following the detection
of a photon at time t , and evolution because of the laser-pulse
feedback, is now

ρ̃1(t + dt) = κ O a ρ(t) a†dt.

Our time-adjustment scheme implies that the time delay is far
smaller (effectively zero) than the cavity decay time. Then, the
(nonselective) evolution is described by

ρ(t + dt) = ρ̃1(t + dt) + ρ̃0(t + dt), (8)
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FIG. 1. (Color online) (a) Schematic of a QED system. Vacuum
Rabi oscillations can occur if the atom-photon coupling strength
g overwhelms the loss rate κ of cavity photons and the emission
rate γ into other modes. (b) Normal photon counting: Periodic
ultrashort laser pulses excite the atom faster than all other time
scales. The single-photon detector records the arrival time tn of a
photon decaying out of the cavity with respect to each pulse. The
gray area in (b) means that no photon is detected because of detector
inefficiency. (c) Time-adjusted photon counting: The time (shown in
green) between a photon-detection event (in red) and the subsequent
laser pulse is eliminated, moving the time of each laser pulse to
the time of the previous photon count. Any periods (in gray) of
no photon detection are eliminated. In this manner, the system has
an effective instantaneous feedback: Once a photon is detected, a
laser pulse immediately drives the atom to the excited state. (d) The
zero-frequency component of the power spectrum F (0) is positive in
the presence of coherent VRS, even if the coupling g is very small.
In (d), the color brown is maximum, blue is minimum, and the black
vertical lines show F (0) = 0.

and thus one can assume the master equation

ρ̇ = −i[Hc,ρ] + κOaρa† − κ

2
[a†aρ + ρa†a].

As the feedback is via the operator O[· · ·], which does not
have the form of a Liouville superoperator, this is not a
trace-preserving equation of motion. However, if we restrict
ourselves to the single (lowest) excitation manifold, only
the |e,0〉, |g,1〉, and |g,0〉 states are important, where 1 (0)
represents a single (no) photon in the cavity. Then, the feedback
term becomes

Oaρa† = |e,0〉〈g,1|ρ|g,1〉〈e,0| (9)

and, in this truncated basis O[· · ·], becomes trace preserving,
as the state |e,1〉 is decoupled from the equation of motion
(implying 〈e,1|ρ|e,1〉 = 0), giving

Tr[aρa†] = 〈e,1|ρ|e,1〉 + 〈g,1|ρ|g,1〉
= 〈g,1|ρ|g,1〉 (10)

= Tr[Oaρa†].

Now the action of the instantaneous feedback is clear such that
the state |g,0〉 in the photon-decay terms in the master equation
is decoupled from the single-excitation manifold. We can now
write our equation of motion purely in the pseudospin two-state
basis [defined as σ̃z = |e,0〉〈e,0| − |g,1〉〈g,1|],

ρ̇ = −i

[
ν

2
+ δ

2
σ̃z + gσ̃x,ρ

]
+ κσ̃+ρσ̃− − κ

2
[σ̃−σ̃+ρ + ρσ̃−σ̃+], (11)

where δ = ω − ν is the detuning between the atom and the
cavity. This restricted-basis equation of motion is equivalent
to a two-level atom undergoing resonance fluorescence in free
space [19]. Here the two-level atom is represented by the
combined atom-cavity states |g,1〉 and |e,0〉. The coherent
input field is the natural atom-cavity interaction, and the
time-adjusted photon counting gives an effective decay from
|g,1〉 to |e,0〉 by eliminating the no-excitation state |g,0〉. The
time-adjusted data set then represents a single trajectory in the
ensemble described by this new equation of motion.

To achieve the preceding, we note the following points.
First, the delay between measurement and feedback is in-
stantaneous. In our case, the delay is zero, as dictated by
our adjustment of time intervals in the data set. Second, the
feedback action (i.e., laser pulse) instantaneously projects the
system into the |e,0〉 state. This has recently been achieved by
Bochmann et al. [1] using ultrashort laser pulses. Third, the
photon detection is here assumed to be 100% efficient. This can
be effectively achieved by simply omitting the time intervals
where no photons are detected. The only issue remaining, then,
is if the cavity has not decayed before a subsequent laser pulse
is applied. This has the possibility of forcing us to leave the
single-excitation basis. This can be neglected in the limit when
the time between pulses is much bigger than the cavity decay
time.

From this simple two-state model, the ensemble-averaged
measurements of the photon output from the cavity can be
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easily calculated. In particular, the second-order correlation
function,

g(2)(t,t + τ ) = 〈a†(t)a†(t + τ )a(t + τ )a(t)〉
〈a†(t)a(t)〉2

, (12)

is found to be

g(2) = e−αt

8�
[3κ − 4� + 8�eαt − 4αe2�t ], (13)

where α = 3κ/4 + �, � =
√

κ2/16 − 4g2 and δ = 0 for
convenience. It is important to point out that one cannot
define a correct first-order correlation function G(1)(t,t + τ ) =
〈a†(t)a(t + τ )〉 with this two-state model unless one performs
a full numerical simulation using a trace-preserving feedback
operator or retains the incoherent transition through the |g,0〉
state in the equation of motion.

IV. ANALOGY WITH ELECTRON TRANSPORT

As discussed earlier, our goal is to show that this simple
model is equivalent to the electron transport through a solid-
state double quantum dot and then to take advantage of
common tools from transport theory. In the transport regime,
a DQD is connected to electronic reservoirs with tunneling
rates �L and �R . If one assumes the strong Coulomb-blockade
regime, that is, that the charging energy is much larger than
other parameters, then one only needs to consider a single level
in each dot. One can then define the three-state basis: |L〉, |R〉,
and |0〉, representing an electron in the left-dot, the right-dot,
and the empty state, respectively. The DQD Hamiltonian is
written as

Hd = EL|L〉〈L| + ER|R〉〈R| + T |L〉〈R| + T |R〉〈L|, (14)

where EL (ER) is the energy for the left-dot (right-dot) level
and T is the coherent tunneling amplitude between them.

The density matrix ρ(t) of the DQD satisfies

d

dt
ρ(t) = Wd [ρ(t)] = −i[Hd,ρ(t)] + Ld [ρ(t)]. (15)

The Ld term contains the transport properties and dissipation
within the device:

Ld [ρ(t)] = −�L

2
[sLs

†
Lρ(t) − 2s

†
Lρ(t)sL + ρ(t)sLs

†
L]

− �R

2
[s†RsRρ(t) − 2sRρ(t)s†R + ρ(t)s†RsR], (16)

where

sL = |0〉〈L|, s
†
L = |L〉〈0|, sR = |0〉〈R|, s

†
R = |R〉〈0|.

One can calculate the current of electrons leaving the device
using a current superoperator (e.g., for the junction on the right
and setting the electric charge e = 1 throughout):

ÎRρ(t) = �R|0〉〈R|ρ(t)|R〉〈0|. (17)

The steady state current of the right junction is then [20,21]

〈Is〉 = Tr(ÎRρ0)

= �RT 2

�2
R

/
4 + ε2 + T 2(2 + �R/�L)

, (18)

where ε = EL − ER is the energy difference between the two
dots. The shot noise Se(ω) of this device [22,23] can also be
easily obtained:

Se(ω)=
∫ ∞

−∞
dτeiωτ〈[δIR(t),δIR(t + τ )]+〉t→∞+ 2〈Is〉δ(τ ),

(19)

where the fluctuating right-junction current is

δIR(t) = ÎR(t) − 〈Is〉 (20)

and the self-correlation term 2〈Is〉δ(τ ) represents the corre-
lation of a tunneling event with itself [20]. The shot noise
(zero-frequency noise) is found to be [22,23]

Fe = Se(0)/2e〈Is〉

=
{

1−8T 2�L

4ε2(�R − �L) + 3�L�2
R + �3

R + 8�RT 2[
�L�2

R + 4�Lε2 + 4T 2(�R + 2�L)
]2

}
.

(21)

To reduce the DQD problem from a three-state basis to a
two-state one, we take the limit of

�L � �R,T ,ε. (22)

This allows us to eliminate the |0〉 empty state so that as an
electron tunnels out of the right junction, an electron imme-
diately tunnels through the left one, mimicking the effective
two-level behavior of the cavity-QED system. Interestingly,
this limit gives exact results for all the stationary currents but
only returns the correct time dependence for the right-junction
current, in analogy with the inability for the restricted-basis
cavity-QED model to correctly construct G(1). In this case, the
superoperator for the right-junction current becomes

ÎRρ(t) = �R|L〉〈R|ρ(t)|R〉〈L|. (23)

Similarly, the zero state is eliminated from the Ld term so that
only one tunneling rate, �R , remains. In this limited basis,
Eqs. (14) and (15) are equivalent to Eq. (11). Table I lists how
the various parameters correspond to one another in the two
different systems.

Of particular interest to us is how the right-junction second-
order current-correlation function in the large �L limit is
equivalent to the second-order photon correlation function
g(2)(t,t + τ ) discussed earlier. This is because (in the limit
�L � �R,T ,ε)

〈IR(t + τ )IR(t)〉
= Tr[ÎReWd τ ÎRρ(t)]

= �2
R Tr [|L〉〈R|{eWd τ |L〉〈R|ρ(t)|R〉〈L|}|R〉〈L|], (24)

where each superoperator acts on those to the right. The
corresponding correlation function for g(2)(t,t + τ ) for the
cavity-QED system, in the reduced basis we discussed earlier,
is defined as

g(2)(t,t + τ )〈a†(t)a(t)〉2 = 〈a†(t)a†(t + τ )a(t + τ )a(t)〉
= Tr [σ̃−σ̃+eWcτ σ̃+ρ(t)σ̃−], (25)

where we have adopted the traditional input-output formalism
to define the photon intensity in terms of the internal pseu-
dospin operators σ̃ . It is easy to see that the current-correlation
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measurement can be made equivalent to the second-order
photon-intensity measurement simply by multiplying by a
factor of κ2.

In summary, the ensemble-averaged photon statistics from a
periodically pulsed cavity-QED system, following appropriate
time adjustments, have the same properties as the transport of
electrons through a DQD. As an example of the power of this
apparently simple analogy, summarized in Table I, we examine
two tests for quantum behavior in DQDs (nonnegative shot
noise and a special case of the LG inequality) and show how
these two tests can be applied to the time-adjusted cavity-QED
system.

V. TESTS OF QUANTUMNESS

A. Super-Poissonian shot noise

It has been argued that super-Poissonian shot noise can
be observed in DQDs only if there is coherent quantum
tunneling between the two dots [24,25]. If �L is larger
than �R , the second term in Eq. (21) becomes negative and
produces a super-Poissonian value: S(0)/2e〈Is〉 > 1. This was
thought to have been observed experimentally [24,25], but
the exact source of the large super-Poissonian noise in these
experiments is still open to alternative interpretation [26]. In
our analogy, �L is always much larger than �R (it is effectively
infinite). Using the correspondence between electron current
and photon intensity, we can define an effective fluctuating
photon-intensity noise spectrum:

Sph(ω) = 2Re

[ ∫ ∞

0
dτ eiωτ 〈Iph〉2(g(2)(t,t + τ ) − 1)

]
,

where the effective photon current is

〈Iph〉 = κ〈a†(t)a(t)〉 (26)

and the subscript ph represents the photon analogy to typical
electron-transport measurements. In the photon case, there is
no self-correlation term. We can easily calculate a photon-
current Fano factor using the same technique used for DQDs
and find that

Fph = Sph(0)

2〈Iph〉 = − 8g2(3κ2 − δ2)

(8g2 + κ2 + δ2)2
. (27)

From this equation, one can easily see that super-Poissonian
noise in the transport case corresponds to positive noise in the
photon case (Fph > 0). This can occur if 3κ2 < δ2; otherwise,
the shot noise for photons is negative. As mentioned earlier, in
the DQD electron-transport case, the super-Poissonian noise
is only obtained for coherent coupling between the two dots.
For classical sequential tunneling between two dots, the result
turns out to be solely sub-Poissonian [24,25]. For the time-
adjusted single-photon cavity-QED system we consider here,
coherent Rabi oscillations between the atom and cavity photon
states produce a positive zero-frequency component in the
shot-noise spectrum. This is clearly indicated in Fig. 1(d),
using parameters akin to those in the experiment in Ref. [1].
Even for g � κ , the spectrum remains positive. Only for κ � g

does the whole range of Fph(0), as a function of δ, become
negative.

Typically, one can call the light observed from a single-
photon source nonclassical because of its antibunching statis-
tics. Equation (27) implies a secondary criterion for the
quantumness of the observed light from such a single-photon
source: If the correlation function is conditioned by quantum
coherent oscillations (VRS), one should see a positive value
for the zero-frequency limit of the photon noise spectrum.

B. Extension of the LG inequality

To further clarify the quantum signatures in these correla-
tion functions, we turn to an extension [15] of the LG inequality
[16]. Recently, we derived our extended inequality based on
measurements of the fluctuating current through a DQD device
[15]. Since the current is essentially an invasive measurement,
we showed that the inequality only applies for systems with a
state space of three or less states and under the assumption
of irreversible transport into the right reservoir (see the
Appendix). For the cavity-QED system, these two assumptions
become that of being in the single-excitation manifold and
the irreversible loss of photons once they leave the cavity,
respectively. Thus the current inequality of Ref. [15],

|LI (t)| ≡ |2〈I (t + τ )I (t)〉 − 〈I (t + 2τ )I (t)〉| � �R〈I (t)〉,
(28)

becomes a second-order photon-correlation inequality:

|Lg(t)| ≡ |2g(2)(t,t + τ ) − g(2)(t,t + 2τ )| � 〈a†(t)a(t)〉−1
.

(29)

Superficially, this inequality is equivalent to the LG inequality
in the stationary limit [16]. However, as mentioned earlier, the

15

 0

-15

δ
2/
π 

)z
H

M(

0 0.080.04

γ/2π = 3.0 MHz, κ/2π = 2.7 MHz, g/2π = 10 MHz

τ (µs)

Region of
violation
(quantum
regime)

L
g

-0.18

1.33

FIG. 2. (Color online) A violation of the extended LG inequality
[Eq. (29)] for typical parameters in single-photon cavity-QED
experiments [2,3] using time-adjusted photon statistics. The param-
eters used here are κ/2π = 2.7 MHz, g/2π = 10 MHz, and the
variation of the detuning δ/2π can be up to 20 MHz. The violation of
the inequality is indicated by the gray island inside the black contour
line.
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FIG. 3. (Color online) (a) The nonadjusted photon-counting
statistics also exhibit a violation of the LG inequality [Eq. (29)]. The
combined effect of the atom polarization decay and the cavity decay
rates (γ /2π = 3 MHz and κ/2π = 2.7 MHz) prevents a violation
being seen in the data in Ref. [1]. However, a slight decrease in the
polarization decay rate γ or an increase in the coupling strength
g, combined with the ultrashort laser pulses in Ref. [1], should
reveal a violation of the inequality [Eq. (29)]. (b) Using the same
model (without time-adjusted counting), one can estimate the ratio
between the coupling strength g and the dissipation (κ ,γ ) needed
to observe a violation of Eq. (29). This is approximately given by
VRS = 4g/(κ + γ ) > 4. In (b), we have chosen κ = γ .

observation of a photon is an invasive measurement in terms of
the cavity-atom state, and thus, strictly speaking, this inequal-
ity no longer can be discussed in terms of distinguishing the-
ories obeying macroscopic realism from quantum mechanics:
the original goal of the work of Leggett and Garg. Here this
inequality only distinguishes quantum dynamics from those
given by a classical rate equation (see the Appendix and
Ref. [15] for more details). Like the non-negative shot-noise
feature, this inequality reveals a more nuanced way of
understanding whether certain photon statistics have quantum
characteristics beyond those indicated by antibunching alone.

In Fig. 2, we show how the violation of this inequality
occurs for a typical cavity-QED experiment using [1–4]
κ/2π = 2.7 MHz, γ /2π = 3 MHz, and g = 10 MHz. As seen
in Fig. 2, the violations of the inequality are easily observable
and appear in a wide range of detuning δ.

C. Extended inequality with standard photon statistics

One can also apply the extended [15] LG inequality to
the photon statistics without time adjustment. In this case,
a histogram of the photon counts as a function of time
(after the initial excitation of the atom) is equivalent to the
second-order correlation function of the atom-cavity system
with one excitation and cavity decay but no further time-
dependent excitations. See Refs. [1–4] for clear examples of
such statistics.

Using a simple model of Bochmann et al. experiment [1]
[using Eqs. (1)–(3) and the initial state ρ0 = |g,1〉〈g,1|], we
have found that their experiment does not violate the inequality
(29) (the bound is now set by the choice of initial state; see the
Appendix). A factor of 2 decrease in the atomic polarization
decay rate, or a correspondingly stronger coupling strength,
should reveal a violation. We illustrate this in Fig. 3(a), again
using their parameters, though we omit dephasing because
of variations in coupling g. It is easy to see that a violation
of Eq. (29) should be possible with minor improvements
in system parameters. To give a more general bound for
parameters which can cause a violation, in Fig. 3(b), we
show the magnitude of the violation versus the cavity and
atomic losses. This gives a bound on the vacuum Rabi splitting
parameters needed to observe a violation of

2g/[(γ + κ)/2] > 4. (30)

Many realizations of cavity QED have parameters which
exceed this (see, e.g., [5]). We therefore think that this
inequality [Eq. (29)] is a useful addition to the toolbox one
can use to test for quantum behavior in optical systems (see
Refs. [27,28] for reviews of other common tests).

VI. CONCLUSIONS

We have shown how a simple adjustment of the output
photon-detection statistics of a periodically excited cavity-
QED system can be described by a nonequilibrium model,
with an exact analogy to electron-transport properties through
a DQD. This represents a unification of the fields of photon-
counting statistics and electron-transport statistics. We then
adapted several recent results from transport theory to describe
or test the quantum nature of the photon statistics being emitted
from the cavity.

We emphasize that not only the current noise but also
the higher order moments [29,30] can be examined with this
time-adjusted scenario. Moreover, we point out that the same
features could be observed in a circuit-QED system, where the
artificial atom (qubit) is periodically excited by some external
means and photons are detected with a microwave photon
counter [31]. Finally, there are many more complex interacting
light-matter systems (see, e.g., [32,33]) which could benefit
from a similar analysis and which represent a field ripe for
future study.
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APPENDIX: DERIVATION OF THE EXTENDED
LG INEQUALITY

In Ref. [15], we extended the LG inequality to work under
the conditions of invasive measurement but with additional
restrictions. Here we summarize and reformulate the proof of
that inequality but now using the language of cavity QED.

For the cavity-QED case, we posit that any photon-intensity
measurements not conditioned by quantum dynamics obey

|Lg(t,t + τ )| ≡ |2g(2)(t,t + τ ) − g(2)(t,t + 2τ )|
� 〈a†(t)a(t)〉−1

. (A1)

In the language of an effective photon current, we can write
this as

|LI (t,t + τ )| ≡ |2〈Iph(t + τ )Iph(t)〉 − 〈Iph(t + 2τ )Iph(t)〉|
� κ〈Iph〉, (A2)

where κ is the rate of photon leak from the cavity, Iph(t) ≡
Iph(t = 0), and 〈Iph(t)〉 is the average photon current of the
initial state. Hereafter we omit the t variable. In the master
equation approach, the current operator translates into a jump
superoperator, and Eq. (A2) thus represents an inequality
concerning transitions in the system and not static properties.
Thus it is obviously suitable for application to single-photon
measurements, which give us information about a change
in the state of the cavity-QED system. As described in

the text, the photon current superoperator acts as before,
Îph[ρ] = κσ̃+ρσ̃−, such that the average current is 〈Iph〉 =
Tr{Îphρ} and the correlation function of interest is obtained as

〈Iph(τ )Iph〉 = Tr{Îph exp[Lτ ]Îphρ0}. (A3)

For our time-adjusted case, the stationary distribution is chosen
as the initial state. For the non-time-adjusted photon statistics,
one chooses ρ0 = |g,1〉〈1,g|.

In these terms, the inequality expression can be written as

LI (τ ) = Tr{Îph(2 exp[Lτ ] − exp[2Lτ ])Îphρ0}. (A4)

If the cavity-QED system contains no coherent quantum
dynamics, Îph is the 3 × 3 matrix with elements Îphαβ

=
κδα,0δβ,P , where the indices 0 = |g,0〉,P = |g,1〉, A = |e,0〉.
Thus, using the Chapman-Kolgomorov equation, we have

LI (τ ) = κ2PP (0)[�P0(2 − �00 − �PP ) − �PA�A0],

where � represents the matrix elements of the propagator. For
a general Markov stochastic matrix, �, the maximum of LI is

max{LI } = 2κ2PP (0).

However, the rate equation form �(τ ) = expLτ furnishes us
with a further constraint. Maximizing LI (τ ) with respect to
time, from L̇I = 0 and �̇ = L�, we find that the maximum
of LI occurs when �00 + �PP = 1 and �P0 = 1, giving

max{LI } = κ2PP (0) = κ〈Iph〉.
This result relies on the form of the jump operator and the ab-
sence of reabsorbtion of photons by the cavity, that is,LP0 = 0.
These requirements mean that we must always be in the
single-excitation regime and that once a photon leaves the
cavity and is measured, it cannot return. Fortunately, this is
implicit in the definition of destructive photon measurement.
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