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Quantum phase measurement and Gauss sum factorization of large integers
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We study the implementation of quantum phase measurement in a superconducting circuit, where two
Josephson phase qubits are coupled to the photon field inside a resonator. We show that the relative phase
of the superposition of two Fock states can be imprinted in one of the qubits. The qubit can thus be used to
probe and store the quantum coherence of two distinguishable Fock states of the single-mode photon field inside
the resonator. The effects of dissipation of the photon field on the phase detection are investigated. We find
that the visibilities can be greatly enhanced if the Kerr nonlinearity is exploited. We also show that the phase
measurement method can be used to perform the Gauss sum factorization of numbers (�104) into a product
of prime integers, as well as to precisely measure both the resonator’s frequency and the nonlinear interaction
strength. The largest factorizable number is mainly limited by the coherence time. If the relaxation time of the
resonator were to be ∼10 µs (∼1 ms), then the largest factorizable number can be �104N (�107N ), where N

is the number of photons in the resonator.
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I. INTRODUCTION

The superposition of states is a fundamental feature of
quantum mechanics. Recently, the arbitrary superposition of
Fock states [1,2] has been produced in a superconducting
resonator with a Josephson phase qubit [3]. This offers novel
ways to directly study the quantum coherence of the photon
field (i.e., superposition of number states). Furthermore, this
strongly coupled qubit-resonator system [4,5] may be useful
for quantum information processing (QIP).

A. Quantum phase measurement

We theoretically study the quantum phase measurement of
the photon field in a superconducting resonator coupled to two
phase qubits. We consider probing the quantum coherence of
the superposition state,

|�N 〉 = 1√
2

[|0〉 + exp(iϕN )|N〉], (1)

where |0〉 and |N〉 are the vacuum and the multiphoton state,
respectively, and ϕN is the relative phase. This superposition
of states leads to interference fringes. However, in a dissipative
environment, the quantum coherence of the superposition in
Eq. (1) decays rapidly as N grows large [6]. Systematically
studying such superpositions should provide a better under-
standing of the decoherence process [6,7].

To measure the quantum state of the photon field, Wigner
tomography can be used [3,8]. The relative phase between
two number states can only cause a rotation in Wigner phase
space without changing the shape of the Wigner function [3].
Alternatively, here we propose a method to transfer the phase
information of the photon field to the qubit, such that we
can determine the relative phase precisely by measuring the
quantum state of the qubit. In this way, the qubit can be used
to store and detect the quantum coherence of an arbitrary
superposition of two photon number states.

The superposition of the vacuum and the single-photon
state |�1〉 for N = 1 in Eq. (1) in a microwave cavity has been
used for the quantum memory of an atomic qubit [9]. This
experiment has demonstrated that the quantum information of
the qubit can be transferred to the photon field. However, here
we find that it is necessary to use two qubits to transfer the
phase information of the superposition of the vacuum and the
multiphoton state |�N 〉 in Eq. (1). The first qubit is used for
storing the quantum information of the photon field, whereas
the second qubit is used as an auxiliary qubit to disentangle
the first qubit from the resonator [10] by repeatedly applying
a controlled-NOT (CNOT) quantum gate (see, e.g., [11–14]).
Several proposals (e.g., [15,16]) have been made to implement
CNOT gates using superconducting qubits.

Our proposed quantum phase detection method can mea-
sure the degree of quantum coherence of the photon field,
which can be determined by the visibility of the detection
signal [6]. However, the visibilities are greatly reduced due to
decoherence, and depend on the quality factor [17] (i.e., ratio
of the frequency and the damping rate of the resonator). We
find that the visibilities can be greatly enhanced if the Kerr
nonlinearity of the cavity mode (e.g., [18,19]) is exploited.
Thus, the interference of the superposition of multiphoton
states can be observed clearly even in the presence of a
dissipative environment. Notably, the production of extremely
strong Kerr nonlinear strength via coupled Cooper pair boxes
(CPBs) [20] using the effect of electromagnetically induced
transparency (EIT) (e.g., [21–23]) has recently been proposed
[24,25]. The EIT effect in a lossless medium, such as quantum
dots embedded in a solid-state substrate, has recently been
studied [26].

B. Gauss sums

The big problem with Shor’s algorithm [27,28] is that it
is very difficult to implement physically for numbers larger
than 15. Thus, here we use the Gauss sum approach [29–33]
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because this is implementable and could provide a very
valuable test bed or stepping stone for more powerful future
implementations. Our proposed phase detection scheme can
be used for implementing the Gauss sum, which can find
the factors of a number using the periodicity of the sum of
the quadratic phase factors [29]. The Gauss sum has been
realized with NMR [30], cold atoms [31,32], and using short
laser pulses [33]. Here we study the implementation of the
Gauss sum in superconducting circuits. Using our proposed
superconducting circuits, factors of integers ∼103 should be
obtainable by the Gauss sum if the relaxation times were to
be several microseconds. The size of the factors is mainly
limited by the coherence time of the photon field in the
superconducting resonator. Thus, the factors of much larger
numbers could be obtained in the future, when coherence times
improve.

C. Measuring the frequency

We also show that the quantum phase measurement
approach proposed here can be applied to precision mea-
surements. This approach enables one to precisely determine
the frequency of the resonator and the strength of the Kerr
nonlinearity. We show that the superposition of multiphoton
states can increase the accuracy of precision measurements.
This can act as a “frequency standard” for the other qubits in
the circuit.

This paper is organized as follows: in Sec. II, we describe
the model of the system studied. In Sec. III, we present a
method to detect the relative phase of the superposition of the
vacuum and the multiphoton state in Eq. (1). In Sec. IV, we
show that the phase detection method can be applied to both
the Gauss sum for factorization and precision measurements.
We close the paper with a summary. In Appendix A, we
study the interaction between a qubit and a resonator in the
far-detuning regime. In Appendix B, we discuss the effect
of imperfect CNOT gate operations on the disentanglement
process.

II. SYSTEM

We consider two Josephson phase qubits capacitively
coupled to a superconducting resonator [34] as shown in Fig. 1.
The Hamiltonian of the qubit-resonator system can be written
as [3] (h̄ = 1),

H = Hres +
2∑

j=1

[
H

(j )
qbit + H

(j )
qbit-res + H

(j )
drive

]
, (2)

= ωa†a +
2∑

j=1

{
ω0j

2
σjz + gj (aσj+ + σj−a†)

− �j

2
[exp(−iφj − iωqj t)σj+ + H.c.]

}
, (3)

where a is the annihilation operator of the photon field, and σj±
and σjz are the transition and population (Pauli z) operators
of the qubit j , respectively (j = 1,2). Here ω0j and ω are the
frequencies of the qubit j and the resonator, respectively. The
parameters gj act as coupling strengths between the photon
field and the qubits. Furthermore, �j and φj are the amplitude

FIG. 1. (Color online) Circuit diagram of the qubits and the
resonator for quantum phase measurements. The Josephson qubits
are capacitively coupled to the coplanar waveguide resonator with
couplings g1 and g2. The frequency of the qubit can be adjusted
by the flux bias pulse and can be measured by a superconducting
quantum interference device (SQUID) [34]. Here �1 and �2 are the
amplitudes of the couplings between the ground and excited states.

and the phase of the coupling between the ground state |g〉 and
the excited state |e〉 in the j th qubit. The frequency ωqj is the
frequency of the microwave drive of the qubit j . The qubit j

can be accurately controlled by adjusting the frequency ω0j

and the parameter �j via a classical signal [3,4].
It is convenient to work in the interaction picture. By

considering the unitary transformation,

U (t) = exp

[
− i

(
ωa†a + ω01

2
σ1z + ω02

2
σ2z

)
t

]
, (4)

the transformed Hamiltonians are

H
(j )
1 = U †(t)H (j )

driveU (t) (5)

= −�j

2
[exp(−iφj + i�̃j t)σj+ + H.c.], (6)

and

H
(j )
2 = U †(t)H (j )

qbit−resU (t) (7)

= gj [exp(i�j t)aσj+ + H.c.], (8)

where

�̃j = ω0j − ωqj , (9)

and

�j = ω0j − ω. (10)

Hereafter, the two transformed Hamiltonians H
(j )
1 and H

(j )
2 at

resonance (i.e., when �j = 0 and �̃j = 0),

H
(j )
1 = −�j

2
[exp(−iφj )σj+ + H.c.], (11)

H
(j )
2 = gj (aσj+ + σj−a†), (12)

will be used frequently. Furthermore, the time evolution oper-
ators U

(j )
1 (t) = exp[−iH

(j )
1 t] and U

(j )
2 (t) = exp[−iH

(j )
2 t] can

be obtained explicitly as [23]

U
(j )
1 (t) = cos

(
�j t

2

)
1 + i sin

(
�j t

2

)
× [exp(−iφj )σj+ + H.c.], (13)
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and

U
(j )
2 (t) = cos(gj t

√
aa†)|e〉〈e| + cos(gj t

√
a†a)|g〉〈g|

− ia
sin (gj t

√
a†a)√

a†a
σj+ − ia† sin(gj t

√
aa†)√

aa†
σj−,

(14)

where 1 is the unit operator.
To transfer the phase information of the photon field to

the qubit, it is necessary to switch on and off the interaction
between the qubit and the resonator. The coupling between the
qubit and the resonator is fixed, but the frequency of the qubit
can be adjusted by the bias current [3,4]. The qubit-resonator
interaction can thus be turned off by far tuning the frequency
ω0j of the phase qubit [3,4]. In Appendix A, we give a detailed
discussion of the qubit-resonator coupling in the far-detuning
regime.

III. QUANTUM PHASE MEASUREMENT

We now present a procedure to use the qubits to probe
and store the quantum coherence of the superposition of two
Fock states. The relative phase between the superposition of
the vacuum and the single-photon state in Eq. (1) can be
completely transferred to the qubit such that the qubit can act
as a probe of the quantum coherence of the photon field [9].
The phase can be determined by measuring the qubit’s state.

We require two qubits to measure the phase of the
superposition state of the vacuum and the multiphoton state in
Eq. (1). One qubit is used for probing the phase and the other
qubit is used to disentangle the qubit from the resonator. In the
following subsections, we will describe the different schemes
for the single- and multiphoton cases.

A. Single-photon case: |0〉 + exp(iϕ1)|1〉
Let us now consider the quantum phase measurement of

the superposition, [|0〉 + exp(iϕ1)|1〉]/√2, of the vacuum,
and the single-photon Fock state in the resonator. We can
create the superposition state |�1〉 in Eq. (1) by just using
one qubit [2,3,9]. Initially, the product state of the vacuum
of the resonator and the ground state of qubit 1 is prepared
(i.e., |qubit,resonator〉 = |g,0〉). We first produce an equal
superposition of the states |g〉 and |e〉 of qubit 1 by applying a
π/2 pulse to qubit 1 (i.e., turning on the drive of qubit 1 for a
time T = π/2�1). By applying the time-evolution operators
U (t)U (1)

1 (t) in Eqs. (4) and (13) to the state |g〉, we have

U (t)U (1)
1 (t)|g〉

= U (t)

[
cos

(
�1t

2

)
|g〉 + i exp(−iφ1) sin

(
�1t

2

)
|e〉

]
.

(15)

Now consider U
(1)
1 (t = T = π/2�1), then

U
(1)
1 (t = T = π/2�1) = 1√

2
U (t)[|g〉 + i exp(−iφ1)|e〉],

= 1√
2

exp

(
iω01t

2

)
× [|g〉 + i exp(−iφ′

1)|e〉], (16)

where φ′
1 = φ1 + ω01t . The states can thus be written as

|	1(0)〉 = U (t)U (1)
1 (t = π/2�1)|g,0〉 (17)

= 1√
2

exp

(
iω01t

2

)
[|g〉 + i exp(−iφ′

1)|e〉]|0〉. (18)

Now for U (t = π/2�1), then

|	1(0)〉 = 1√
2

exp

(
iω01π

4�1

)
[|g〉 + i exp(−iφ′

1)|e〉]|0〉.
(19)

Next, we turn on the qubit-resonator interaction for a
time t∗1 ,

t∗1 = π

2g1
. (20)

The energy of the excited state of qubit 1 then lowers one
level, to its ground state, and a photon is created in the
resonator. This can be derived by applying the evolution
operator U (t∗1 ) U

(1)
2 (t∗1 ) in Eqs. (4) and (14), giving

U (t∗1 ) U
(1)
2 (t∗1 )|e,0〉 = −i exp(−iωt∗1 )|g,1〉, (21)

and the ground state |g〉|0〉 has not changed:

U (t∗1 ) U
(1)
2 (t∗1 )|g,0〉 = |g,0〉. (22)

Combining Eqs. (18), (21), and (22), we obtain the state,

|	1(t∗1 )〉 = U (t∗1 ) U
(1)
2 (t∗1 )|	1(0)〉 (23)

= 1√
2
|g〉{|0〉 + exp [−i(φ′

1 + ωt∗1 )]|1〉}. (24)

Here we have ignored the global phase factor exp(iω01π/4�1)
in Eq. (19).

We then switch off the qubit-resonator interaction and let
the system evolve freely for a short period τ , such that a relative
phase is acquired between the two number states |0〉 and |1〉.
The total state, at the time t ′ = t∗1 + τ , becomes

|	1(t ′)〉 = exp(−iωa†aτ )|	1(t∗1 )〉 (25)

= 1√
2
|g〉{|0〉 + exp [−iφ′

1 − iω(t∗1 + τ )]|1〉}. (26)

We can now transfer the phase information to qubit 1 by
switching on the qubit-resonator interaction for the time t∗1 in
Eq. (20). The state |g〉|1〉 will swap to |e〉|0〉, while the ground
state |g〉|0〉 remains unchanged. The state now reads

|	1(t)〉 = 1√
2
{|g〉 − i exp[−i(φ′

1 + ϕ1)]|e〉}|0〉, (27)

where t = 2t∗1 + τ and ϕ1 = ωt ≈ ωτ . Here we have assumed
that the period τ is much greater than the time t∗1 . The relative
phase information between the two number states is now
imprinted in qubit 1, and qubit 1 is disentangled from the
photon field in the superconducting resonator.

042317-3



H. T. NG AND FRANCO NORI PHYSICAL REVIEW A 82, 042317 (2010)

Let us apply a π/2 pulse to qubit 1 so that the final state
can be written as

|	1(tf )〉 ≈ 1

2
exp

(
iω01T

2

)
{[1 + exp(−iϕ′

1)]|g〉
+ i exp(−iφ′

1)[1 − exp(−iϕ′
1)]|e〉}|0〉, (28)

where tf = t + T , ϕ′
1 = ϕ1 − ω01T/2, and T = π/2�1. We

have also assumed that the time T = π/2�1 is much shorter
than the time t and we approximate ϕ′

1 ≈ ϕ1. The excited state
of qubit 1 (with a much higher tunneling rate than that of
the ground state) can now be measured. This can be done by
applying a measurement pulse and read-out by a SQUID [34].
The phase factor can thus be determined from the probability
of the excited state, which is

Pe = 1
2 (1 − cos ϕ1). (29)

1. Dissipation in the photon field

The photon field inevitably suffers from the dissipation
present in realistic situations. The thermal average photon
number is about zero (∼10−6) for a high-frequency resonator
(∼40 GHz) at low temperatures (∼25 mK) [3]. The time
evolution of the density matrix ρ of the photon field can be
described by the master equation [35],

ρ̇ = −iω[a†a,ρ] + �(2aρa† − a†aρ − ρa†a), (30)

where � is the damping rate. We assume that the number of
thermal photons is negligible. Here, we ignore the decoherence
effect during the qubit and qubit-resonator operations because
their time durations (T and t∗ ∼nanoseconds in [3]) are
extremely short compared to the dissipation time �−1 (several
microseconds in [3]). Therefore, we consider the dissipation of
the photon field during the free time evolution τ . The density
matrix ρ of the photon field at the time τ can then be found
as [35]

ρ = 1
2 {2|0〉〈0| − exp(−2�τ ) (|0〉〈0| − |1〉〈1|)
+ exp(−�τ )[exp(iωτ + iφ′

1)|0〉〈1| + H.c.]}. (31)

We then follow the same procedures discussed above. The
probability Pe that the qubit is in its excited state can be readily
obtained,

Pe = 1
2 [1 − exp(−�τ ) cos ϕ1], (32)

where ϕ1 = ωτ .

2. Visibility

The visibility of the quantum coherence can be defined as

V = Cmax − Cmin

2
, (33)

where Cmax and Cmin denote the maximum and minimum
values of the coherence factor C(τ ),

C(τ ) = exp(−�τ ) cos ϕ1, (34)

which characterizes the quantum coherence of the superposi-
tion state. Note that the visibility V is unity when dissipation
is absent. The visibility V can be obtained as

V = 1

2

[
1 +

(
ω2

�2 + ω2

) 1
2

exp(−�τm)

]
, (35)

where

τm = 1

ω
arccos

[
−

(
1 + �2

ω2

)− 1
2
]

, (36)

and π/2 � ωτm � π . Clearly, a higher visibility can be
obtained for larger resonator quality factors (i.e., ratios of ω

and �).

B. Multiphoton case: |0〉 + exp(iϕN )|N〉
We now investigate the quantum phase detection of the

superposition of the vacuum and multiphoton states in Eq. (1),
where N � 2. This superposition state |�N 〉 can be generated
by applying an appropriate sequence [1] of evolution operators,

U
(1)
2 (τ ∗

j )U (1)
1 (τj ) · · · U (1)

2 (τ ∗
1 )U (1)

1 (τ1), (37)

to the initial state |g,0〉, where τi and τ ∗
i are the ith time steps

for the time evolution operators U
(1)
1 and U

(1)
2 , respectively,

and j is the total number of steps. We assume that we can
adjust the time duration of the interactions in each step. The
time steps τi and τ ∗

i can be found inversely [1] by applying

U
(1)†
1 (τ1)U (1)†

2 (τ ∗
1 ) · · · U (1)†

1 (τj )U (1)†
2 (τ ∗

j ) (38)

to the state |�N 〉 in Eq. (1).
We now consider two qubits (qubit 1 and qubit 2) for the

quantum measurement. We assume that both qubits have the
same form, Eq. (2), of the interaction with the resonator.
Qubit 1 is used as an auxiliary qubit to disentangle qubit 2
from the resonator. A CNOT gate Uc can be applied to the two
qubits. Details for implementing a CNOT gate can be found
elsewhere (e.g., Refs. [15,16]).

Note that we now need to add a qubit-qubit coupling term
in the Hamiltonian in Eq. (2) (see red capacitor in Fig. 2). The
qubits in Fig. 1 can be coupled [34,36,37] to each other via a
capacitor so that “spin-spin” interactions can be produced. This
qubit-qubit coupling Hamiltonian, with the coupling strength
λ, can be written as

Hqb-qb = λ(σ1+σ2− + σ1−σ2+). (39)

Alternatively, the qubits can also be coupled via a high-
excitation-energy quantum circuit such as a superconducting
resonator [38–40]. A CNOT gate can be realized (e.g., by either
applying an external field [15], pulses [16], or iSWAP gates
[turning on the qubit-qubit interaction in Eq. (39) for the time
t = π/4λ] appropriately [41]. By adjusting the frequencies
of the two qubits, the CNOT gate and the qubit-resonator
interaction can be independently operated. We choose qubit 1
as the control qubit and qubit 2 as the target qubit such that
|gg〉→|gg〉; |ge〉→|ge〉; |eg〉→|ee〉; |ee〉→|eg〉.
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FIG. 2. (Color online) Circuit diagram of the coupled qubits and
the resonator. The Josephson qubits can be coupled to each other via
a capacitor (shown as a dark red line). Here, λ is the coupling strength
between the two qubits.

Let us first prepare the resonator and the two qubits in a
product state as

|qubit 1, qubit 2, resonator〉 = |	N (0)〉 (40)

= |gg〉
( |0〉 + |N〉√

2

)
. (41)

We let the resonator evolve freely for a time τ , and the state
then becomes

|	N (τ )〉 = exp(−iωa†aτ )|	N (0)〉 (42)

= 1√
2
|gg〉[|0〉 + exp(−iϕN )|N〉], (43)

where ϕN is the accumulated phase factor,

ϕN = ωNτ. (44)

Now we study how to transfer the relative phase between
the two Fock states to qubit 1. We switch on the interaction
between the two qubits and the resonator sequentially, for the
times t∗N and t∗N−1 given by

t∗N = π

2g1

√
N

and t∗N−1 = π

2g1
√

N − 1
, (45)

where we set g1 ≈ g2. The state thus becomes

|	N (τ2)〉 ≈ 1√
2

[|gg〉|0〉 − exp(−iϕN )|ee〉|N − 2〉], (46)

where τ2 = τ + t∗N + t∗N−1. We have assumed that the time
duration τ is much greater than the times t∗N and t∗N−1. To
perform the CNOT gate, we detune the qubits from the resonator
and set the two qubits at the same frequency. We then apply
the CNOT gate such that the state |ee〉 will change to |eg〉. The
state then becomes

|	N (τ ′
2)〉 ≈ 1√

2
[|gg〉|0〉 − exp(−iϕN )|eg〉|N − 2〉], (47)

where τ ′
2 = τ2 + tc, and tc is the time duration for the CNOT

gate. We only turn on the interaction between qubit 2 and the
resonator for a time t∗N−2 = π/2g1

√
N − 2, and this gives

|	N (τ3)〉 ≈ 1√
2

[|gg〉|0〉 + i exp(−iϕN )|ee〉|N − 3〉], (48)

where τ3 = τ ′
2 + t∗N−2. In the interaction picture, we repeatedly

apply the evolution operator [U (2)
2 Uc] until the number of

photons in the resonator becomes zero.
We summarize this procedure in the interaction picture as

Uc U
(2)
2 (t∗1 )Uc· · ·U (2)

2 (t∗N−2)Uc︸ ︷︷ ︸
2(N−2)terms

U
(2)
2 (t∗N−1)U (1)

2 (t∗N )|	N (τ )〉,

(49)

where the time t∗n is

t∗n = π

2g1
√

n
, (50)

and n is a positive number for n = 1, . . . ,N . Qubit 1 now
completely disentangles from qubit 2 and the resonator. The
final state becomes

|	N (tf )〉≈ 1√
2

{
|g〉 + exp

[
−i

(
ϕN − 3Nπ

2

)]
|e〉

}
|g〉|0〉,

(51)

where tf = τ + td and td is the total time for disentanglement.
We assume that the free-evolution time τ is much larger than
the time td so that we can ignore the relative phase accumulated
during the time td . Note that the relative phase ϕN is encoded
on qubit 1.

Afterward, we apply the π/2 pulse to qubit 1 and then
measure the excited state of qubit 1. We can determine the
phase factor from the probability Pe of the excited state
of qubit 1. For simplicity, we set φ1 = 0 in Eq. (11). The
probabilities of the excited state of qubit 1 then become

P (1)
e ≈ 1

2 (1 − sin ϕN ) for N = 4k,

P (2)
e ≈ 1

2 (1 + cos ϕN ) for N = 4k − 1,
(52)

P (3)
e ≈ 1

2 (1 + sin ϕN ) for N = 4k − 2,

P (4)
e ≈ 1

2 (1 − cos ϕN ) for N = 4k − 3,

where k = 1, . . . ,N/4.

1. Imperfect CNOT gate operations

In realistic situations, the CNOT gate is not perfect due
to decoherence or experimental constraints. Let us briefly
examine quantum phase measurements using imperfect CNOT

gates. Here we assume that the fidelity of this imperfect CNOT

gate is very high. The small imperfections of this CNOT gate can
be characterized by a parameter ε which is positive and close to
one. If this CNOT gate were perfect, then the parameter ε would
be equal to one. A more detailed discussion of the effects of
nonideal CNOT gate operations on the disentanglement process
is given in Appendix B. We repeat the same procedure in
Eq. (49) using a number of imperfect CNOT gate operations.
The system can be described by the density matrix ρf ,

ρf ≈ εN−1

2
[|g〉〈g| + |e〉〈e| + exp(iϕN )|g〉〈e|

+ exp(−iϕN )|e〉〈g|] ⊗ |g〉〈g|0〉〈0|, (53)

where ϕN = ωNτ . Here we have taken the leading order
approximation of the density matrix (see Appendix B). We
notice that qubit 1 cannot be fully disentangled from qubit 2
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and the resonator by using imperfect CNOT gates. We now
apply a π/2 pulse to qubit 1 and then measure the excited
state of qubit 1. For simplicity, we set φ1 = 0 in Eq. (11). The
probabilities of the excited states of qubit 1 are

P (1)
e ≈ 1

2 (1 − εN−1 sin ϕN ) for N = 4k,

P (2)
e ≈ 1

2 (1 + εN−1 cos ϕN ) for N = 4k − 1,
(54)

P (3)
e ≈ 1

2 (1 + εN−1 sin ϕN ) for N = 4k − 2,

P (4)
e ≈ 1

2 (1 − εN−1 cos ϕN ) for N = 4k − 3,

where k = 1, . . . ,N/4. The coherence factors, εN−1 sin ϕN or
εN−1 cos ϕN in Eq. (54), contain a coefficient εN−1 which is
smaller than one. This means that the imperfect CNOT gate
operations lead to dephasing of qubit 1.

2. Dissipation in the photon field

We now take into account the dissipation effect of the
photon field in Eq. (30) during the free evolution. After a
time τ , the density matrix ρ of the photon field can be written
as [35]

ρ = 1

2

{
|0〉〈0| + exp(iϕN − �Nτ )|0〉〈N |

+ exp(−iϕN − �Nτ )|N〉〈0|

+
N∑

k=0

N ! exp(−2k�τ )[1 − exp(−2�τ )]N−k

k!(N − k)!
|k〉〈k|

}
.

(55)

We have also assumed that the decoherence of the qubit is
negligible during the disentanglement process and the time td
is much smaller than the dissipation time scale (�N)−1. The
probabilities of the excited state of qubit 1 then become

P (1)
e ≈ 1

2 (1 + f−) for N = 4k,

P (2)
e ≈ 1

2 (1 + h+) for N = 4k − 1,
(56)

P (3)
e ≈ 1

2 (1 + f+) for N = 4k − 2,

P (4)
e ≈ 1

2 (1 + h−) for N = 4k − 3,

where k = 1, . . . ,N/4, and f± and h± are two functions given
by

f± = ±εN−1 exp(−�Nτ ) sin ϕN, (57)

h± = ±εN−1 exp(−�Nτ ) cos ϕN. (58)

3. Kerr nonlinearity

We note that the superposition state in Eq. (1) can also
be used to measure the phase due to the Kerr nonlinearity
[18,19,24]. The Hamiltonian of the nonlinear interaction is
given by [24]

Hnonlinear = χa†2a2, (59)

where χ is the interaction strength. The two coupled CPB
qubits can form a nonlinear medium of the photon field [24]
(see also Ref. [18]). The strength χ of the nonlinear interaction
in Eq. (59) can attain 1 GHz or even higher [24]. We only turn

on the nonlinear interaction during the free evolution. Thus,
the phase factor ϕ̃N can be rewritten as

ϕ̃N=ω̃Nτ, (60)

where

ω̃ = ω + χ (N − 1) (61)

is an effective frequency due to the Kerr nonlinearity. We then
apply the same procedure to detect the phase of the photon
field.

4. Visibility

Now we investigate the visibility of the quantum coherence.
The visibilities V (1) and V (2) denote the odd and even photon
numbers, respectively. From Eqs. (33) and (56), the visibility
V (1) for an odd number of photons can be found as

V (1) = εN−1

2

[
1 +

(
ω̃2

ω̃2 + �2

) 1
2

exp(−�τ1)

]
, (62)

τ1 = 1

ω̃

{
arccos

[
−

(
1 + �2

ω̃2

)− 1
2
]}

, (63)

where ε � 1 is the parameter that characterizes the quality
of the imperfect CNOT gate and ω̃ = ω + χ (N − 1) is the
effective frequency in Eq. (61).

For an even number of photons, we take the form of the
coherence factor,

C(τ ) = εN−1 exp(−�Nτ ) sin ω̃τ. (64)

The visibility V (2) for even photon numbers can be found as
(ω̃ > �)

V (2) ≈ εN−1

2

[
exp

(
−π�

2ω̃

)
+ exp

(
−3π�

2ω̃

)]
. (65)

The visibility V (1) is slightly higher than V (2).
For χ = 0 and ε = 1, we find that the visibilities have

no difference between the cases of the single-photon state
|�1〉 and the multiphoton superposition state |�N 〉 in Eq. (1).
The degree of visibility depends on the ratio of ω and �.
However, the visibilities of the superposition of multiphoton
states can be greatly enhanced with the nonlinear interaction
strength χ . For ε = 1, the degree of visibility depends on
the ratio ω̃/� = (ω + χN )/� from Eq. (61) such that higher
visibilities can be obtained for larger number of photons (N 

1). This means that the superposition of multiphoton states
can show a high contrast of interference fringes, even in the
presence of dissipation.

IV. FACTORIZING INTEGERS USING
SUPERCONDUCTING CIRCUITS AND GAUSS SUMS

We have shown that the quantum phase of the photon states
in a superconducting resonator can be measured with qubits.
These measurement methods are useful for the implementation
of the Gauss sum (this section) and metrology (the following
section).

Now we study a physical realization of the Gauss sum
algorithm using superconducting circuits. The Gauss sum can
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verify whether a number ñ is a factor of another number Ñ or
not. The Gauss sum [29,30] is defined by

CÑ (ñ) = 1

ñ

ñ−1∑
k=0

exp

(
− 2πik2 Ñ

ñ

)
. (66)

If ñ is a factor of Ñ , then |CÑ (ñ)| is equal to one. Otherwise,
the value of |CÑ (ñ)| is less than one. To find the factors ñ

of the integer Ñ , the trial factor ñ scans through all numbers
from 2 to

√
Ñ [30,31,33]. Thus, in this manner, it can factorize

integers. However, this Gauss sum algorithm does not provide
a speed-up over classical computation.

To save considerable experimental resources and minimize
the effects of decoherence, it is advantageous to use as few
terms as possible in the Gauss sum in Eq. (66) [31]. Thus, the
truncated Gauss sum can be employed [31],

CK
Ñ

(ñ) = 1

K + 1

K∑
k=0

exp

(
− 2πik2 Ñ

ñ

)
, (67)

where K is a positive integer which is smaller than ñ. We only
need to sum over K + 1 terms instead of the total ñ terms so
that considerable experimental resources can be saved.

A. Single-photon case

We can apply the same method in determining the phase fac-
tor of the photon field in the resonator using the superposition
of the vacuum and single-photon state in Eq. (1). We follow
the same method in Sec. III A to generate the superposition
of the vacuum and the single-photon state with equal weights,
that is,

|	̃1〉 = 1√
2
|g〉(|0〉 + |1〉). (68)

Waiting the following times,

τk = 2πk2 Ñ

ñω
, (69)

for the free evolution, allows the state to accumulate a relative
phase (−iωτk) between the two Fock states |0〉 and |1〉. The
state then becomes

|	̃1(τk)〉 = 1√
2
|g〉[|0〉 + exp(−iωτk)|1〉]. (70)

Using the method described in Sec. III A, we can transfer the
relative phase to qubit 1. The state of qubit 1 should then
be measured after applying a π/2 pulse to it. The phase factor
cos(ωτk) can be determined from the probability of the excited
state of qubit 1 in Eq. (29).

By repeating the same procedure K + 1 times and setting
the time duration τk for k = 0, . . . ,K , we take the average of
the total sum. We readily obtain the real part of the truncated
Gauss sum in Eq. (67) as [31]

RK
Ñ

(ñ) = 1

K + 1

K∑
k=0

cos

(
2πk2 Ñ

ñ

)
. (71)

Indeed, the real part of the truncated Gauss sums has been
shown to experimentally find the factors of integers [31].
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FIG. 3. (Color online) Truncated Gauss sum for Ñ = 1001 =
7 × 11 × 13, plotted versus the trial factors ñ. Results for a damping
rate � = 0 (no dissipation) are shown with (black) circles; while
results for � = 6.92 × 10−6ω are shown with (red) crosses. We have
summed over K + 1 = 5 terms for ñ = 2, . . . ,

√
1001 ≈ 32. The

factors of Ñ are marked by the vertical lines located at ñ = 7,11,
and 13. All factors are above the threshold 1/

√
2 ≈ 0.7071, indicated

by a thin horizontal dotted line.

Now we study how to apply the truncated Gauss sum
for checking factors. In Fig. 3, the truncated Gauss sum
|RK

Ñ
(ñ)| for Ñ = 1001 = 7 × 11 × 13 is plotted against the

trial factors ñ. The truncated Gauss sums are represented
by black circles. We have only used K + 1 = 5 terms in
the truncated Gauss sum for ñ by scanning ñ from 2 to√

1001 ≈ 31.
In Ref. [42], Štefaňák et al. gave a threshold to discriminate

factors from nonfactors. They found that the truncated Gauss
sum for nonfactors is bounded from above by 1/

√
2 in the limit

of large K [42]. As shown in Fig. 3, we can see that all factors
are above the threshold of the Gauss sums, 1/

√
2 ≈ 0.7071

[42], whereas all nonfactors are below the threshold, 1/
√

2 ≈
0.7071, shown by the horizontal dotted line. Therefore, this
enables us to clearly distinguish the factors from nonfactors.

1. Effect of dissipation of the photon field

We now examine the truncated Gauss sum in the presence
of dissipation of the photon field. We adopt the same method
as discussed in the previous subsection to determine the phase
factor. From Eq. (32), the truncated Gauss sums can be written
as

RK
Ñ

(ñ) = 1

K + 1

K∑
k=0

exp(−�τk) cos

(
2πk2 Ñ

ñ

)
. (72)

The performance of the Gauss sums can decrease due to
dissipation. The terms with higher k can become vanishingly
small in Eq. (72). This limits the size of the number Ñ to be
vertified by the Gauss sum. In Fig. 3, we plot the truncated
Gauss sum RK

Ñ
(ñ) as a function of the trial numbers ñ for
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Ñ = 1001 = 7 × 11 × 13. Here we consider the damping rate
�/ω = 6.92 × 10−6 (we have taken the values of ω/2π =
6.57 GHz and � = 2.86 × 105 Hz from the experiment
in [3]). We then sum over K + 1 = 5 terms for checking
the 31 numbers ñ = 2, . . . ,

√
1001 ≈ 32. As shown in Fig. 3,

the truncated Gauss sums slightly decrease due to damping
(denoted by the red cross). However, we can see that the
truncated Gauss sum can still be used for distinguishing the
factors from nonfactors if the relaxation times of resonators
are about several microseconds [3].

B. Multiphoton case

Next we consider the multiphoton superposition states |�N 〉
in Eq. (1) for the truncated Gauss sum. We first produce the
superposition of the vacuum and the multiphoton state with
equal weights, that is,

|	̃N 〉 = 1√
2
|gg〉(|0〉 + |N〉). (73)

We let the system freely evolve for the times,

τ̃k = 2πk2 Ñ

ñω̃N
, (74)

where ω̃ = ω + χ (N − 1) is the effective frequency in
Eq. (61) if the Kerr nonlinearity is used. Then, a relative
phase between the two Fock states is acquired. The state
becomes

|	̃N (τ̃k)〉 = 1√
2

[|0〉 + exp(−iω̃Nτ̃k)|N〉]. (75)

We now apply the phase detection method described in
Sec. III B for the multiphoton case. After applying a π/2
pulse to qubit 1, we measure the state of qubit 1. Then, for
an odd number of photons, we can determine the phase factor
cos(ωτk) from the probabilities of qubit 1 in Eq. (54). The
truncated Gauss sum is given by

RK
Ñ

(ñ) = εN−1

K + 1

K∑
k=0

cos

(
2πk2 Ñ

ñ

)
, (76)

where εN−1 is a parameter originating from imperfect
CNOT gate operations. In the presence of dissipation of
the photon field, we can determine the phase factor from
the probabilities in Eq. (56). The truncated Gauss sum
becomes

RK
Ñ

(ñ) = εN−1

K + 1

K∑
k=0

exp(−�Nτ̃k) cos

(
2πk2 Ñ

ñ

)
. (77)

C. Kerr nonlinearity

Now we study the performance of the truncated Gauss sum
for checking factors using the Kerr nonlinearity. In Fig. 4,
the truncated Gauss sum is plotted versus the trial factors ñ

for Ñ = 5005 = 5 × 7 × 11 × 13. The truncated Gauss sums
with various numbers of photons [N = 1 (blue diamonds),
N = 3 (red crosses), and N = 5 (black circles)] are shown in
Fig. 4. We can see that the truncated Gauss sum for the factors
are much closer to unity if the larger photon numbers are used.
The truncated Gauss sum using the Kerr nonlinearity can show

10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

FIG. 4. (Color online) The truncated Gauss sum with K + 1 = 5
terms for Ñ = 5005 = 5 × 7 × 11 × 13 is plotted versus the trial
factors ñ, for the nonlinear Kerr interaction strength χ = ω and
damping rate � = 6.92 × 10−6ω. The (blue) diamonds, (red) crosses,
and (black) circles represent the different numbers of photons: N = 1,
3, and 5, respectively. The factors of Ñ (here, 5, 7, 11, 13, 35, 55,
and 65) are indicated by the vertical lines. All factors are above the
threshold 1/

√
2 ≈ 0.7071, indicated by a thin horizontal dotted line.

a clearer pattern to discriminate the factors from nonfactors
and a much larger number can be verified [43]. This can be
easily understood by rewriting the truncated Gauss sum [from
Eqs. (74) and (77)] as

RK
Ñ

(ñ) = 1

K + 1

K∑
k=0

exp

(
− 2πk2�Ñ

ω̃ñ

)
cos

(
2πk2 Ñ

ñ

)
.

(78)

The exponential functions in Eq. (78) are closer to one
when the effective frequency ω̃ = ω + χ (N − 1) becomes
higher. The larger number of photons leads to a higher value
of ω̃. Therefore, the use of Kerr nonlinearities enhances the
performance of the truncated Gauss sum for finding the factors
of an integer, even in the presence of dissipation in the photon
field.

We can roughly estimate the size of the factorized number Ñ

for which the exponential factor in Eq. (78) is around exp(−1).
In this case, the fully factorizable numbers are then multiplied
by a factor of N and it can attain 102N if the nonlinear
strength χ is about the frequency of the resonator, and with the
same values for the parameters discussed above and K � 10.
If the relaxation time of the resonator were to be ∼1 µs,
∼1 ms, and ∼1 s, then the largest partially factoriz-
able numbers would be ∼104N , ∼107N , and ∼1010N ,
respectively, where N is the number of photons in the
resonator.

1. Effect of imperfect CNOT gate operations

Note that we require more CNOT gate operations to
disentangle qubit 1 from both qubit 2 and the resonator.
This requirement is for the multiphoton states involving
higher number of photons in Eq. (1). From Eq. (77), the
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FIG. 5. (Color online) Truncated Gauss sum with K + 1 = 5
terms for Ñ = 5005 = 5 × 7 × 11 × 13 plotted versus the trial
factors ñ, where the nonlinear Kerr interaction strength χ = ω, the
damping rate � = 6.92 × 10−6ω, and the number of photons N is
3. Different values of ε are shown: ε = 1 (black circles), ε = 0.99
(blue squares), and ε = 0.95 (red diamonds). The factors of Ñ are
indicated by the vertical lines. All factors are above the threshold
1/

√
2 ≈ 0.7071, indicated by a thin horizontal dotted line.

truncated Gauss sum scales with the coefficient εN−1. Thus,
the imperfect CNOT gates unavoidably affect the performance
of the truncated Gauss sum.

In Fig. 5, we plot the truncated Gauss sum for Ñ =
5005 = 5 × 7 × 11 × 13 against the trial factors ñ, using the
multiphoton superposition state for N = 3 in Eq. (1). We
find that the performance of the truncated Gauss sum is very
sensitive to small variations of ε. As shown in Fig. 5, the values
of the truncated Gauss sum for ε = 0.95 (red diamonds) are
much lower than the case for ε = 0.99 (blue squares) and
ε = 1 (black circles). This may limit the use of multiphoton
states |�N 〉 for the truncated Gauss sum if the photon number
N becomes large.

V. PRECISION MEASUREMENT OF THE RESONATOR’S
FREQUENCY

We can determine the quantum phase factor of the photon
states by detecting the state of the qubit. This should enable
one to precisely measure the frequency of the resonator ω. The
uncertainty |δω| of the frequency ω of the resonator is given
by [44–46]

|δω| = 1√
M

√
Pe(1 − Pe)∣∣ dPe

dω

∣∣ , (79)

where M is the number of measurements.

A. Single-photon case

We now consider the detection with the superposition of
the vacuum and the single-photon state. Using Eq. (29), the
minimum value of the uncertainty |δω|min, for � = 0, is

|δω|min = 1√
Mτ

, (80)

where τ = mπ/2ω is the time duration of each measurement
and m is an odd integer.

In the presence of dissipation (� �= 0), the uncertainty is
given by

|δω| =
[

1 − exp(−2�τ ) cos2(ωτ )

Mτ 2 exp(−2�τ ) sin2(ωτ )

]1/2

. (81)

We assume that the frequency ω is much greater than the
damping rate �. The minimum uncertainty |δω|min can be
found as

|δω|min = 1√
M

exp(1)� (82)

for ωτ = mπ/2 and

τ = 1

�
. (83)

The precise measurement of the resonator’s frequency ω

can be used to determine the length of the resonator. The
frequency of the resonator ω is proportional to πc/L, where c

is the speed of light and L is the length of the resonator. This
enables us to measure the macroscopic quantity L precisely
and its accuracy is up to

|δL| = L|δω|
ω

. (84)

B. Multiphoton case

Next we study the degree of accuracy in the phase
measurement with the superposition of the multiphoton state
|�N 〉 in Eq. (1). Without dissipation (� = 0), the minimum
value of the uncertainty |δω|min of the frequency ω is

|δω|min ≈ 1√
M

ε1−N

Nτ
. (85)

This accuracy scales as ε1−N/N with the superposition state
|�N 〉 which gives a much better improvement than using the
single-photon state |�1〉 if ε is very close to one. However, in
the presence of dissipation (� �= 0), the minimum uncertainty
of |δω|min becomes

|δω|min ≈ 1√
M

exp(1) ε1−N�. (86)

It is no different from the single-photon case even if ε = 1.
However, the nonlinear interaction strength χ can be mea-

sured precisely. The minimum uncertainty |δχ |min is given by

|δχ |min = 1√
M

exp(1) ε1−N�

N
. (87)

This uncertainty scales with ε1−N/N under decoherence. This
enables one to detect the strength of the Kerr nonlinearity
with very high accuracy if ε1−N/N is very small.
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VI. SUMMARY

We have presented a method to measure the quantum coher-
ence of the superposition of two number states in a supercon-
ducting resonator with two Josephson phase qubits. We have
also studied the visibility of the quantum coherence in a dissi-
pative environment. We found that the visibility of the photon
can be enhanced if nonlinear interactions are used. This may be
useful to probe the quantum coherence of multiphoton super-
position states. We showed that the phase measurement scheme
can be applied to factorizing integers and parameter estimation.

The detection of the superposition of the vacuum and the
single-photon state can be realized with current technology
[3]. But the measurement of multiphoton superposition states
involves a number of CNOT gate operations to disentangle
the qubit from the resonator. The quality of measurements
is degraded due to the imperfect operations of the CNOT gate.
Also, significant resources can be consumed when measuring
the superposition of multiphoton states because the number
of gate operations is proportional to the number of photons N

being detected. Here we proposed a method which can be used
to detect superposition states with a few photons.
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APPENDIX A: QUBIT-RESONATOR COUPLING IN THE
FAR-DETUNING REGIME

The Hamiltonian H (j ) = Hres + H
(j )
qbit + H

(j )
qbit−res,

H (j ) = ωa†a + ω0j

2
σjz + gj (aσj+ + σj−a†), (A1)

can be exactly solved [23] for j = 1,2. We now consider the
subspace spanned by the basis |g〉|n〉 and |e〉|n − 1〉. The two
eigenvalues can be solved as

λ
(j )
± = ω

(
n − 1

2

)
± δj

2
, (A2)

and the corresponding eigenvectors are

|+〉j = sin βj |g〉|n〉 + cos βj |e〉|n − 1〉, (A3)

|−〉j = cos βj |g〉|n〉 − sin βj |e〉|n − 1〉, (A4)

where

δj =
√

�2
j + 4g2

j n, (A5)

sin βj = − �j + δj√
(�j + δj )2 + 4g2

j n
, (A6)

cos βj = 2gj

√
n√

(�j + δj )2 + 4g2
j n

, (A7)

�j = ω0j − ω. (A8)

If the detuning �j = ω0j − ω is much larger than the
interaction strength gj , the two eigenvectors become

|+〉j ≈ |e〉|n − 1〉, |−〉j ≈ |g〉|n〉, (A9)

in Eqs. (A3) and (A4), respectively. Therefore, the interaction
between the qubit and the photon field can be effectively turned
off by far detuning the qubit from the resonator.

APPENDIX B: ANALYSIS OF IMPERFECT CNOT GATE
OPERATIONS ON THE DISENTANGLEMENT PROCESS

In this appendix, we study the effects of imperfect CNOT

gate operations on the disentanglement process. We consider
the CNOT gate operations to be described by a process which
suffers from dissipation, decoherence, and imperfections [47].
In general, this operation can be represented by E [47] such
that

ρout = E(ρin), (B1)

where ρin and ρout are the density matrices of the input and
output states, respectively. The operation E is a convex-linear
map and also a positive map [48]. Here we assume the
operation E is trace preserving (i.e., tr[E(ρin)] = 1).

It is convenient to write the states as

|0〉 = |gg〉, |1〉 = |ge〉,
(B2)|2〉 = |ee〉, |3〉 = |eg〉.

An ideal CNOT gate is defined as

|0〉 →|0〉, |1〉 → |1〉,
(B3)|2〉 →|3〉, |3〉 → |2〉.

Now we consider the nonideal CNOT gate operation but with a
high fidelity as

〈0|E(|0〉〈0|)|0〉 ≈ 〈1|E(|1〉〈1|)|1〉 ≈ ε, (B4)

〈3|E(|2〉〈2|)|3〉 ≈ 〈2|E(|3〉〈3|)|2〉 ≈ ε, (B5)

〈0|E(|0〉〈1|)|1〉 ≈ 〈0|E(|0〉〈2|)|3〉 ≈ ε, (B6)

〈0|E(|0〉〈3|)|2〉 ≈ 〈1|E(|1〉〈2|)|3〉 ≈ ε, (B7)

〈1|E(|1〉〈3|)|2〉 ≈ ε, (B8)

and E(|i〉〈j |)∗ = E(|j 〉〈i|), where ε is a positive number close
to one. Otherwise, the remaining terms 〈i ′|E(|i〉〈j |)|j ′〉 are
equal to small parameters ε

i ′j ′
ij , which are much smaller than

ε, where i,i ′,j and j ′ = 0,1,2,3.
We now follow the same disentanglement procedure as

summarized in Eq. (49), by using the imperfect CNOT gates.
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The density matrix of the total system becomes

ρf = εN−1

2
[|g〉〈g| + |e〉〈e| + exp(iϕN )|g〉〈e|

+ exp(−iϕN )|e〉〈g|]⊗|g〉〈g|0〉〈0| + O
(
εN−2ε

i ′j ′
ij

)
,

(B9)

where ϕN = ωNτ . The leading order approximation is the
density matrix containing the first four terms with the coeffi-
cients εN−1. The remaining terms involving a large number of
entangled states of qubit 1, qubit 2, and the resonator are of the
order of εN−2ε

i ′j ′
ij . Using imperfect CNOT gates, qubit 1 cannot

be completely disentangled from qubit 2 and the resonator in
Eq. (B9).
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