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Temperature dependence of the Casimir force for bulk lossy media
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We discuss the limitations for the applicability of the Lifshitz theory to describe the temperature dependence
of the Casimir force between bulk lossy metal slabs of finite sizes. We pay attention to the important fact that
Lifshitz’s theory is not applicable when the characteristic wavelength of the fluctuating field, responsible for the
temperature-dependent terms in the Casimir force, are longer than the size of the sample. As a result, the widely
discussed linearly decreasing temperature dependence of the Casimir force can be observed only for dirty and
large metal samples at high enough temperatures. Moreover, for the correct description of the Casimir effect at
low enough temperatures, a careful consideration of the concrete geometry of the interacting samples is essential.
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I. INTRODUCTION

The Casimir effect is one of the most interesting macro-
scopic manifestations of the zero-point vacuum oscillations of
the quantum electromagnetic field. This effect manifests itself
as an attractive force arising between two uncharged bodies
due to the difference of the zero-point oscillation spectrum
in the absence and in the presence of these bodies (see, e.g.,
Refs. [1–4]).

The Casimir effect has attracted considerable attention
because of its numerous applications in quantum field theory,
atomic physics, condensed matter physics, gravitation, and
cosmology [1–5]. The noticeable progress in the measure-
ments of the Casimir force [6] has opened the way for various
potential applications in nanoscience [7], particularly in the
development of nanomechanical systems [2,4,7].

In spite of intensive studies on the Casimir effect, it is
surprising that such an important problem as the temperature
dependence of this effect is still an issue of lively discussion
(see, e.g., Refs. [8–15]). The zero-temperature contribution
to the force, originating from quantum fluctuations of the
electromagnetic field, is well understood. However, the contri-
bution Frad(T ) to the Casimir force originating from thermal
fluctuations is a source of numerous problems.

First, within the Lifshitz theory [16], there is no continuous
transition for the forces between ideal metals and real metals
[9]. The Lifshitz formula predicts an increase of Frad(T ) when
increasing T only for ideal metals without relaxation. At
the same time, for lossy media with relaxation frequency
ν �= 0, this formula gives a decrease of Frad(T ) in a wide
region of temperatures. This decreasing term is related to
the transparency of real metals for s-polarized (transverse
electric) low-frequency fields [17]. In other words, the be-
havior of Frad(T ) changes abruptly, in a jump-like manner, for
infinitesimal ν, in comparison to the case when ν = 0. This
discontinuous jump is not physical.

Second, within the Drude model, for a perfect crystal lattice
of infinite size, the Casimir-Lifshitz entropy does not go to zero
when T → 0. This would be unphysical, because it would
violate Nernst’s theorem.

Similar problems exist for dielectrics and semiconductors
[18–20]. In the Casimir force, the term that decreases linearly
with temperature arises from the p-polarized low-frequency
modes, when a finite conductivity is taken into account [21].
These problems are still the focus of discussions (see, e.g.,
Ref. [11]). It was shown in Ref. [22] that the consistency
with the Bohr-van-Leeuwen theorem should also be taken into
account when choosing between different models.

As shown in Refs. [21,23,24], all the problems with the
violation of the Nernst theorem in the parallel-plane geometry
are due to the noncommutativity of the limits T → 0 and
ω → 0. In the Casimir force, the main contribution to the
term that decreases linearly with temperature comes from the
low-frequency fluctuations with ω ∼ ν. Thus, this term can
only be present in the high-temperature regime, for kT >∼ h̄ν.
The low-frequency s-polarized modes correspond to the eddy
currents for interacting metal plates [25], and thus the problem
is similar to the Johnson noise in wires [26].

Refs. [17,27,28] indicated that the problems mentioned
previously can be solved if one takes into account the
spatial dispersion of the low-frequency metal conductivity.
Nonlocal effects play an important role in metals with small
enough relaxation frequencies, ν � ωir = ωpvF /c, where vF

is the Fermi speed of the electrons and ωp is the plasma
frequency. All pure metals satisfy this requirement at low
enough temperatures. Thus, considering nonlocal effects is
required for checking consistency with the Nernst theorem.
For semiconductors, taking into account nonlocal effects also
leads to consistency with the third law of thermodynamics
[14]. Note, however, that some problems with the temperature
dependence of the Casimir force remain unsolved. An open
problem is the violation of the Nernst theorem for metals,
if the relaxation frequency tends to zero sufficiently fast as
T → 0 (see, e.g., Ref. [25]). Another question: why has the
decreasing temperature dependence of the Casimir force never
been observed?

In this paper, we demonstrate that there exist simple
limitations for the applicability of Lifshitz’s theory that are
related to the finite sizes of the interacting bodies. The effects
of finite size of the interacting bodies in the Casimir effect
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have been taken into account in Ref. [29] where the role
of boundaries was studied for the case of ideal metals. The
interplay between the effects of temperature, relaxation, and
sphere-plane geometry was considered in Ref. [30]. Special
attention was focused on the case of large distances between
a metallic plane and a sphere, compared to the radius of the
latter, when the so-called Proximity Force Approximation is
not valid. A negative entropy was predicted not only for the
Drude model, but also for the plasma and perfect reflector
models. It was shown that the appearance of negative entropies
is not related to the presence of dissipation. Here, we show that
the term in the Casimir force which is linearly decreasing with
temperature can only appear for large and/or dirty metals if
the following inequality is satisfied:

ν � 2πc/L. (1)

Here, L is the width of the sample. Usually, condition (1)
is not satisfied in the measurements of the Casimir force.
For instance, the experiments in Ref. [31] dealt with a tiny
metal sphere of radius R = 151.3 µm. In this case, Eq. (1)
is not valid if the relaxation frequency is less than 1014 s−1

for distances l of the order of 1 µm [when L ∼ (Rl)1/2 ≈
12 µm]. In addition, we show that Lifshitz’s theory cannot
be applied to describe the temperature dependence of the
Casimir force in the temperature interval T < TL = 2πch̄/kL.
Here, k is the Boltzmann constant. In this interval, the main
contribution to the temperature-dependent term in the Casimir
force comes from fluctuating fields with wavelengths longer
than the sample size. In other words, the finite size of
the sample must be taken into account in this temperature
range.

II. ANALYSIS OF THE TEMPERATURE DEPENDENCE
OF THE LIFSHITZ FORMULA

Let us now consider the term which decreases linearly with
temperature in the Casimir force between infinite plates of
lossy metals. The purpose of this section is to express this term,
which comes from fluctuating fields with small frequencies,
when ω <∼ ν, in a convenient form.

Following Refs. [17,23], we analyze the Lifshitz expression
for the Casimir force taken from Ref. [16] in the form of an
integral over real frequencies ω. We use the Drude model for
the permittivity ε,

ε(ω) = 1 − ω2
p

ω(ω + iν)
. (2)

In this case, the thermal term Frad in the Casimir force per unit
area can be written in the following form:

Frad = h̄

π2c3
Re

∫ ∞

0
dω

∫
dp p2ω3 1

exp (2h̄ω/kT ) − 1

×
{[(

s + p

s − p

)2

exp (−2ipωl/c) − 1

]−1

+
[ (

s + εp

s − εp

)2

exp (−2ipωl/c) − 1

]−1}
, (3)

where s =
√

ε(ω) − 1 + p2, l is the separation between the
interacting bodies, and Re denotes the real part. The integration
trajectory over p consists of two parts: from 1 to 0 over
the real axis, and from i0 to +i∞ over the imaginary
axis.

We examine the difference �Frad between the contributions
to the Casimir force from thermal fluctuations for a dissipa-
tionless metal (ν = 0) and for a metal with weak dissipation
(ν → 0),

�Frad = Frad|ν→0 − Frad|ν=0. (4)

Namely, �Frad describes the “linearly decreasing with T ” part
of the Casimir force Frad(T ) that appears in a jumplike manner
at ν �= 0. It is important to note that only the first term in the
curly brackets in Eq. (3) [integrated over p from i0 to +i∞,
and over ω from 0 to +∞] produces this discontinuity. So, the
difference �Frad can be written as

�Frad = h̄

π2c3
Re

∫ ∞

0
dω

∫ +i∞

0i

dp p2ω3 1

exp (2h̄ω/kT ) − 1

×
{[(

s + p

s − p

)2

exp (−2ipωl/c) − 1

]−1

−
[ (

s|ν=0 + p

s|ν=0 − p

)2

exp (−2ipωl/c) − 1

]−1}
. (5)

Introducing the notation,

t = ω

ν
, x = −2ipωl

c
, α = c

2lωp

, (6)

and assuming that h̄ν � kT , we obtain

�Frad = − kT

8π2l3
Im

∫ ∞

0
dt I (α,t),

(7)

I (α,t) = 1

t

∫ +∞

0

dxx2

(
αx +

√
α2x2 + t

t+i

)4( t+i
t

)2
ex − 1

,

where Im denotes the imaginary part.
It is seen from this equation that the difference �Frad

does not depend on ν, and that the main contribution to this
integral comes from x ∼ 1 and t <∼ 1. According to Eq. (6),
the characteristic values of ω are either of the order or less
than ν.

III. TEMPERATURE DEPENDENCE OF THE CASIMIR
FORCE FOR SAMPLES OF FINITE SIZE

In the Lifshitz theory, the main contribution to the term
Frad(T ), which decreases linearly with T , comes from small
frequencies satisfying these two inequalities:

ω <∼ kT /h̄, ω <∼ ν. (8)

Obviously, the wavelengths of the fluctuating fields with such
frequencies should be much smaller than the size of the sample.
Otherwise, the sample cannot be considered as semi-infinite.
In other words, the Lifshitz theory gives a (physically correct)
Frad(T ) decreasing with temperature if

ν � 2πc/L, (9)
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FIG. 1. (Color online) The reduction coefficient r in Eq. (12)
versus the parameter Lν/2πc, for different values of the parameter
α = c/2lωp indicated near the curves.

and

T � TL = 2πh̄c/kL. (10)

Naturally, we cannot calculate the Casimir force for bodies
of arbitrary shape and finite size. However, it is possible to
estimate this force by introducing a cutting-off procedure. We
integrate in Eq. (7) not over the whole range of frequencies,
but allow only the fluctuations with wavelength smaller than
the sample size L,

�Frad(T ,νL/2πc) = r(νL/2πc)�Frad(T ,∞). (11)

Here we introduce the reduction coefficient,

r(νL/2πc) =
Im

∫ ∞
2πc/Lν

dt I (α,t)

Im
∫ ∞

0 dt I (α,t)
. (12)

Figure 1 shows the decrease of the reduction coefficient r ,
when decreasing the sample sizes for different values of the
parameter α. One can see that linearly decreasing temperature
dependence can be observed for large enough samples of dirty
metals only when Lν/2πc � 1.

We have also analyzed the radiation term in a wide
temperature range for slabs of finite sizes. Figure 2 shows
the contribution to the Casimir force from fluctuations with
wavelengths smaller than the sample size. Only these inputs
are calculated correctly using the Lifshitz formula. However,
they become exponentially small for temperatures T < TL =
2πch̄/kL. The corresponding portions of the curves are shown
with (black, blue, red) dashes. Obviously, the low-frequency
fluctuations with wavelengths larger than the sample sizes can
strongly affect the radiation term in this temperature range. It
is very important to note that the temperature interval T < TL

overlaps with a significant part of the room-temperature range
for small samples with L < 0.1 mm, and TL is about 1300 K for
slabs with L = 10 µm. This means that the finiteness of sam-
ples should be undoubtedly taken into account when calculat-
ing the temperature dependence of the Casimir force for small
slabs.

FIG. 2. (Color online) Temperature dependence of the dimen-
sionless radiation term of the Casimir force calculated with cutting
off the contribution of the low-frequency fluctuating fields. Dashed
portions of the curves correspond to temperatures smaller than
TL = 2πch̄/kL. Here, fluctuating fields with ω < 2πc/L can play a
crucial role, compared to the exponential input of the high-frequency
fluctuations. The values of parameters used here are ν = 5.4 ×
1013 s−1, ωp = 1.4 × 1016 s−1, and a = 500 nm. The sample sizes
L are indicated near the curves. The radiation term is normalized
to the value of the Casimir force between the ideal metal slabs:
f0 = π 2h̄c/240a4.

Note that the estimate presented here for the Casimir force
concerns with the interaction between two parallel plates of
finite sizes. However, we believe that the results in this section
will be qualitatively valid for bodies of other shapes (e.g., for
the plane-sphere geometry considered in Ref. [30]).

IV. CONCLUSIONS

Here we discussed the applicability of the Lifshitz the-
ory to describe the temperature dependence of the Casimir
force between bulk lossy metal slabs of finite sizes. We
pay attention to the important fact that Lifshitz’s theory is
not applicable when the characteristic wavelengths of the
fluctuating fields, responsible for the temperature-dependent
terms in the Casimir force, are longer than the sizes of the
samples. We have shown that the widely discussed linearly
decreasing temperature dependence of the Casimir force can
be observed only for dirty and large metal samples at high
enough temperatures. Moreover, for the correct description of
the Casimir effect at low enough temperatures, it is necessary
to take into account the specific geometry of the interacting
samples.

Note that the condition in (10) did not hold in the
experiment in Ref. [31] (with a tiny metal sphere of radius
R = 151.3 µm). For all temperatures used in that experiment,
the wavelengths of the fluctuating fields responsible for the
temperature decrease of the Casimir force (expected within
the Lifshitz theory with the Drude model for the permittivity)
were of the order of R and longer than the radius r ∼ (Rl)1/2

of the effective interacting region of the tiny sphere. Therefore,
it is not surprising that the temperature decrease of the Casimir
force was not observed in Ref. [31].
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