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We use a non-Markovian approach to study the decoherence dynamics of a qubit in either a low- or high-
frequency bath modeling the qubit environment. This is done for two separate cases: either with measurements
or without them. This approach is based on a unitary transformation and does not require the rotating-wave
approximation. In the case without measurement, we show that, for low-frequency noise, the bath shifts the
qubit energy toward higher energies (blue shift), while the ordinary high-frequency cutoff Ohmic bath shifts
the qubit energy toward lower energies (red shift). In order to preserve the coherence of the qubit, we also
investigate the dynamics of the qubit subject to measurements (quantum Zeno regime) in two cases: low-
and high-frequency baths. For very frequent projective measurements, the low-frequency bath gives rise to
the quantum anti-Zeno effect on the qubit. The quantum Zeno effect only occurs in the high-frequency-cutoff
Ohmic bath, after counterrotating terms are considered. In the condition that the decay rate due to the two kinds
of baths are equal under the Wigner-Weisskopf approximation, we find that without the approximation, for a
high-frequency environment, the decay rate should be faster (without measurements) or slower (with frequent
measurements, in the Zeno regime), compared to the low-frequency bath case. The experimental implementation
of our results here could distinguish the type of bath (either a low- or high-frequency one) and protect the
coherence of the qubit by modulating the dominant frequency of its environment.
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I. INTRODUCTION

There is considerable interest in low-frequency noise (see,
e.g., the review in Ref. [1] and references therein), because
this type of noise limits the coherence of qubits based on
superconducting devices such as flux or phase qubits [2,3].
Also, the dephasing of flux qubits is due to low-frequency
flux noise with intensity comparable to the one measured in
dc superconducting quantum interference devives (SQUIDs)
(e.g., Refs. [1,4,5]). Under certain conditions, noise can
enhance the coherence of superconducting flux qubit (e.g.,
Ref. [6]. There are also several models (e.g., Refs. [7–9])
for the microscopic origin of low-frequency flux noise in
Josephson circuits. Therefore, the study of low-frequency
noise has become very important for superconductor qubits [1].
Moreover, the quantum Zeno effect has been proposed as a
strategy to protect coherence [10,11] and entanglement [12,13]
and to control thermodynamic evolution [14]. The quantum
Zeno effect and anti-Zeno effect have been widely discussed
[15–17]. So it is an interesting topic to investigate the quantum
Zeno effect of a qubit coupled to a low-frequency bath.

The description of low-frequency noise [1] (such as 1/f

noise) is complicated by the presence of long-time correlations
in the fluctuating environment, which prohibit the use of
the Markovian approximation. In addition, the rotating-wave
approximation (RWA) is also unavailable in an environment
with multiple modes [18]. In the case of a time-dependent
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external field for a qubit coupled to a thermal bath, Kofman
and Kurizki developed a theory [19] which considers the
counterrotating terms of the fast modulation field through the
negative-frequency part G(ω) (ω < 0) in the bath-correlation
function spectrum. The dynamics in two significant models
(the spin-boson model with Ohmic bath and a qubit coupled
to a bath of two-level fluctuators) have been calculated within
a rigorous Born approximation and without the Markovian
approximation [20,21]. References [20] and [21] describe the
structure of the solutions in the complex plane with branch
cuts and poles.

Here we present an analytical approach, based on a unitary
transformation. We use neither the Markovian approximation
nor the RWA in order to discuss the transient dynamics of a
qubit coupled to its environment. This method has already
been used [22] to study the decoherence of the Ohmic
bath, sub-Ohmic bath, and structured bath. In this paper, we
calculate the coherence dynamics of the qubit respectively in
two kinds of baths. This is done for two separate cases: either
with measurements or without them. Besides producing an
energy shift, the environment can change the decay rate of
the qubit. To preserve the coherence, we also investigate the
decay rate of the qubit subject to the quantum Zeno effect. The
low-frequency noise uses a Lorentzian-type spectrum, with
the peak of the spectrum in the low-energy region, and for the
high-frequency noise we choose an ordinary Ohmic bath with
Drude cutoff.

Our results show that for low-frequency noise, the qubit
energy increases (blue shift) and an anti-Zeno effect takes
place. For a high-frequency cutoff Ohmic bath, the qubit
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energy decreases (red shift) and the Zeno effect dominates. In
the condition that the decay rate owing to the two kinds of baths
are equal under the Wigner-Weisskopf (WW) approximation,
we find that without the approximation, for a high-frequency
environment, the decay rate should be faster (without mea-
surements) or slower (with frequent measurements, in the
Zeno regime), compared to the low-frequency bath case.
This means that without measurement, the coherence time
of the low-frequency noise is longer than the high-frequency
noise, τ

(low freq)
coherence > τ

(high freq)
coherence . This demonstrates the powerful

temporal memory of the low-frequency bath and stems from
non-Markovian processes of qubit-bath interaction within the
bath memory time [23]. The experimental implementation of
our results here could distinguish the type of bath (either a low-
or high-frequency one) and protect the coherence of the qubit
by modulating the dominant frequency of its environment.

II. METHOD BEYOND THE RWA BASED ON A UNITARY
TRANSFORMATION

We describe a qubit coupled to a boson bath, modeling the
environment, by the Hamiltonian

H = −1

2
�σz + 1

2

∑
k

gk(a†
k + ak)σx +

∑
k

ωka
†
kak. (1)

The boson bath and the spin- 1
2 (fluctuators) bath will have

the same dissipative effect on the qubit at zero temperature,
T = 0, if both baths have the same correlation function [24].
However, for finite temperatures, the spin bath has a smaller
effect on the qubit because of the likely saturation of the
populations in the spin bath. Here, for simplicity, we only
consider the case of zero temperature. That is, our results are
also applicable to a fluctuator-bath at zero temperature. Our
approach is based on a unitary transformation and can be used
for different types of environmental baths. In the following we
give detailed derivations for the low-frequency noise case.

The spectral density J (ω) of the environment considered
here is given by

J (ω) =
∑

k

g2
k δ(ω − ωk) = 2αω

ω2 + λ2
, (2)

where λ is an energy lower than the qubit two-energy spacing
� and α describes the coupling strength between the qubit and
the environment. By choosing � as the energy unit, α/�2 is a
dimensionless coupling strength. When ω � λ, J (ω) ∼ 1/ω,
corresponding to a 1/f noise.

To take account of the counterrotating terms in∑
k gk(a†

k + ak)σx, we apply a canonical transformation to the
Hamiltonian H :

H ′ = exp(S)H exp(−S), (3)

with S = ∑
k

gk

2ωk
ξk(a†

k − ak)σx, ξk = ωk/(ωk + η �), and

η = exp

(
−

∑
k

g2
k

2ω2
k

ξk
2

)
. (4)

Further explanations on the validity of the transformation can
be found in the Appendix. Thus, the effective transformed
Hamiltonian can be derived as (see the Appendix)

H ′ ≈ −1

2
η �σz +

∑
k

ωka
†
kak +

∑
k

Vk(a†
kσ− + akσ+), (5)

with

Vk = η �
gkξk

ωk

. (6)

Comparing H ′ in Eq. (5) with the ordinary Hamiltonian in the
RWA,

HRWA = −1

2
�σz +

∑
k

ωka
†
kak +

∑
k

gk

2
(a†

kσ− + akσ+),

(7)

one can see that the unitary transformation plays the role of
renormalizing two parameters in the Hamiltonian; that is, the
energy spacing � is renormalized,

� −→ η �, (8)

and the coupling strength gk/2 between the qubit and the bath
is renormalized,

gk

2
−→

(
2η �

ωk + η �

)
gk

2
. (9)

In the following we will study the decoherence dynamics of
the qubit and the quantum Zeno effect using the transformed
Hamiltonian H ′.

Note that the term
∑

k g2
k ξk

2/(2ω2
k) in Eq. (4) is larger than

0, so 0 < exp[−∑
k g2

k ξk
2/(2ω2

k)] < 1. Then the solution of η

will be in the region from 0 to 1. Actually, the existence and
uniqueness of the solution of η in Eq. (4) can be used as a
criterion for the validity of our method. The parameter η can
be regarded as a renormalization factor of the energy spacing
� and is calculated as

η = exp

{
α
[
πλη �− λ2 − η2�2 + (λ2 − η2�2) log

∣∣ λ
η �

∣∣]
(λ2 + η2)2

}
.

(10)

Obviously, η is determined self-consistently by this equation.

A. Nonmeasurement decoherence dynamics

Let us first consider the dynamics without measurement.
We diagonalize the transformed Hamiltonian H ′ in the ground
state |g〉 = |↑〉|{0k}〉 and lowest excited states, |↓〉|{0k}〉 and
|↑〉|1k〉, as

H ′ = −1

2
η �|g〉〈g| +

∑
E

E|E〉〈E|, (11)

where |↑〉 and |↓〉 are the eigenstates of σz, that is, σz|↑〉 =
|↑〉, σz|↓〉 = −|↓〉, and |nk〉 denotes the state with n bath
excitations for mode k. The state |E〉 is

|E〉 = x(E) |↓〉 |{0k}〉 +
∑

k

yk(E)|↑〉|1k〉, (12)
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with x(E) = [1 + ∑
k

V 2
k

(E+η�/2−ωk )2 ]−1/2 and yk(E) =
Vk

E+η�/2−ωk
x(E).

Here we calculate the dynamical quantity 〈σx(t)〉, which
is the analog of the population inversion 〈σz(t)〉 in the
spin-boson model [25]. Since the coupling to the environment
will be “always present” in essentially all physically relevant
situations, a natural ground state is given by the dressed state
of the two-level qubit and bath. Therefore, by considering
the counterrotating terms, the ground state of H is a dressed
state exp[−S]|↑〉|{0k}〉 [26], and the corresponding ground-
state energy is −η �/2, so the ground state of H ′ becomes
|↑〉|{0k}〉 with the identical ground-state energy, −η �/2. We
now prepare the initial state, which is also a dressed state of
the qubit and bath, from the ground state as

|ψ(0)〉 = (1 + σx)√
2

exp[−S]|↑〉|{0k}〉. (13)

Then the initial state in the transformed Hamiltonian becomes
|ψ ′(0)〉 = (|↑〉 + |↓〉)|{0k}〉/

√
2, which is the eigenstate of σx .

Starting from this initial state, we obtain [27]

〈σx(t)〉 = TrB 〈ψ(t) |σx | ψ(t)〉
= TrB〈ψ(0)| exp(iH t)σx exp(−iH t)|ψ(0)〉

= 1

2

∑
E

x(E)2 exp

[
−i

(
E + η �

2

)
t

]

+ 1

2

∑
E

x(E)2 exp

[
i

(
E + η �

2

)
t

]

=
∫ −∞

∞

dE′

4πi
exp(−iE′t)

×
(

E′ − η � −
∑

k

V 2
k

E′ + i0+ − ωk

)−1

+
∫ ∞

−∞

dE′

4πi
exp(iE′t)

×
(

E′ − η � −
∑

k

V 2
k

E′ − i0+ − ωk

)−1

= Re

⎡⎣ 1

2πi

∫ −∞

∞

exp(−iE′t)

E′ − η � − ∑
k

V 2
k

E′+i0+−ωk

dE′

⎤⎦ .

(14)

Here we denote the real and imaginary parts of
∑

k V 2
k /(ω −

ωk ± i0+) as R(ω) and ∓�(ω), respectively. It follows that

R(ω) = ℘
∑

k

V 2
k

ω − ωk

= (η �)2℘

∫ ∞

0
dω′ J (ω′)

(ω − ω′)(ω′ + η �)2
= 2α�2η2 ω log |ω|

(η � + ω)2(λ2 + ω2)

+ 2α�2η2 πλ[λ2 + η � (−η � + 2ω)] − 2[λ2(2η � − ω) + η2 �2 ω] log |λ|
2(λ2 + η2�2)2(λ2 + ω2)

+ 2α�2η2 −(η � + ω)(λ2 + �2η2) + [2η3�3 + (−λ2 + η2�2) ω] log |η �|
(λ2 + η2�2)2( η � + ω)2

(15)

and

�(ω) = π
∑

k

V 2
k δ(ω − ωk) = π (η �)2 J (ω)

(ω + η �)2
, (16)

where ℘ stands for the Cauchy principal value and J (ω) is the
spectral density. Then, we have

〈σx(t)〉 = 1

π

∫ ∞

0

�(ω) cos ωt

[ω − η � − R(ω)]2 + �(ω)2
dω. (17)

The integration in Eq. (17) can be calculated numerically or
approximately using residual theory.

B. Measurement dynamics: quantum Zeno effect

It is known that the quantum Zeno effect can effectively
slow down the quantum decay rate of a quantum system. We
study this effect using an approach that goes beyond the RWA.
Here we consider the low-frequency bath as in Sec. II A and
derive the effective decay rate. The Hamiltonian H ′ is given
in Eq. (5).

Let us write the wave function in the transformed
Hamiltonian as

|�′(t)〉 = χ (t) |↓〉 |{0k}〉 +
∑

k

βk(t) |↑〉 |1k〉 , (18)

with probability in the excited state at the initial time |χ (0)|2.
We have demonstrated that the ground state of Hamiltonian
(1) is a dressed state exp(−S)|↑〉|{0k}〉 in the previous section.
Now we prepare the qubit to the dressed excited state
exp(−S)|↓〉|{0k}〉 (σz|↓〉 = −|↓〉) at the initial time t = 0,
which can be achieved by acting the operator σx on the ground
state,

|�(0)〉 = σx exp(−S)|↑〉|{0k}〉 = exp(−S)|↓〉|{0k}〉. (19)

In this case, the initial state in the transformed Hamiltonian
is |↓〉|{0k}〉 and χ (0) = 1. Substituting |�′(t)〉 into the
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Schrödinger equation with H ′, we have

i
dχ (t)

dt
= η �

2
χ (t) +

∑
k

Vk βk(t), (20)

i
dβk(t)

dt
=

(
ωk − η �

2

)
βk(t) +

∑
k

Vk χ (t). (21)

When the transformations

χ (t) = χ̃(t) exp

(
−i

η �

2
t

)
, (22)

βk(t) = β̃k(t) exp

[
−i

(
ωk − η �

2

)
t

]
(23)

are applied, Eqs. (20) and (21) can be written as

dχ̃ (t)

dt
= −i

∑
k

Vkβ̃k(t) exp[−i(ωk − η �)t], (24)

dβ̃k(t)

dt
= −iVkχ̃(t) exp[i(ωk − η �)t]. (25)

Integrating Eq. (25) and then substituting it into Eq. (24), we
obtain

dχ̃ (t)

dt
= −

∑
k

V 2
k

∫ t

0
χ̃ (t ′) exp[−i(ωk − η �)(t − t ′)] dt ′.

(26)

This integro-differential equation (26) is exactly soluble by a
Laplace transformation.

As for the present study of the quantum Zeno effect (i.e.,
using frequent measurements [28,29]), it suffices to obtain the
short-time behavior and the equation can be solved iteratively.
With the initial excited-state probability amplitude χ (0), in the
first iteration, Eq. (26) is solved as

χ̃ (t) � 1 −
∫ t

0
(t − t ′)

∑
k

V 2
k exp[−i(ωk − η �)t ′] dt ′. (27)

We can approximately write χ̃(t) using an exponential
form:

χ̃ (t) = exp

[
−

∫ t

0
(t − t ′)

∑
k

V 2
k exp[−i(ωk − η �)t ′] dt ′

]
(28)

= exp

{
−t

[
−1

t

∑
k

V 2
k

exp[−i (ωk − η �) t] − 1 + i (ωk − η �) t

(ωk − η �)2

]}
(29)

= exp

{
−t

[∑
k

V 2
k

(
2 sin

(
ωk−η �

2 t
)2

t (ωk − η �)2 − i
(ωk − η �) t − sin[(ωk − η �) t]

t (ωk − η �)2

)]}
. (30)

Assuming we perform the instantaneous ideal projections to
the initial state at intervals τ , for a single measurement, the
probability amplitude is χ̃(t = τ ). For a sufficiently large
frequency of measurements, the survival population in the
excited state [30] is

ρee(t = nτ ) = |χ̃ (t = nτ )|2 = exp[−γ (τ )t], (31)

where the subscript “ee” refers to the initial and final excited
state. The decay rate γ (τ ), with projection intervals τ, is
obtained as

γ (τ ) = 2π

∫ ∞

0
dω

∑
k

(
gk

2

)2 (
2η �ξk

ωk

)2 2 sin2
(

η �−ω

2 τ
)

π (η� − ω)2τ

= 2π

∫ ∞

0
dω

J (ω)

4

[
1 − ω − η �

ω + η �

]2 2 sin2
(

η �−ω

2 τ
)

π (η� − ω)2τ
.

(32)

Note that, in Eq. (32), the renormalization factor η of the
characteristic energy � appears in the decay rate γ (τ ). This
is different from the formulas for γ (τ ) in Refs. [30,31]. In the
case of spontaneous emission, the coupling strength between
the electromagnetic field and atom is the fine-structure constant
1/137, so it belongs to the weak-coupling case and η then
becomes extremely close to 1. Therefore, besides spontaneous

emission, this result for the quantum Zeno effect can apply to
other cases of strong coupling between the qubit and the bath.

Under the RWA, the Hamiltonian becomes HRWA as in
Eq. (7). We prepare the initial excited state of H through the
operator σx acting on the ground state under RWA | ↑〉|{0k}〉,
σx | ↑〉|{0k}〉 = | ↓〉|{0k}〉. Then, following the derivation in
Refs. [15], the decay rate is reduced to

γRWA(τ ) = 2π

∫ ∞

0
dω

∑
k

(
gk

2

)2 2 sin2
(

�−ω
2 τ

)
π (� − ω)2τ

= 2π

∫ ∞

0
dω

J (ω)

4

2 sin2
(

�−ω
2 τ

)
π (� − ω)2τ

. (33)

To compare with the high-frequency bath, we choose the
ordinary Ohmic bath with Drude cutoff:

J Ohm(ω) =
∑

k

g2
k δ(ω − ωk) = 2αOhmω

(ω/ωc)2 + 1
. (34)

This is a realistic assumption for, for example, electromagnetic
noise. In Eq. (34), αOhm is the coupling strength between the
qubit and the Ohmic bath. The cutoff frequency ωc in the
spectral density J Ohm(ω) is typically assumed to be the largest
frequency in the problem. As for the low-frequency noise, we
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use J (ω) = 2αω/(ω2 + λ2), which is the same as in Eq. (2).
The difference between these two baths is that λ corresponds
to an energy lower than the qubit energy. In the next section,
we will show our numerical results for these two baths.

III. RESULTS AND DISCUSSION

To show the effects of either a low- or a high-frequency
noise on the qubit states respectively, we study the dynamical
quantities 〈σx(t)〉 and the quantum Zeno decay rate γ (τ ). The
energy shift and the quantum Zeno decay rate exhibit evidently
different features for the low- and high-frequency noises. Thus,
these two quantities (energy shift and decay rate) can be used
as criteria to distinguish the type of noise. In Fig. 1, we show
the spectral densities J (ω) and J Ohm(ω) of the two baths in
the cases of both weak dissipation, α/�2 = 0.01 (αOhm =
0.01), and strong dissipation, α/�2 = 0.1 (αOhm = 0.1). As
examples, we choose λ = 0.09� and λ = 0.3� in Figs. 1(a)
and 1(b), respectively. Here, each value of λ corresponds to
the position of the peak in the low-frequency spectral density.
In superconducting qubits, the low-frequency cutoff for 1/f

FIG. 1. (Color online) The spectral density J (ω) of the low-
and high-frequency baths. (a) The case of weak interaction between
the bath and the qubit, where the parameters of the low-frequency
Lorentzian-like spectrum are α/�2 = 0.01 and λ = 0.09� (red solid
curve), while for the high-frequency Ohmic bath with Drude cutoff
the parameters are αOhm = 0.01 and ωc = 10� (green dashed-dotted
curve). (b) The case of strong interaction between the bath and
the qubit, where the parameters of the low-frequency bath are
α/�2 = 0.1 and λ = 0.3� (red solid curve) and the parameters of
the high-frequency Ohmic bath are αOhm = 0.1 and ωc = 10� (green
dashed-dotted curve). The characteristic energy of the isolated qubit
is indicated by a vertical blue dotted line. Here, and in the following
figures, the energies are shown in units of �.

noise is bounded from the repetition rate of the experiments
and this can be as low as 1 Hz [32]. For example, we calculated
the case when λ = 10−10� (which corresponds to λ = 1 Hz
and � = 10 GHz) and found that there is no substantial
difference with the following results. Thus, our results are
relevant for superconducting qubits. For an Ohmic bath, the
cutoff frequency is fixed at ωc = 10�. As expected, these very
different low- and high-frequency spectral densities should
give rise to different decoherence behaviors of the qubit. In
Fig. 1, we also show the characteristic energy of the isolated
qubit � (see the vertical dotted line in Fig. 1).

A. Nonmeasurement decoherence dynamics

Now let us consider the dynamics without measurements.
Results from the numerical integration of Eq. (17) are shown
in Fig. 2. They are qualitatively consistent with the results
obtained using residual theory. This indicates that the branch
cuts considered in Refs. [20] and [21] do not affect the
oscillation frequency. The time evolution of 〈σx(t)〉 is given
in Fig. 2(a) for the case of weak coupling between the
qubit and the bath, where α/�2 = 0.01 and λ = 0.09� for
the low-frequency noise and αOhm = 0.01 and ωc = 10�

for the Ohmic bath. Figure 2(b) presents the time evolution
of 〈σx(t)〉 in the strong-coupling case with the parameters
α/�2 = 0.1 and λ = 0.3� for the low-frequency noise, as
well as αOhm = 0.1 and ωc = 10� for the Ohmic bath. As
expected, the quantum oscillations of 〈σx(t)〉 dampen faster
in the strong-coupling case. We approximately evaluate the
oscillation frequency or the effective energy of the qubit,
ω0 − η� − R(ω0) = 0, using the residue theorem. The decay
rate can be obtained from �(ω). We will now show the
numerical values of η in the corresponding cases. In Fig. 2(a),
the renormalized factor η = 0.98336, the oscillation frequency
is ω0 = 1.0225�, and the decay rate is �(ω0) = 0.014654�

for the low-frequency noise; η = 0.98447, ω0 = 0.97720�,

and �(ω0) = 0.015318� for the Ohmic bath. In Fig. 2(b), the
renormalized factor η = 0.91444, the oscillation frequency is
ω0 = 1.0868�, and the decay rate is �(ω0) = 0.11215� for
the low-frequency noise, while η = 0.84469, ω0 = 0.77221�,
and �(ω0) = 0.13163� for the Ohmic bath.

The energy spectral densities in Fig. 1 and the results in
Fig. 2 indicate two opposite shifts of the characteristic energy
� for the two kinds of baths considered here. These opposite
energy shifts are equivalent to energy repulsion. The energy
shift is determined by the interaction term. In the transformed
Hamiltonian, the interaction term is H ′

1 in Eq. (A5). Also,
dipolar interactions, such as H JC

I = g(a†σ− + aσ+) in the
Jaynes-Cummings model, decrease the qubit’s ground-state
energy and increase its excited-state energy. Thus, now we
ask the following questions: What is the difference of a qubit
affected by either a multimode bath or a single-mode cavity?
How is a qubit influenced by these two kinds of multimode
baths (low-frequency and high-frequency ones)?

For a low-frequency bath, the energy peak of the bath
is located between the ground-state energy (ω = 0) and the
excited-state energy (ω = �); that is, the main part of the
spectrum is in the region ωk < �. Then (as seen in Fig. 1)
the interaction of the bath with the two qubit states is “op-
posite” (i.e., the ground-state energy becomes lower and the
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FIG. 2. (Color online) Time evolution of the coherence 〈σx(t)〉
versus the time t multiplied by the qubit energy spacing �.
(a) The case of weak interaction between the bath and the qubit,
where the parameters of the low-frequency Lorentzian-type spectrum
are α/�2 = 0.01 and λ = 0.09� (red solid curve), while for
the high-frequency Ohmic bath with Drude cutoff the parame-
ters are αOhm = 0.01 and ωc = 10� (green dashed-dotted curve).
(b) The case of strong interaction between the bath and the qubit,
where the parameters of the low-frequency bath are α/�2 = 0.1 and
λ = 0.3 (red solid line), and for the high-frequency Ohmic bath the
parameters are αOhm = 0.1 and ωc = 10� (green dashed-dotted line).
These results show that under the condition that the decay rates of two
kinds of baths are equal in the WW approximation, by considering
the counterrotating terms, the decay rate for the low-frequency bath
is smaller than that for the high-frequency Ohmic bath. This means
that the coherence time of the qubit in the low-frequency bath is
longer than in the high-frequency-noise case, demonstrating the
powerful temporal memory of the low-frequency bath. Also, our
results reflect the structure of the solution with branch cuts [20].
The oscillation frequency for the low-frequency noise is ω0 > �, in
spite of the strength of the interaction. This can be referred to as a
blue shift. However, in an Ohmic bath, the oscillation frequency is
ω0 < �, corresponding to a red shift. The shifting direction of the
energy is independent of the interaction strength and only determined
by the spectral properties. Thus, it can be used as a criterion for
distinguishing the low- and high-frequency noises.

excited-state energy becomes higher). So the energy spacing
for the case of a low-frequency bath exhibits a blue shift. This
result is similar to the single-mode Jaynes-Cummings model.
The energy difference of the two-state qubit is increased by
the low-frequency bath.

For a high-frequency cutoff Ohmic bath, the energy peak
of the bath is located above the excited-state energy. So the

main part of the spectrum is in the region ωk > �. The effect
of the bath on the qubit mainly comes from the frequencies
higher than the excited-state energy of the qubit. Then (as
seen in Fig. 1) the bath repels both the excited-state and the
ground-state energies to lower energies. But the effect of the
high-frequency bath on the excited state is much larger than
on the ground state. As a result, on the whole, the qubit energy
difference in a high-frequency bath is red shifted. Thus, the
effective energy difference of the qubit is reduced by the high-
frequency bath.

For example, if the initial state of the qubit is an excited
state, in the interaction picture, the main part of the coupling
is∑

k

gka
†
k exp(iωkt)σ− exp(−i�t)

=
∑

k

gka
†
kσ−{cos[(ωk − �)t] + i sin[(ωk − �)t]}, (35)

where the real part contributes to the decay rate and the
imaginary part results in the energy shift. For the low-
frequency bath, the main part of the spectrum is in the region
ωk < �. Thus, the term for the energy shift is

sin[(ωk − �)t] < 0. (36)

However, for a high-frequency-cutoff Ohmic bath, the main
part of the spectrum is in the region ωk > �, where the term
for energy shift becomes

sin[(ωk − �)t] > 0. (37)

These results show that the energy shift for the two kinds
of baths moves in opposite directions. Note that there is a
minus sign in the interaction term in the expressions for the
dynamical quantities such as Eq. (14) and Eq. (26). These
observations help us understand why the energy levels repel.
The contribution by the real part of the interaction on the decay
rate will be discussed next, when studying the quantum Zeno
effect.

B. Measurement dynamics: quantum Zeno effect

Now let us consider the case with measurements [28]. The
quantum Zeno effect can be a useful tool to preserve the state
coherence of a quantum system, with the help of repeated
projective measurements. In the following we investigate the
quantum Zeno effect in the qubit system and propose another
criterion for distinguishing low- and high-frequency noises.
In general, without using the RWA, the decay rate under
measurement can be obtained as

γ (τ ) = 2π

∫ ∞

0
dωJ (ω)

(
1 − ω − η �

ω + η �

)2 2 sin2
(

η �−ω

2 τ
)

π (η � − ω)2τ
.

(38)

This expression includes three terms, that is, the spectral
density J (ω) of the bath, the projection time modulating
function

F (ω,τ ) = 2 sin2
(

η �−ω

2 τ
)

π (η � − ω)2τ
, (39)
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FIG. 3. (Color online) The effective decay γ (τ )/γ0, versus the
time interval τ between consecutive measurements for a weak
coupling between the qubit and the bath. On the horizontal axis,
the time interval τ is multiplied by the qubit energy difference �.
The curves in (a) correspond to the case of a low-frequency bath
with parameters α/�2 = 0.01 and λ = 0.09� (red solid curve);
the curves in (b) correspond to the case of an Ohmic bath with
parameters αOhm = 0.01 and ωc = 10� (red solid curve). The green
dashed-dotted curves are the results under the RWA when the same
parameters are used. Note how different the RWA result is in (b),
especially for any short measurement interval τ .

and the interaction contribution function of both the rotating
and counterrotating terms,

f (ω) =
(

1 − ω − η �

ω + η �

)2

. (40)

The counterrotating term contributing to f (ω) is (ω −
η �)/ (ω + η �). If the RWA is applied, f (ω) = 1. The decay
rate for |e〉 → |g〉 in the long-time limit, corresponding to the
decay rate under the WW approximation, is written as γ0:

γ0 = γ (τ → ∞) = 2πJ (�)/4. (41)

The effective decay rate is the ratio of γ (τ ) to γ0, which
is in the same form as in Ref. [15]. In Fig. 3(a), the effective
decay rate γ (τ )/γ0 for the low-frequency bath is plotted in
the weak-coupling case with α/�2 = 0.01. From the energy
spectrum in Fig. 1(a), we can see that γ0 is proportional
to the spectrum density of the bath, with the magnitude
corresponding to the crossing of the energy � of the isolated
qubit and the bath spectrum. For comparison, we also plot

FIG. 4. (Color online) The effective decay γ (τ )/γ0, versus the
time interval τ between successive measurements for a strong cou-
pling between the qubit and the bath. The time interval τ is multiplied
by the qubit energy difference �. The curves in (a) correspond
to the case of a low-frequency bath with parameters α/�2 = 0.1
and λ = 0.3� (red solid curve); the curves in (b) correspond to the
case of an Ohmic bath with parameters αOhm = 0.1 and ωc = 10�

(red solid curve). The green dashed-dotted curves are the results
under RWA when the same parameters are used. Note how different
the RWA result is in (b), especially for any short measurement
interval τ .

γRWA(τ )/γ0 as a dashed-dotted curve, with

γRWA(τ ) = 2π

∫ ∞

0
dω

J (ω)

4

2 sin2
(

�−ω
2 τ

)
π (� − ω)2τ

. (42)

As we know, γ (τ )/γ0 < 1 means that repeated measurements
slow down the decay rate γ (τ ) < γ0, which is the quantum
Zeno effect. In contrast, γ (τ )/γ0 > 1 means an anti-Zeno
effect. The curves in Fig. 3(b) show results for the Ohmic
bath with αOhm = 0.01. In Fig. 4, we show the decay rate
in the strong-coupling case for the low-frequency bath with
α/�2 = 0.1 and for the Ohmic bath with αOhm = 0.1. It can
be seen that, for the low-frequency bath, the anti-Zeno effect
appears as shown in Figs. 3 and 4. For the high-frequency-
cutoff Ohmic bath, the Zeno effect always dominates and no
anti-Zeno effect occurs. Also we can see, from Figs. 3 and
4, that γ (τ ) and γRWA(τ ) approach γ0 when the measurement
interval τ → ∞. In particular, if τ → 0, F (ω,τ ) → 0. Thus,
γ (τ ) → 0. This implies that, in a sufficiently short time
interval of a projective measurement, the quantum Zeno effect
occurs, regardless of the bath spectrum. When the interval τ

increases, the projection interval modulation function F (ω,τ )
displays a number of oscillations. Then, the energy peak
of the bath spectrum will act on the decay rate and it is
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TABLE I. Summary of our main results for the quantum Zeno effect (QZE) and anti-Zeno effect
(AZE), with and without RWA. The entries in the last column marked by an asterisk indicate which
changes in the dynamics (Zeno versus anti-Zeno) are related to using the RWA. Here, α describes
the coupling strength between the qubit and the environment. The system dynamics can be either
quantum Zeno or anti-Zeno depending on several factors, including the type of bath, the strength of
the qubit-bath coupling, the frequency of the measurements, etc. These results are described in detail
in the main text.

Coupling Measurement Without RWA RWA
Bath α frequency ∼ τ−1 t = 0 dressed state t = 0 product state

high QZE QZE
Low-frequency 0.1

low AZE *QZE
high QZE QZE

0.01
low AZE AZE

high QZE QZE
Ohmic 0.1

low QZE *AZE
high QZE QZE

0.01
low QZE *AZE

possible to implement the anti-Zeno effect. However, this
result still depends on the function f (ω) and the given spectral
density J (ω) of the bath. Now, we emphasize again that the
second term in the brackets of the function f (ω) = [1 − (ω −
η �)/(ω + η �)]2 is due to the counterrotating terms; when
neglecting the counterrotating terms, f (ω) = 1.

For low-frequency noise, the noise mainly comes from the
region ω < �, so f (ω) > 1. Here, f (ω) as well as F (ω,τ )
magnify the effect of the energy peak of the bath spectrum.
Thus, the counterrotating terms accelerate the decay and the
anti-Zeno effect occurs.

In the high-frequency-cutoff Ohmic bath, the noise mainly
comes from the region ω > �, which leads to f (ω) < 1. Thus,
it is mainly the counterrotating term in f (ω) that reduces the
effect of the energy peak of the bath on the decay. This slows
down the decay and only the quantum Zeno effect can now take
place. The projection-intervals-modulating function F (ω,τ ),
together with the interaction-modulating function f (ω), causes
the Zeno effect to dominate in the high-frequency-cutoff
Ohmic bath. A summary of results of this section is shown
in Table I.

IV. SUMMARY

In summary, we have studied a model of a qubit interacting
with its environment, modeled either as a low- or as a high-
frequency bath. For each type of bath, the quantum dynamics of
the qubit without measurement and the quantum Zeno effect
on it are shown for the cases of weak and strong couplings
between the qubit and the environment. Our results show that,
for a low-frequency bath, the qubit energy increases (blue
shift) and the quantum anti-Zeno effect occurs. However, for a
high-frequency-cutoff Ohmic bath, the qubit energy decreases
(red shift) and the quantum Zeno effect dominates. Moreover,
under the condition of equal decay rate due to the two kinds
of baths in the WW approximation, for a high-frequency
environment, we find that without the approximation, the
decay rate should be faster (without measurements) or slower
(with frequent measurements, in the Zeno regime), compared
to the low-frequency-bath case. These very different behaviors

of the quantum dynamics and the Zeno effect in different
baths should be helpful to experimentally distinguish the type
of noise affecting the qubit and protect the coherence of
the qubit through modulating the dominant frequency of its
environment.
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APPENDIX: EXAMINING THE VALIDITY OF THE
UNITARY TRANSFORMATION

In this Appendix, we show the main results of the canonical
transformation to the qubit-bath Hamiltonian H considered
here, and we prove that the contribution of H ′

2 to physical
quantities is of O(g4

k ) and higher, so we ignore H ′
2 in the

calculations. We now apply a canonical transformation to the
Hamiltonian H as in Eq. (3):

H ′ = exp(S)H exp(−S), (A1)

with

S =
∑

k

χk

2
(a†

k − ak)σx. (A2)
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Here we define χk = gkξk/ωk, which is proportional to gk . A
k-dependent variable χk is introduced in the transformation. It
is clear that this canonical transformation is unitary, because
[exp(S)]† = exp(−S). The transformed Hamiltonian H ′ can
now be decomposed in three parts:

H ′ = H ′
0 + H ′

1 + H ′
2, (A3)

with

H ′
0 = −1

2
η �σz +

∑
k

ωka
†
kak −

∑
k

gk

4
χk(2 − ξk), (A4)

H ′
1 =

∑
k

η �χk(a†
kσ− + akσ+), (A5)

H ′
2 = −1

2
�σz (cos Y − η) + �

2
σy (− sin Y + ηY ) , (A6)

where, in Eq. (A6),

Y = i
∑

k

χk(a†
k − ak) (A7)

is a generalized momentum and η is defined in Eq. (4), η =
exp(−∑

k χ2
k /2).

Note that no approximation was used during the trans-
formation, so H ′ = exp[S]H exp[−S] is exact. Because the
constant term

∑
k gkχk(2 − ξk)/4 in Eq. (A4) has no effect on

the dynamical evolution, we neglect it. At low temperatures,
the multiple-step process is so weak that all the higher-order
terms can be neglected. In the following derivation, we will
prove that the contribution of H ′

2 to physical quantities is of
O(g4

k ) and higher, so we ignore H ′
2 and obtain the effective

transformed Hamiltonian H ′ = H ′
0 + H ′

1.
Now let us expand the first term of H ′

2, cos Y , as a series in
χk. Using the Baker-Hausdorff theorem, we have

exp

(∑
k

χk(a†
k − ak)

)
(A8)

= η exp

(∑
k

χka
†
k

)
exp

(∑
k

−χkak

)
. (A9)

Afterward, we expand (A9) as follows:

η exp

(∑
k

χka
†
k

)
exp

(∑
k

−χkak

)

= η

[
1 +

∑
k

χka
†
k +

( ∑
k χka

†
k

)2

2
+

(∑
k χka

†
k

)3

3!
+ · · ·

]

×
[

1 −
∑

k

χkak +
( ∑

k χkak

)2

2
−

( ∑
k χkak

)3

3!
+ · · ·

]

= η

[
1 +

∑
k

χka
†
k −

∑
k

χkak −
∑

k

χka
†
k

∑
k

χkak + · · ·
]

.

(A10)

Now we see the second-order terms in χk in this
equation:(∑

k

χka
†
k

)(∑
k

χkak

)
=

∑
k

χ2
k a

†
kak(diagonal) +

∑
k =k′

χka
†
kχk′ak′(off-diagonal).

(A11)

The off-diagonal terms are related to the multiboson transition
and their contributions to the physical quantities are fourth
order in χk. Furthermore, the initial state |{0k}〉 |↑〉 is used in
the calculation, so the direct effect of the second-order diagonal
term on physical quantities is zero and its effect through the
interaction will also be fourth order in χk . Thus we now ignore
the terms higher than second order in χk in the following
calculation and obtain the expression of (A8):

exp

[∑
k

χk(a†
k − ak)

]
≈ η

(
1 +

∑
k

χka
†
k −

∑
k

χkak

)
.

(A12)

Therefore, cos Y is reduced to

cos Y ≈ η. (A13)

In the same way, sin Y in H ′
2 is simplified to

sin Y ≈ η
[
Y + O

(
χ3

k

)]
. (A14)

In H ′
2, we have subtracted the terms of zero and first order

in gk, which are included in H ′
0 + H ′

1, and only left the terms
equal to and higher than second order in gk, whose contribution
to the physical quantities is of O(g4

k ) and higher. Thus, H ′
2 can

be omitted.
We expand several series in the variable χk, while

the real variable is η�χk. Because η�χk = η�gkξk/ωk =
η�gk/ (ωk + η�) < gk, then η�χk is less than gk . In other
words, through this transformation we find a variable smaller
than gk for the series expansion. Therefore, our method can be
extended to the case of strong interaction between the qubit
and the environment.
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