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We propose a strategy to demonstrate the transition from the quantum Zeno effect (QZE) to the anti-
Zeno effect (AZE) using a superconducting qubit coupled to a transmission line cavity, by varying the
central frequency of the cavity mode. Our results are obtained without the rotating wave approximation
(RWA), and the initial state (a dressed state) is easy to prepare. Moreover, we find that in the presence
of both qubit’s intrinsic bath and the cavity bath, the emergence of the QZE and the AZE behaviors relies
not only on the match between the qubit energy-level-spacing and the central frequency of the cavity
mode, but also on the coupling strength between the qubit and the cavity mode.

Crown Copyright © 2011 Published by Elsevier B.V. All rights reserved.
1. Introduction

The QZE predicts that the decay rate of a system can be slowed
down by measuring it frequently enough [1–4]. However some sys-
tems are predicted to have an enhancement of the decay due to
the frequent measurements, namely the AZE or inverse Zeno ef-
fect [5–7]. The QZE and AZE have been observed in an unstable
system [8].

Recently, the QZE–AZE crossover in quantum Brownian motion
model was investigated [9], where a system of damped harmonic
oscillator interacts with a bosonic reservoir in thermal equilibrium.
It was found [9] that controlling the system–environment cou-
pling by an artificially-controllable engineered environment (e.g.,
[10,11]) would allow one to monitor the transition from the QZE to
the AZE dynamics. The QZE and AZE of a nanomechanical resonator
measured by a quantum point contact detector (non-equilibrium
fermionic reservoir) also was studied [12]. Therefore, modulat-
ing the system and reservoir parameters can induce the QZE–AZE
crossover.

In cavity QED, the coupling between the qubit and the cavity,
in which the electromagnetic field modes are concentrated around
the cavity resonant frequency, depends on the cavity frequency.
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For an excited qubit located in a cavity, the cavity mode is the
dominant one available for the qubit to emit photons. If the qubit
energy-level-spacing is resonant with the cavity mode, the rate of
decay into the particular cavity mode is enhanced. Otherwise, it
is inhibited. Therefore, one may manipulate the qubit decay rate
by varying the central frequency of the cavity mode in or off res-
onance with the qubit level energy spacing. The variation of the
qubit decay [13,14] in the cavity is an increasingly important topic
for experimental and theoretical studies [13,15,16].

In this Letter, we propose to modulate the qubit’s decay rate
in cavity QED by the QZE, which means invoke the frequent mea-
surements in the qubit and achieve the transition between QZE
and AZE. We study a model of a qubit in a cavity, and investigate
the occurrence of either the QZE or AZE by varying the cavity cen-
tral frequency. We insert frequent projection measurements in the
qubit decay process and find that the normalized decay rate de-
pends on whether the central frequency of the cavity mode is in
resonance with the qubit energy-level-spacing or not. In the reso-
nant case, the normalized decay rate is lower than 1, so the QZE
of the qubit occurs. However, when the cavity mode is detuned
from the energy level spacing of the qubit, the normalized decay
rate is larger than 1 and the qubit exhibits AZE. The variation from
the QZE to the AZE, by varying the central frequency of the cavity
mode, should help distinguishing these two kinds of effects. More-
over, we consider the case when both the qubit’s intrinsic bath
and the cavity bath are simultaneously present. And find the de-
pendence of the behaviors (the QZE and the AZE) on the coupling
strength of the qubit–cavity and the cavity central frequency.
rights reserved.
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Fig. 1. (Color online.) (a) Superconducting circuit model of a frequency-tunable
transmission line resonator, which is archived by changing the boundary condition,
coupled with a qubit. (b) Superconducting circuit model (1) of the effective tunable
inductors, which are consisted of a series array of SQUIDs (2).

The QZE–AZE crossover may be achieved in a superconducting
qubit coupled to a transmission line cavity [17–20]. This is be-
cause there are two physical mechanisms to tune the resonant
frequency of the transmission line resonator. One method is to
change the boundary condition of the electromagnetic field in the
transmission line [21–23], as shown in Fig. 1(a). Another method
is to construct a transmission line resonator by using a series of
magnetic-flux-biased SQUIDs, as shown in Fig. 1(b). Because the
effective inductor of a magnetic-flux-biased SQUID can be tuned
by changing the applied magnetic flux [24,25], the inductance per
unit length of the SQUID array is controllable.

2. Hamiltonian of a qubit in a cavity beyond the rotating wave
approximation

Including the qubit dissipation environment, the Hamiltonian of
a qubit in a lossy cavity can be written as

H = 1

2
�σz +

∑
k

ωk,1b†
kbk +

∑
k

fk
(
b†

k + bk
)
σx

+
∑

k

ωk,2a†
kak +

∑
k

gk
(
a†

k + ak
)
σx. (1)

The Pauli operators, σz and σx , describe the qubit level energy
spacing and tunneling. The operators bk and b†

k are the annihila-
tion and creation operators characterizing the qubit’s intrinsic bath
with frequencies ωk,1. The lossy cavity is modeled as a collection
of harmonic oscillators with frequencies ωk,2, with the creation op-

erators a†
k and the annihilation operators ak . Fig. 2(a) schematically

shows the model considered here. Notice that no RWA is invoked
in the Hamiltonian H and thus it cannot be diagonalized exactly.

Now let us solve the Schrödinger equation of the Hamilto-
nian (1). We take the anti-rotating terms into account, which guar-
antees that our discussions extend to the off-resonant regime and
also the case when there is a strong qubit–cavity interaction. Due
to the anti-rotating terms, we apply a unitary transformation to
the Hamiltonian H ,
Fig. 2. (Color online.) (a) Sketch of a qubit with the spontaneous dissipation rate
γ coupled to a cavity with the loss rate κ via a coupling strength g . (b) and (c)
schematically show the bath density spectrum of the qubit environment: (b) the
Ohmic qubit’s intrinsic bath (green dashed) and the Lorentzian cavity bath (red
solid), (c) the low-frequency qubit’s intrinsic bath (green dashed) and the Lorentzian
cavity bath (red solid).

H ′ = exp(S)H exp(−S), (2)

with

S =
∑

k

[
fk

ωk,1
ξk,1

(
b†

k − bk
) + gk

ωk,2
ξk,2

(
a†

k − ak
)]

σx. (3)

Here, the k-dependent variables

ξk,1 = ωk,1/(ωk,1 + η1�), (4)

and

ξk,2 = ωk,2/(ωk,2 + η2�), (5)

are introduced in the transformation. The transformed Hamiltonian
H ′ can be written as

H ′ ≈ 1

2
η�σz +

∑
k

ωk,1b†
kbk +

∑
k

ωk,2a†
kak

+
∑

k

Vk,1
(
b†

kσ− + bkσ+
) +

∑
k

Vk,2
(
a†

kσ− + akσ+
)
, (6)

with σ± = (σx ± iσy)/2 and

η = η1η2. (7)

Then, the qubit energy-level-spacing � is renormalized to η� be-
cause of its coupling to the qubit’s intrinsic bath and the cavity
bath. These factors η1 and η2, are respectively denoted by

η1 = exp

(
−

∑
k

2 f 2
k ξ2

k,1/ω
2
k,1

)
, (8)

η2 = exp

(
−

∑
2g2

k ξ2
k,2/ω

2
k,2

)
. (9)
k
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The coupling constants fk and gk , of the qubit–environment inter-
action are also renormalized. The renormalized factors are respec-
tively denoted by

Vk,1 = 2η1� fk/(ωk,1 + η1�), (10)

Vk,2 = 2η2�gk/(ωk,2 + η2�), (11)

owing to the anti-rotating coupling terms. In Eq. (6), we drop the
higher-order terms, which include the induced effect of the two
baths by the coupling to the same qubit O( fk · gk), whose con-
tributions to the physical quantities are of the order O(g4

k ) [or
O( f 4

k ), or O( f 2
k g2

k )] and higher.

3. Equation of motion of a qubit in a cavity beyond the rotating
wave approximation

Below, we will solve the equation of motion of the wave func-
tion, beyond the RWA, in the transformed Hamiltonian H ′ in
Eq. (6). Since the total excitation number operator

N =
∑

k

(
a†

kak + b†
kbk

) + (1 + σz)/2, (12)

of the dissipative qubit–cavity system is a conserved observable,
i.e., [N, H ′] = 0, it is reasonable to restrict our discussion to the
single-particle excitation subspace. A general state in this subspace
can be written as∣∣Φ(t)

〉 = χ(t)|↑〉∣∣{0k0k}
〉 + ∑

k,i

βk,i(t)|↓〉∣∣{0k,i1k,i}
〉
, (13)

where |↑〉 and |↓〉 are the eigenstates of σz (σz|↑〉 = |↑〉 and
σz|↓〉 = −|↓〉), the state |{0k,i1k,i}〉 (i can be 1,2) means that ei-
ther the cavity bath or the qubit’s intrinsic bath has one quantum
excitation. Substituting |Φ(t)〉 into the Schrödinger equation, we
have

i
dχ(t)

dt
= η�

2
χ(t) +

∑
k,i

Vk,iβk,i(t), (14)

i
dβk,i(t)

dt
=

(
ωk,i − η�

2

)
βk,i(t) +

∑
k,i

Vk,iχ(t). (15)

Applying the transformation

χ(t) = χ̃ (t)exp

(
−i

η�

2
t

)
, (16)

βk,i(t) = β̃k,i(t)exp

[
−i

(
ωk,i − η�

2

)
t

]
, (17)

Eqs. (14) and (15) are simplified as

dχ̃ (t)

dt
= −i

∑
k,i

Vk,i β̃k,i(t)exp
[−i(ωk,i − η�)t

]
, (18)

dβ̃k,i(t)

dt
= −iVk,iχ̃ (t)exp

[
i(ωk,i − η�)t

]
. (19)

Integrating Eq. (19) and substituting it into Eq. (18), we obtain

dχ̃ (t)

dt
= −

t∫
0

∑
k,i

V 2
k,i exp

[−i(ωk,i − η�)
(
t − t′)]χ̃(

t′)dt′. (20)

This integro-differential equation can be solved exactly by a
Laplace transformation,
χ̃ (p) = χ̃ (0)

p + ∑
k,i V 2

k,i/[p − i(η� − ωk,i)]
, (21)

with

χ̃ (p) =
∫

χ̃ (t)exp(−pt)dt. (22)

Inversing of the Laplace transformation, we obtain the amplitude
in the excited-state

χ̃ (t) = 1

2π i

σ+i∞∫
σ−i∞

χ̃ (0)exp(pt)

p + ∑
k,i V 2

k,i/[p − i(η� − ωk,i)]
dp. (23)

Then replace p to iω + 0+ ,

χ̃ (t) = 1

2π i

∞∫
−∞

χ̃ (0)exp(iωt)

ω − ∑
k,i V 2

k,i/[(ω + η�) − ωk,i − i0+] dω. (24)

Denote R(ω) and Γ (ω) as the real and imaginary parts of the
summation term

∑
k,i V 2

k,i/(ω − ωk,i − i0+), then

R(ω) = ℘
∑
k,i

V 2
k,i/

(
ω − ωk,i − i0+)

, (25)

Γ (ω) = π
∑
k,i

V 2
k,iδ

(
ω − ωk,i − i0+)

, (26)

where ℘ is the Cauchy principal value. Applying the pole approxi-
mation,

χ̃ (t) = χ̃ (0)
∑

j

exp(iω jt)Q j(ω j), (27)

where ω j corresponds to the singularity of the quantity χ̃ (p) and
Q j(ω j) is the normalized factor.

Before doing further calculations, let us now focus on the ini-
tial state of the system χ̃ (0), since different initial states may
result in distinct predictions about the QZE and the AZE [26,27].
Indeed, these two effects can strongly depend on the initial con-
ditions. Through the unitary transformation in Eq. (2), the Hamil-
tonian (1), which contains the anti-rotating terms, is reduced to
H ′ in Eq. (6), which has the similar form of the Hamiltonian un-
der the RWA, with the parameters renormalized. Under energy
conservation, the ground state of H ′ is |g′〉 = |↓〉|{0k0k}〉 and the
corresponding ground-state energy is −η�/2. Therefore, through
inversing the unitary transformation, we obtain the ground state
of the original Hamiltonian H as |g〉 = exp[−S]|↓〉|{0k0k}〉, which
is a dressed state of the qubit and its environment due to the anti-
rotating terms [19,28]. In this Letter, we choose the excited state
exp[−S]|↑〉|{0k0k}〉 as the initial state, which can be achieved by
acting the operator σx on the ground state,∣∣ψ(0)

〉 = σx|g〉 = exp[−S]|↑〉∣∣{0k0k}
〉
. (28)

Thus, the initial state after the transformation is |ψ ′(0)〉 = |↑〉
|{0k0k}〉, correspondingly the excited-state probability amplitude
χ(0) = 1.

To obtain the final result, we need the knowledge of the inter-
acting spectra of the qubit’s intrinsic bath and also the cavity bath.
From the quasi-mode approach, the qubit–cavity coupling density
spectrum is a Lorentzian density spectrum [29,30]

Jcav(ω) =
∑

g2
k,2δ(ω − ωk) = g2λ

π [(ω − ωcav)2 + λ2] , (29)

where g is the coupling constant between the cavity and the qubit,
ωcav the central frequency of the cavity mode, and λ is the fre-
quency width of the cavity bath density spectrum and is related
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to the cavity bath correlation time. The physical quantity ωcav/λ

denotes the quality factor Q of the cavity.
Experiments in some superconducting qubits indicate that the

noise chiefly comes from the low-frequency region. The density
spectrum of the low-frequency bath can be approximately written
as

J low
qb (ω) =

∑
k

g2
k,2δ(ω − ωk,1) = 2αlowω

(ω/�)2 + (ωlow/�)2
, (30)

where ωlow is an energy lower than the qubit energy-level-spacing
�, and αlow a dimensionless coupling strength between the qubit
and the intrinsic bath. In semiconductor quantum dot qubits, the
qubit spontaneous dissipation bath, mainly the phonon bath, is
usually described by an Ohmic density spectrum. Thus, the den-
sity spectrum Jqb(ω) of the Ohmic bath with Drude cutoff can be
given as

J Ohm
qb (ω) =

∑
k

g2
k,1δ(ω − ωk,1) = 2αOhmω

1 + (ω/ωOhm)2
, (31)

where ωOhm is the high-frequency cutoff, which is typically as-
sumed to be larger than the qubit energy-level-spacing, and αOhm
is the dimensionless coupling strength.

So we consider three kinds of interacting density spectra:
Lorentzian cavity bath, low-frequency qubit’s intrinsic bath and
Ohmic qubit’s intrinsic bath, and present a sketch of the den-
sity spectra of the qubit environment in Fig. 2(b), (c): showing
the same cavity bath and different qubit’s intrinsic baths (a low-
frequency bath in (b) and an Ohmic bath in (c)).

Before illustrate our results, let us recall the standard master
equation of a qubit coupled to a single-mode cavity under the RWA
and Markov approximation [31]

ρ̇ = −i[HRWA,ρ] + γ (2σ−ρσ+ − σ+σ−ρ − ρσ+σ−)

+ κ
(
2aρa† − a†aρ − ρa†a

)
, (32)

where HRWA = g(σ−a† + σ+a), g is the qubit–cavity coupling
strength, a† and a are the creation and annihilation operators for
the single-mode cavity. The two parameters κ and γ correspond
to the decay rates induced by the two baths: the qubit’s intrinsic
bath and the cavity bath, respectively. Then the survival probability
of the qubit in the excited state is approximately [31]

Pe(t) = ∣∣χ(t)
∣∣2 = cos(gt)exp

[−(κ + γ )t/2
]
, (33)

where the subscript “e” refers to the initial and final excited states.
The exponential factor (κ + γ )/2 can be considered as an effective
decay rate. In the RWA case, the qubit energy is splitting to � ±
g/2.

While in our results beyond the RWA, the qubit energy split-
ting depends on the qubit environment. Assume λ = 0.1g , ωcav =
100g . If the qubit in the low-frequency bath with ωlow = 10g
and αlow = 10−4, the qubit energy is splitting to � − 0.4786g
and � + 0.5011g . While, if the qubit in the Ohmic bath with
ωOhm = 103 g and αOhm = 10−4, the qubit energy level is splitting
to � − 0.5018g and � + 0.4782g .

Fig. 3 shows the probability Pe(t) for the qubit to be in the
excited state in the region 0 < t < π . When the qubit and the
cavity mode is resonant, the qubit decay with the measurements,
whose interval between successive measurements is τ = 0.1g−1,
is slowed down compared to the case without measurement (the
interval τ extends to infinite), which means QZE. While tune the
cavity mode to ωcav = 80g and fix the energy level spacing of the
qubit � = 100g , the decay with the measurements (τ = 0.1g−1) is
speeded up contrast to the case without the measurements, which
means AZE.
Fig. 3. (Color online.) Time dependence of the probability for the qubit at its excited
state. In the resonant case, the parameters are ωcav = � = 100g and τ = 0.1g−1. In
the detuning case, the cavity mode frequency is varied to ωcav = 80g . Note that the
successive measurements slow down the decay rate of excited state in the resonant
case, which is the QZE. While in the detuning case, the measurements speed up the
qubit decay rate, which is the AZE.

4. The effective decay rate of a qubit in a cavity with successive
measurements

In the following, we will solve Eq. (20) iteratively and ob-
tain the effective decay rate with successive measurement [14,32].
When the interval between measurements is sufficiently short, the
evolution of the qubit after measurements can be approximately
expressed by an exponential form. So the discussion in [5] can be
extended to damped oscillations. Namely, if the exponential factor
is larger or smaller than the effective decay rate (κ + γ )/2, then
the measurements reduce or enhance the decay rate. After the first
iteration, Eq. (20) is solved as

χ̃ (t) 	 1 −
t∫

0

(
t − t′)∑

k,i

V 2
k,i exp

[−i(ωk,i − η�)t′]dt′. (34)

For a small t , we can approximately write χ̃ (t) in an exponential
form:

χ̃ (t) = exp

[
−

t∫
0

(
t − t′)∑

k,i

V 2
k,i exp

[−i(ωk,i − η�)t′]dt′
]

= exp

{
−t

[
−1

t

×
∑
k,i

V 2
k,i

exp[−i(ωk,i − η�)t] − 1 + i(ωk,i − η�)t

(ωk,i − η�)2

]}

= exp

{
−t

[∑
k,i

V 2
k,i

(
2 sin(

ωk,i−η�

2 t)2

t(ωk,i − η�)2

− i
(ωk,i − η�)t − sin[(ωk,i − η�)t]

t(ωk,i − η�)2

)]}
. (35)

Note that only when τ 
 g−1, the qubit evolution can be approxi-
mately described as an exponential decay [13,14,31], which has been
reflected in Fig. 2. Assume now that the instantaneously-ideal pro-
jection measurement is performed periodically, separated by time
intervals τ . For a single measurement, the probability amplitude of
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the qubit maintaining in the initial state is χ̃ (t = τ ). After a suffi-
ciently large number of measurements, the survival probability of
the initial state becomes

Pe(t = nτ ) = ∣∣χ̃ (t = nτ )
∣∣2 = exp

[−γ (τ )t
]
. (36)

And the exponential decay constant γ (τ ) is obtained

γ (τ ) = 2π

∞∫
0

dω
∑
k,i

V 2
k,i

2 sin2(
η�−ω

2 τ )

π(η� − ω)2τ

= 2π

∞∫
0

dω J (ω) f (ω)F (ω − η�,τ ), (37)

where

f (ω) =
(

1 − ω − η�

ω + η�

)2

, (38)

J (ω) =
∑

k

[
f 2
k δ(ω − ωk,1) + g2

k δ(ω − ωk,2)
]

(39)

= Jcav(ω) + Jqb(ω), (40)

and

F (ω − η�,τ ) = 2 sin2[(η� − ω)τ/2]
π(η� − ω)2τ

. (41)

In Eq. (40), J (ω) is the entire interacting density spectrum with
Jcav(ω) from the cavity bath and Jqb(ω) the qubit’s intrinsic bath.
The function F (ω − η�,τ ) comes from the projection measure-
ments and can be called a modulating function of the measure-
ments.

The decay rate γ (τ ), in Eq. (37), depends on the renormaliza-
tion factor η and f (ω) in Eq. (38), which are mainly from the
anti-rotating terms. If we use the RWA, η = 1 and f (ω) = 1, which
is consistent with the case of weak interaction. Therefore, our re-
sults can apply to not only the weak coupling case, but also to the
case of strong coupling between the qubit and the environment.
Furthermore, since the function F (ω − �,τ) becomes δ(ω − η�)

in the long-time limit, we obtain the effective decay rate under the
Weisskopf–Wigner approximation

γ0 = γ (τ → ∞) = 2π J (η�). (42)

The normalized decay rate, which characterizes the QZE and the
AZE, is determined by

γ (τ )

γ0
=

∫ ∞
0 dω J (ω) f (ω)F (ω − η�,τ )

J (η�)
. (43)

For a finite time τ , and when γ (τ )/γ0 < 1 holds, we have the QZE,
i.e., measurements hinder the decay. However, when γ (τ )/γ0 > 1,
this implies the AZE, i.e., measurements enhance the decay.

To see the contribution of each bath to the decay rate, Eq. (43)
can be reexpressed as

γ (τ )

γ0
= Jcav(η�)

J (η�)

∫ ∞
0 dω Jcav(ω) f (ω)F (ω − η�,τ )

Jcav(η�)

+ Jqu(η�)

J (η�)

∫ ∞
0 dω Jqu(ω) f (ω)F (ω − η�,τ )

Jqu(η�)
. (44)

From Eq. (44), we see that the normalized decay rate due to the
two baths is combined by the normalized decay rate from each
bath by the weights Jqb(η�)/ J (η�) and Jcav(η�)/ J (η�), respec-
tively.
5. Results and discussion

In this section, we will show the normalized decay rate of
the qubit–cavity system in three cases: (i) only the cavity bath,
(ii) both the cavity bath and the low-frequency qubit spontaneous
dissipation bath coexist, as well as both the cavity bath and the
Ohmic qubit’s intrinsic bath coexistence. According to the exper-
iment [33], we consider the qubit weakly coupled to the qubit
intrinsic bath with coupling constants αOhm = 10−4 and αlow =
10−4. The quality factor Q of the cavity is assumed in the range
of 2 × 102–104.

5.1. Only cavity bath

Let us first consider the case of a qubit only in a cavity bath.
For example, when the qubit–cavity interaction g � αlow�, or
g � αOhm�, which has been realized in a superconducting qubit
coupled to a transmission line cavity [34,35]. For such strong cou-
pling between the qubit and cavity, the normalized decay rate
mainly depends on the cavity bath. Then in this case, the decay
rate can be approximately written as

γ (τ ) = 2π

∞∫
0

dω Jcav(ω) f (ω)F (ω − η�,τ ). (45)

From the normalized decay rate in Eq. (43), we see that the qubit–
cavity coupling strength g is in both, the numerator and denomi-
nator, so it cancels out. Therefore, the normalized decay rate γ (τ )

is independent of the qubit–cavity coupling strength g . However
we still note that only in the case when τ 
 g−1, the qubit evo-
lution can be approximately described by an exponential decay. This
means that if there is a strong qubit–cavity coupling g = 0.1�,
the measurement interval becomes τ 
 g−1 ∼ 10�−1. When the
qubit–cavity is not so strong, g = 10−2�, the measurement inter-
val could be τ 
 g−1 ∼ 102�−1.

Fig. 4 displays the normalized decay rate as a function of the
measurement interval τ and the cavity central frequency ωcav.
Figs. 4(a) and (b) correspond to two quality factors of the cav-
ity: Q = 104 and Q = 2 × 103, respectively. We can see that in
the limit when τ → 0, only the QZE occurs. For a finite interval,
the normalized decay rate of the qubit exhibits a transition from
the QZE to the AZE, by modulating the central frequency of the
cavity mode ωcav in and off resonance with the qubit energy level
spacing �. The variation should be useful to distinguish the QZE and the
AZE.

Let us now estimate the condition for the transition between
the QZE and the AZE. From Fig. 4(a), the crossover from QZE to
AZE, by varying the cavity frequency, appears only for the mea-
surement interval τ > 0.6�−1. Using the condition τ 
 g−1, we
obtain the qubit–cavity coupling strength g 
 1.7�. Similarly, for
the cavity quality factor Q = 2 × 103, we obtain the qubit–cavity
coupling strength g 
 0.38�.

In Fig. 5, we plot the normalized decay rate with the cavity
frequency in resonance with the qubit, ωcav = �, versus the time
interval τ between successive measurements, and the cavity spec-
tral width λ. It is obvious that only the QZE exists in the resonant
case. The normalized decay rate γ (τ )/γ0 becomes smaller as the
cavity spectral width λ decreases. This indicates that the transition
from the QZE to the AZE becomes sharper as the cavity spectral
width λ reduces.

To better understand the transition from the QZE to the AZE, we
discuss the results in two regimes of near-resonance (including on-
resonance) and off-resonance (the central frequency of the cavity
mode higher and lower than the qubit spacing �):

1. In the case of on-resonance � = ωcav, and near-resonance
|� − ωcav| < λ, without measurements, the effective decay rate of
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Fig. 4. (Color online.) Contour plots of the normalized decay rate γ (τ )/γ0 of the
qubit only in the cavity bath, versus the time interval τ between successive mea-
surements, and the central frequency ωcav of the cavity mode. (a) The width of the
cavity frequency is λ = 10−4�, and accordingly the cavity quality factor Q = 104.
(b) The width of the cavity frequency λ = 5 × 10−3�, corresponding to the cav-
ity quality factor Q = 2 × 103. The region 1 � γ (τ )/γ0 � 1.05 is shown as light
magenta. The QZE region corresponds to γ (τ )/γ0 < 1. The AZE region covers the
rest, when γ (τ )/γ0 > 1. Evidently, a transition from the QZE to the AZE is observed
by varying the central frequency of the cavity mode at finite τ (τ > 0.6�−1 when
Q = 104, and τ > 2.6�−1 when Q = 2 × 103).

Fig. 5. (Color online.) Contour plots of the normalized effective decay rate γ (τ )/γ0

of the qubit in the resonant case � = ωcav .

the qubit is given by J (�). Moreover, the qubit is resonant with
the cavity mode, � = ωcav. Note that ωcav is the peak of the den-
sity spectrum of the cavity-bath, where the probability of energy
transfer from the qubit to the cavity bath is maximum. In this case,
the qubit strongly decays in its evolution. Every measurement to
project the qubit on the initial state protects the qubit from de-
Fig. 6. (Color online.) Contour plots of the normalized effective decay rate γ (τ )/γ0

in the presence of both the cavity bath and the low-frequency qubit’s intrinsic
bath. The interaction strength αlow = 10−4, between the qubit and qubit’s intrin-
sic bath, and the qubit–cavity coupling g = 10−2�. (a) Results for the cavity quality
factor Q = 104. (b) Results for the cavity quality factor Q = 2 × 103. The region
1 � γ (τ )/γ0 � 1.05 is shown as light magenta. The QZE region corresponds to
γ (τ )/γ0 < 1. The AZE region covers the rest, when γ (τ )/γ0 > 1. Evidently, a tran-
sition from the QZE to the AZE is observed by varying the central frequency ωcav of
the cavity mode at finite τ .

cay, i.e., protects the qubit from exchanging energy with the cavity.
From Eq. (41), the modulating function F (ω − η�,τ ) of the mea-
surements is a periodically oscillating function versus energy ω
for a fixed time interval τ . Moreover, its integral over all ener-
gies is 1. Thus we consider each oscillator peak as a decay channel
induced by measurements. Without measurements, F (ω − η�,τ )

becomes δ(ω − η�,τ ). Only one channel ω = η� exists. With
measurements, more channels will appear, but the probability of
qubit-energy-decay via every channel decreased to less than 1.
Among these channels, the largest one is still ω = η�, which is
less than the non-measurement one. Therefore, the superposition
of the density spectrum function Jcav(ω) of the cavity-bath and
the modulating function F (ω − η�,τ ) of the measurements re-
duces the effective decay rate and protects the qubit energy from
leaking to the cavity-bath when the qubit is resonantly coupled to
the cavity.

2. For the case of off-resonance |� − ωcav| > λ, especially for
the large-detuning limit |� − ωcav| � λ, the effective interaction
between the qubit and the cavity becomes very weak. For ex-
ample, the ratio of the effective decay rate in ωcav = 0.98� (or
ωcav = 1.02�) to ωcav = � is about 2 × 10−5. In most quantum
optics papers, large-detuning means that the qubit is free from de-
cay. Thus, the probability of the qubit maintaining its initial state
is close to 1. After introducing frequent measurements, the qubit
suffers from AZE, i.e., measurements enhance the decay, which is



X. Cao et al. / Physics Letters A 376 (2012) 349–357 355
Table 1
The normalized effective decay rate γ (τ )/γ0 of the qubit for two quality factors Q when τ = 5�−1, in the presence of both the cavity bath and the low-frequency qubit’s
intrinsic bath.

Cavity
quality factor

Central frequency of the cavity

0.98� 0.99� 0.999� � 1.001� 1.01� 1.02�

Q = 104 1.994 1.784 0.122 0.001 0.122 1.777 1.979
Q = 2 × 103 1.727 1.149 0.032 0.006 0.032 1.145 1.714
Fig. 7. (Color online.) The qubit–cavity coupling is g = 10−3�. The other caption is
the same as Fig. 6.

opposite to the on-resonant case. The reason for this also comes
from the modulating function of the measurements F (ω − η�,τ ),
a periodic oscillation function of the energy. As long as one of the
oscillation peaks of F (ω − η�,τ ) is located in the effective re-
gion of the density spectrum J (ω), especially the half-width of
the maximum, the product of these two functions will lead to an
enhancement of the effective decay rate. In other words, the pe-
riodic oscillations of F (ω − η�,τ ) connect the qubit energy with
the density spectrum of the cavity bath and open the decay chan-
nels of the qubit energy to the cavity bath. From this point of view,
the measurements act as a new decay element, besides the cavity
and the qubit intrinsic bath. The AZE becomes more obvious as the
detuning increases.

In the above discussion, we have investigated the qubit decay
dynamics subject to measurements mainly induced by the cavity
bath. Also, we have studied the qubit decay dynamics subject to
measurements due to either the low-frequency qubit spontaneous
dissipation bath or the Ohmic qubit intrinsic bath in Ref. [36]. In
the next two subsections, we will show the normalized effective
decay rate of the qubit in the presence of both the cavity bath and
the qubit’s intrinsic bath.
Fig. 8. (Color online.) Contour plots of the normalized effective decay rate γ (τ )/γ0

in the presence of both: the cavity bath and the Ohmic qubit’s intrinsic bath. The
interaction strength αOhm = 10−4, between the qubit and the qubit’s intrinsic bath.
Also the qubit–cavity coupling g = 10−2�. (a) The cavity quality factor of the cavity
Q = 104. (b) The cavity quality factor Q = 2 × 103. The region 1 � γ (τ )/γ0 � 1.05
is shown as light magenta. The QZE region corresponds to γ (τ )/γ0 < 1. The AZE
region is the rest, when γ (τ )/γ0 > 1. Evidently, a transition from the QZE to the
AZE is observed by varying the central frequency ωcav of the cavity mode at finite τ .

5.2. Coexistence of the cavity bath and the low-frequency qubit
intrinsic bath

In Figs. 6 and 7, we plot the normalized effective decay rate,
when the cavity bath and the low-frequency qubit spontaneous
dissipation bath coexist, versus the time interval τ between mea-
surements in the regime of strong (g = 10−2�) and weak (g =
10−3�) cavity–qubit coupling with the cavity central frequency
around the qubit energy-level-spacing �. Figs. 6(a) and (b) cor-
respond to the cavity quality factor Q = 104 and Q = 2 × 103,
respectively. From Fig. 6, we see that for a strong qubit–cavity
coupling, by modulating the cavity central frequency from in-
resonance to off-resonance with the qubit energy-level-spacing,
the normalized effective decay rate grows and becomes larger
than 1, which clearly displays the transition from the QZE to the
AZE. Comparing Figs. 6(a) and (b), as the width λ of the cavity
frequency decreases (or the quality factor Q = ωcav/λ increases),
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Fig. 9. (Color online.) The qubit–cavity coupling g = 10−3�. The other caption is the
same as Fig. 8.

the region of the cavity frequency for the QZE becomes narrower.
For example, Table 1 presents the normalized effective decay rate
γ (τ )/γ0 for two quality factors Q and different central frequen-
cies ωcav of the cavity, when τ = 5�−1.

For weak qubit–cavity coupling in Fig. 7, only in the short-
time regime (about 2�−1 < τ < 6�−1), the normalized effective
decay rate of the qubit shows obviously the transition from the
QZE to the AZE. When the measurement interval τ increases to
τ > 10�−1, although the transition still exists, γ (τ )/γ0 for the
AZE is slightly larger than 1, which is mainly in the region be-
tween 1.0 and 1.1.

In Figs. 6 and 7, there appear distinct oscillations in the qubit’s
QZE–AZE transition processes. From the results of Ref. [36], we
have known that the AZE always occurs for a qubit in the low-
frequency bath. While, for a qubit in the cavity bath, the transition
from QZE to AZE takes place by varying the cavity frequency. These
oscillations in Figs. 6–7 come from the different impacts of the
cavity-bath and the low-frequency bath on the qubit’s measure-
ment dynamics.

5.3. Coexistence of the cavity bath and the Ohmic qubit spontaneous
dissipation bath

In Figs. 8 and 9, we show the normalized effective decay rate
γ (τ )/γ0 in the presence of both the Ohmic intrinsic bath and cav-
ity bath. Comparing Figs. 8 with 6, we find that for the strong
qubit–cavity coupling g = 10−2�, the time interval τ for the QZE
increases in the short-time region. In the long-time region, the fea-
tures of Figs. 6 and 8 are almost identical. From Fig. 9 we can see
that in the short-time region (0 < τ < 30�−1), only the QZE exists,
regardless of the central frequency of cavity. For τ > 30�−1, the
normalized effective decay rate γ /γ0 for the AZE is in the small
region of 1.0–1.02, which is not conducive to observe the transi-
tion from the QZE to the AZE.

6. Summary

We investigated the QZE and AZE of a qubit in a cavity when
both the cavity bath and the qubit’s intrinsic bath (either low-
frequency or Ohmic bath) are simultaneously present. We find
that in the case of strong qubit–cavity coupling, modulating the
cavity central frequency from on-resonance (ωcav = �) to off-
resonance (ωcav larger or smaller than �) with the qubit energy-
level-spacing, the transition from the QZE to the AZE occurs. Thus,
our results provide a proposal to observe the QZE and the AZE in
the qubit–cavity system.
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