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We map adiabatic quantum evolution on the classical Hamiltonian dynamics of a 1D gas (Pechukas gas)
and simulate the latter numerically. This approach turns out to be both insightful and numerically efficient,
as seen from our example of a CNOT gate simulation. For a general class of Hamiltonians we show that the
escape probability from the initial state scales no faster than j _�j�, where j _�j is the adiabaticity parameter.
The scaling exponent for the escape probability is � � 1

2 for all levels, except the edge (bottom and top)
ones, where � & 1

3 . In principle, our method can solve arbitrarily large adiabatic quantum Hamiltonians.
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Standard approaches to quantum computing are based
on applying a sequence of unitary operations to a multi-
qubit system, and the solution is encoded in an entangled
superposition of its eigenstates, which is fragile with re-
spect to decoherence. Regrettably, there is a growing real-
ization that this approach is not feasible in the near future.
An alternative promising paradigm is adiabatic quantum
computing [1–3] (AQC), where the solution is encoded in
the ground state of the system evolving under an adiabati-
cally slow change of a control parameter �. Remaining in
the ground state provides a strong, though not absolute,
protection against relaxation and dephasing [4]. Limits of
this protection and the ways of its improvement were
investigated in Refs. [5,6].

In principle, any standard quantum circuit can be real-
ized by an AQC [7,8]. Following the AQC approach, we
reach the ground state of a complex HamiltonianH0, which
encodes the solution to a given quantum algorithm, by
adding to H0 a large bias term ZHb, Z� 1,

 H���t�� � H0 � ��t�ZHb; (1)

such that H�� � 1� has a nondegenerate, easily achievable
ground state. The intrinsic limitation imposed on AQC is
the finite probability of excitation, via Landau-Zener tun-
neling [9,10], at any finite evolution speed (the adiabaticity
parameter j _�j). This tunneling remains even after the ef-
fects of external and thermal noise are eliminated.
Research on AQC has so far concentrated on evaluating
and minimizing the probability of leaving the ground state.
Both polynomial [8,11,12] and exponential [13,14] slow-
down was predicted using AQC, and this important ques-
tion remains open.

In this Letter we investigate what is the probability of
escape from the ground state, and how far, on average, a
system can deviate from the ground state during the adia-
batic evolution. We do this by mapping the parametric
evolution of the system (1) on the classical Hamiltonian
dynamics of a 1D gas model with long-range repulsion

(Pechukas gas [15,16]) and simulating the latter numeri-
cally. This approach, which had not been used so far in the
field of AQC, turns out to be both physically insightful and
numerically efficient way to solve (1). For a general class
of Hamiltonians, the probability to stay in the same state
shows a universal power-law dependence for all the energy
levels except for the ground and top excited states, and this
difference can be qualitatively understood within the
Pechukas gas model. We also develop a kinetic theory
that could, in principle, solve arbitrarily large adiabatic
Hamiltonians.

Pechukas gas dynamics.—In this approach we consider
the instantaneous eigenstates, jni���, and eigenvalues,
En���, of the Hamiltonian (1): H���jni � En���jni. The
Hamiltonian H0 is at all times fully determined by the set
of its instantaneous matrix elements, hmjH0jni �
En����mn � �hmjZHbjni. The latter can be determined
from the closed set of differential equations (see
Refs. [15,16]):

 

d
d�

xm � vm;
d
d�

vm � 2
X
m�n

jlmnj
2

�xm � xn�3
;

d
d�

lmn �
X
k�m;n

lmklkn

�
1

�xm � xk�
2 �

1

�xk � xn�
2

�
;

(2)

where xn��� � En���, vn��� � hnjZHbjni, and lmn��� �
�Em��� � En����hmjZHbjni. Equations (2) describe the
classical Hamiltonian dynamics of a 1D gas with repulsion,
where � plays the role of time, and the nth ‘‘particle’’ has a
position xn��� and velocity vn���. The particle-particle
repulsion is determined by the ‘‘relative angular momenta’’
lmn���.

The mapping of AQC to the classical dynamics of
Eq. (2) is exact and applies to any Hamiltonian. All the
information about the Hamiltonian H0 is contained in the
initial values, xm�� � 1�, vm�� � 1�, and lmn�� � 1�.
Those are given by the appropriate matrix elements of
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the Hamiltonian (1) at � � 1, H�1� � H0 � ZHb 	
Z�Hb � Z

�1H0�. By choice, H�1� has nondegenerate,
well separated levels, with an easily reachable ground
state. The initial conditions for Eq. (2) can be obtained
perturbatively in Z�1 to any accuracy.

CNOT gate.—Consider a specific example of an AQC. An
arbitrary N-step, M-qubit quantum algorithm can be en-
coded in H0 using the ‘‘ground state quantum computing’’
approach [17], whereby every qubit is represented by an
array of 2
 �N � 1� quantum dots sharing a single elec-
tron. The state of the mth qubit on the �n� 1�st step of the
algorithm is given by the probability amplitude to find the
electron on either the quantum dot (m, n, 0) or (m, n, 1).
The solution is determined by the ground state probability
amplitudes on the quantum dots (m, N, 0) and (m, N, 1).

For a simple universal quantum gate, the CNOT (where
N � 1, M � 2), H0 can be written as [8,17]

 

HCNOT � �c
y
010C

y
11 � c

y
000C

y
10��C11c010 � C10c000�

� �cy011C
y
11 � c

y
001C

y
10�

x��C11c011 � �xC10c001�

� Cy00C00C
y
11C11 � C

y
01C01C

y
10C10; (3)

where cymnj creates an electron on the corresponding dot,
Cymn � �c

y
mn0; c

y
mn1�, and �x is a Pauli matrix. The ground

state energy of (3) is zero. To specify the initial state of the
qubits before the operation, a small correction must be
added.

The results shown in Fig. 1(a) correspond to CNOT

j00i ! j00i. To achieve this, the term �H � "�cy000c000 �

cy100c100�, with " � �0:1, was added to H0. Remarkably,
even though the initial conditions for the Pechukas equa-
tions (2) were only calculated to first order in Z�1 � 0:1,
the results agree with the exact diagonalization to four
significant figures, indicating a high efficiency of the ap-
proach. The same accuracy holds for the CNOT acting on all
the other basis states. All the degeneracies of the
Hamiltonian (3) are precisely reproduced in our approach.
Since any 1D gas with repulsive interactions naturally
expands, the decrease of the bias potential �ZHb corre-
sponds to a contraction from H to H0 and can be consid-
ered a Loschmidtian time reversal [18] of the natural
evolution. Note that while the levels generally repel, cer-
tain groups of levels can cross, due to the symmetries of the
Hamiltonian (3).

Statistics of level occupation.—Unlike the simple ex-
ample of a CNOT gate presented above, when considering a
general AQC case, we would benefit from the knowledge
of the statistical behavior, for a given class of AQC prob-
lems (i.e., Hamiltonians H0). An ensemble of Hamilton-
iansH0 corresponds to a distribution of initial conditions in
the Pechukas dynamics in Eq. (2), over which an appro-
priate averaging must be taken. We choose a set described
by one of the random matrix theory (RMT) Gaussian
ensembles [19]. This, in particular, means that the distri-

bution of xn�� � 1�, vn�� � 1� and hmjZHbjni�� � 1� is
Gaussian. Such an assumption about the behavior of a large
collection of qubits with varied couplings is reasonable
and was used recently in [12,13], but must still be taken
cum grano salis. For example, the numerical calculations
in Ref. [14] show that for the 3-SAT problem, RMT
describes well only the bulk of the spectrum. In the case
of, e.g., flux qubits threaded by a magnetic field, the natural
choice is the Gaussian unitary ensemble (GUE) of general
Hermitian matrices. (If the system has time-reversal sym-
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FIG. 1 (color online). (a) CNOT gate simulation for the opera-
tion j00i ! j00i, realized by the Hamiltonian (1) with H0 �
HCNOT � �H [see Eq. (3) and below]. Some levels cross due to
symmetry. The small orange diamonds on the vertical axis of the
main panel show the results of direct diagonalization of H0 and
coincide with the results of the evolution (2) to four significant
figures. (b) Evolution of 50 energy levels in Eq. (2) as a function
of the parameter �, for a single GUE realization of the
Hamiltonian (see text). The rms amplitude of the fluctuations
in En and hmjZHbjni is 0:1h�Ei, where h�Ei � hEn�1 � Eni is
the average level spacing. The ground state (red) and the highest
excited state (orange) are labeled. It is clearly seen in the insets
(which enlarge the green boxes) that avoided level crossings
appear at small values of � (e.g., green vertical arrow in the top
inset). In the left inset notice the significant separation between
the ground state and the first excited state.
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metry, one should instead use the Gaussian orthogonal
ensemble of real Hamiltonians [19].) Note that the solu-
tions of (2) are described by RMT only when �! 0. For
most of the evolution, the perturbation ZHb will impose its
own symmetry. Eventually, we are interested in the prob-
abilities P�mjn� for the system to end in the eigenstate jmi
at � � 0 after starting in the eigenstate jni at � � 1.

In the absence of external and thermal noise, the inter-
level transitions are due to the Landau-Zener tunneling. At
each level anticrossing, where two levels approach to a
minimum separation �min, they may exchange their current
occupations: P��mjn� !P��m� 1jn�. The probability of
this process [9]

 pLZ � exp
�
�

�2
min

4�@jhmjZHbjm� 1ijj _�j

�
(4)

strongly depends on j _�j. We always assume a uniform
evolution j _�j � 1=T.

The results of simulations for the GUE are shown in
Figs. 1 and 2. Remarkably, the probability to remain in the
initial state by the end of the process scales as T1=2, with
the same power, 1

2 , for all the levels, except the edge ones.
For the edge levels the probability scales as T1=4 in the case
of 50 levels, and as � T1=3 for the case of 150 levels [see
Fig. 2(a) (main panel and the left inset)].

The different scaling exponent of the edge levels, com-
pared to the bulk, cannot be only due to the long-range
cubic repulsion in Eq. (2) between the levels. The latter is
obviously responsible for the difference between the bulk
and the margin of the spectrum in the number of anticross-
ings (i.e., collisions in the 1D gas), but this dependence is a
smooth function of the level number [see Fig. 2(a) (right
inset)]. It is the edge (top or bottom) position of the level,
that is important. Indeed, while the separation of the inter-
nal levels after a collision is limited by the subsequent
collisions with the levels on the opposite side, this does not
apply to the ground state and the top state. This can be
clearly seen in the top right inset of Fig. 2(a). One also sees
there that the number of collisions (i.e., avoided crossings)
for these edge levels is on average around one. This
stresses the special robustness of the ground and top states,
precisely due to their edge positions. Another remarkable
result is the behavior of the rms deviation of the system
from its initial state [Fig. 2(b)]. It also scales no faster than
a power of T. However, the exponent here is a smooth
function of the level number n. This means that the ob-
served behavior is not described by a simple diffusion
equation.

Kinetic theory for large adiabatic quantum Hamilton-
ians.—The above results indicate that the approximate
ground state energy of a system described by the GUE
can be efficiently determined by adiabatic quantum evolu-
tion. Indeed, to reach the accuracy �, the adiabaticity
parameter must scale as a power of �. On the other hand,
e.g., the time necessary to find the ground state energy of a
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FIG. 2 (color online). (a) Probability P�njn� for the system to
remain in the initial state jni, as a function of 1=T, during the
adiabatic evolution (i.e., decreasing the external field with con-
stant speed j _�j � 1=T). The data are averaged over 400 GUE
realizations with N � 50. The power-law dependence P / T� is
clearly seen, with two distinct exponents: (i) � � 1

2 for all the
bulk states and (ii) � & 1

3 for the edge states. For example, for
N � 50: � � 1

2 for n � 2�49�, solid (empty) purple circles; n �
5�45�, solid (empty) green triangles; n � 10�40�, solid (empty)
upturned magenta triangles; n � 25, black diamonds; but � � 1

4

for the ground state (n � 1, red squares) and the highest excited
state (n � 50, empty blue squares). For N � 150 (left inset):
� � 1

2 for n � 2 (purple stars), n � 75 (black pluses); but � � 1
3

for the ground state (n � 1, red crosses). However, the average
number of avoided level crossings (right inset) is a smooth
function of the level number for both N � 50 (red) and N �
150 (black). As expected in the absence of external noise, the
probability P�njn� saturates at 1 as 1=T ! 0 (when 1=T < 0:01).
(b) The standard deviation h�n� n0�

2i of the system from the
initial state n � n0 during the adiabatic evolution, as a function
of 1=T �N � 50�. The scaling is approximately power law, but
with the exponent smoothly dependent on the initial state. (Inset)
Probability P�njn0� to occupy level jni at the end of the evolu-
tion, starting from level n0 � 1, 25, 50 (N � 50). Different
curves correspond (top to bottom peaks) to 103 
 j _�j � 1, 2.5,
5, 10, 25, 50, 75.
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complex system (e.g., a spin glass) with classical annealing
algorithms generally depends on 1=� exponentially (see
Ref. [20], and references therein). It is therefore tempting
to conclude that the adiabatic evolution of a quantum
computer could provide an exponential speedup, on aver-
age, for this type of problem.

To confirm this conjecture and establish the limits of
its validity, we need to consider larger systems. Then the
brute force approach to solving the set (2) becomes ineffi-
cient. We can instead identically rewrite it as a chain of
equations (see, e.g., [18]) for the microscopic distribution
functions F1�x; v; n� �

P
j��x� xj���v� vj���n� nj�,

F2�x;v;n;y;u;m; l� �
P
j;k��x� xj���v�vj���n� nj� 


��y� xk���u�vk���m� nk���l� ljk�, G1�l� �
P
jk��l�

ljk�; . . . . Here we included the occupation numbers nk of
the levels in the description. After ensemble averaging,
these produce the Bogoliubov-Born-Green-Kirkwood-
Yvon (BBGKY) chain [18] for the averaged distribution
functions f1 � hF1i, g1 � hG1i . . . . Following the stan-
dard kinetic approach [18], the BBGKY hierarchy can be
truncated. This leads to an approximate equation for f1:
 �
@
@�
� v

@
@x

� 2�
�X
m

P
Z
dydu

f1�y; u; m�

�y� x�3

�
@
@v

�
f1�x; v; n� � ISt; (5)

where the effective repulsion � �
R
dlg1�l�jlj2, P denotes

the principal value of an integral, and the collision integral
ISt � 2�St

P
m

R
du�u � v�pLZ�u � v��f1�x; v; m� 


f1�x; u; n� � f1�x; v; n�f1�x; u; m��. Here �St is a con-
stant; the collision integral describes the population ex-
change of two anticrossing levels due to Landau-Zener
tunneling (4) [21].

If we are only interested in the behavior of energy levels,
but not in their occupation (i.e., considering ~f1 �

P
nf1),

the kinetic equation for ~f1 will have the form (5), but
without the collision integral. When the full hierarchy of
dynamical Eqs. (2) becomes intractable due to the large
size of the system, one can truncate it to only a few lower
states. The influence of the higher-energy states can be then
taken into account statistically using the kinetic equation
for ~f1. Because of the long-range interactions in the sys-
tem, one expects that the average behavior of the low-lying
states can be thus accurately predicted. Thus this approach
could be extended to simulate any large quantum system.

Conclusions.—We model the quantum adiabatic evolu-
tion of any Hamiltonian by mapping it to the dynamics of a
1D gas. Using a CNOT gate as an example, we found that
the approach is reliable. In the case of GUE Hamiltonians,
we found that the behavior of the system is not described
by a simple diffusion equation, because the standard de-

viation from the initial state and the probability to stay in it
scale differently with the adiabaticity parameter j _�j. The
probability to stay in the same state shows a universal
power-law dependence for all the levels except for the
ground and top excited states, and this difference can be
qualitatively understood within the Pechukas gas model.
For the investigation of large systems, where direct simu-
lation is impractical, we propose a kinetic approach based
on the BBGKY chain for the Pechukas gas. The results of
this Letter indicate that an adiabatic quantum evolution can
provide an exponential, on average, speedup compared to
the classical simulated annealing in finding an approximate
ground state energy of a complex system.
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