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We show that surface electromagnetic waves (SEMWs) propagating along two-dimensional (2D)
interfaces separating different metamaterials can behave analogously to 3D electromagnetic waves in
either usual or left-handed media, depending on the permeabilities and/or permittivities of the two
materials forming the interface. We derive the conditions when SEMWs carry energy opposite to the
phase velocity. In analogy to three-dimensional (3D) left-handed media, we derive both an anomalous
Cherenkov emission and a reversed Doppler effect. We also predict a negative refraction at the boundary
between two different interfaces, which can be useful for perfect 2D lensing.
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Studies of surface waves in condensed matter began at
the end of the 19th century, since the works of Lord
Rayleigh, Zenneck, and Sommerfeld. In contrast to bulk
waves, surface waves are localized near interfaces separat-
ing two media and their magnitudes decay quickly away
from the interface. Surface waves manifest themselves in a
wide variety of phenomena, including tsunami, earth-
quakes, as well as resonance anomalies in both light re-
flection [1] and transmission [2]. Electromagnetic surface
waves are of general interest and can be observed in differ-
ent materials [1,3], including semiconductors, metals,
magnetic materials, and superconductors. Electro-
magnetic waves (EMWs) can be excited, e.g., by moving
or oscillating charges close to the interface, or from bulk
electromagnetic waves scattering at periodic structures. In
particular, two specific methods involving attenuated total
internal reflection are widely used [1].

Currently, there is a surge of interest in both surface [4]
and bulk [5] waves propagating through artificial metama-
terials. For surface waves, their resonant excitations
(Wood-type anomalies) in nanofabricated hole arrays and
other periodic and nonperiodic structures allow, e.g., to
control the transparency of opaque films [2], to develop 2D
waveguides for optoelectronics, and to amplify electro-
magnetic fields near sample boundaries [6]. For bulk
waves, enormous progress has been achieved in fabricating
left-handed materials (LHMs): transparent media with
negative both permeability and permittivity (" < 0, �<
0) (e.g., Refs. [5,7] ). In contrast to ordinary transparent
right-handed (" > 0,�> 0) materials (RHMs), the energy
transport through bulk LHMs is opposite to the phase
velocity, the Doppler shift is reversed, and the Cherenkov
cone is inverted [5]. This promises several important ap-
plications, including perfect lensing (subwavelength image
reconstruction) and novel waveguiding [5].

Comparing surface and bulk waves, a general question
arises: can surface electromagnetic waves exhibit behavior
analogous to bulk electromagnetic waves in LHM? Here,

we derive conditions for the total energy flux of surface
electromagnetic waves (SEMWs) to be antiparallel to its
wave vector, as it is for bulk waves in LHM. For these
surface waves, we also predict an inverse Doppler shift, an
inverted Cherenkov angle, negative refraction, and nega-
tive group velocity with respect to the phase velocity. Thus,
we propose new left-handed surface waves, which could be
useful for perfect 2D lensing and novel wave guiding.

Surface waves.—Consider an interface z � 0 separating
two media,� and�, shown in Fig. 1. Subindexes� and�
refer to z > 0 and z < 0, respectively. The electromagnetic
field of surface localized modes with in-plane wave vector
q � �qx; qy�, frequency !, and decay constants p� > 0

has the form E� � E�0�� exp�iq � r? � p�z� i!t� and

H� � H�0�� exp�iq � r? � p�z� i!t�, where p� ���������������������������������������
q2 � "���!

2=c2
p

, Re �p��> 0, and r? � �x; y�. There
exists a transverse electric (TE) [magnetic (TM)] polarized
eigenmode with in-plane electric field E [magnetic field
H] orthogonal to the wave vector q, as shown in Fig. 1. The
polarization of a TE mode is defined by E�0�� � eE�0�,
H�0�� � �c=!���	k� 
 e�E�0�, k� � �q;�ip��, with the
unit polarization vector e � q
 ez=q. Because of the
duality of Maxwell equations, TM-type SEMWs can be
derived from TE type by exchanging: "$ �, H! �E,
E! H. We present the equations for these TE waves.

Matching the tangential components of the electric and
magnetic fields at the interface implies that p�=�� �
p�=�� � 0 for the TE SEMW, which can be rewritten
as a dispersion relation

 q 2�!� �
�
!2

c2

�
"�=�� � "�=��

1=�2
� � 1=�2

�

: (1)

We can neglect the spatial dispersion, but assume the
permeabilities ���!� and permittivities "��!� to be fre-
quency dependent, which is important for both usual plas-
mon polaritons [1] and surface waves in artificial media
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[8]. This frequency dependence and q independence of "’s
and �’s are valid from GHz to optical frequencies.
Requiring p2

� > 0, q2 > 0, and p� > 0 results in the nec-
essary conditions for the existence of TE SEMWs:
���� < 0; ���"� � "����=��2

� ��2
��> 0; and

�"��� � "����=��
2
� ��

2
��> 0.

Note that if we consider small active losses, then the
dielectric permittivity " � "0 � i"00 can have an imaginary
part, "00 � j"0j; therefore, a small imaginary part q00 of the
wave number q appears in Eq. (1), i.e., q � q0 � iq00,
q00 � q0 with q00 / "00. Thus, small losses result in a finite
SEMW’s mean free-path length L / 1=q00 / 1="00, q0L
1. For experiments, it is necessary to deal with distances
which do not significantly exceed L. For a standard metal
at room temperature, one could use "00="0 � �=!p, where
the electron collision frequency � is about 1012–1014 s�1

and the plasma frequency !p is about 1016 s�1. This
results in L� �!p=!�

3c=� � 0:1–1 mm, depending on
the material, temperature, and frequency (which is taken
in the optical range). For simplicity, below we consider
lossless materials.

Direction of energy propagation.—The energy flux den-
sity (determined by the time-averaged Pointing vector
S � cRe 	E�0� 
H�0���=8�) is directed in opposite direc-
tions in neighboring media, and both decay exponentially
away from the interface: S� � �c2q=8�!���jE�0�j2 

exp��2p�jzj�, where E is the complex amplitude of the
electric field of the wave. Moreover, for SEMWs as shown

in Fig. 1, the real electric field Re E�r; t�, real magnetic
field Re H�r; t�, and the wave vector q (all vectors have
only real components) form a left-handed triplet in one
medium (say, medium ‘‘�’’) and a right-handed triplet in
the other medium ‘‘�’’ at any point in space and time,
since there is no phase shift between E�r; t� and H�r; t�.
Therefore, the Veselago’s definition [7] for 3D LHM, using
triplets of vectors, cannot be directly applied for 2D inter-
faces. However, all the unusual properties of electromag-
netic waves in LHM are related to energy transport
directed opposite to the phase velocity. Therefore, the
natural generalization of the concept of LHM to the 2D
case can be done in terms of the backward total energy flux
relative to the phase velocity.

To derive the total energy flux �S carried by the TE
SEMW, we integrate over z the Pointing vector S:

 

�S �
c2q

16�!
1

��p�

�
1�

�2
�

�2
�

�
jE�0�j2; (2)

assuming �� > 0. Consequently, �S is parallel (antiparal-

 

FIG. 2 (color online). Regions in the (j"�="�j, j��=��j)
plane where TE and TM SEMWs exist are marked using differ-
ent patterns. No surface waves occur in the white regions. Red
(blue) regions correspond to left-handed (right-handed) interfa-
ces LHI (RHI): (a) RHM-to-metal, (b) RHM-to-meta-dielectric,
(c) meta-dielectric-to-LHM, (d) metal-to-LHM, (e) RHM-to-
LHM, (f) metal-to-meta-dielectric. For cases (c)–(f), there exist
regions where LHI can be realized. The hyperbola in panel (e) is
j"�="�j � j��=��j.
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FIG. 1 (color online). Schematic diagram of the relative ori-
entations of the electric E�0�� and magnetic H�0�� field amplitudes
respective to the wave vector q and energy flux densities S� in
the neighboring media for TE (a) and TM (b) surface waves. The
color gradient illustrates the decay of the SEMWs away from the
interface. Note that for interfaces separating any kind of media
(for instance, usual dielectric and metal, but not only LHM and
RHM), the vectors Re E�r?; z; t�, Re H�r?; z; t�, and q form the
right triplet in one and the left triplet in the other media.
Moreover, the Pointing vector is parallel to q in one media
and antiparallel in the other.
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lel) to the wave vector q for �2
� <�2

� (�2
� >�2

�).
Therefore, the TE SEMW behaves as a wave in a LHM
when �2

� >�2
�, where �� > 0 and �� < 0. It is natural

to call such interfaces as left-handed interfaces (LHIs).
Similarly, for TM SEMW, LHIs occur for "2

� > "2
�, if

"� > 0, "� < 0. Figure 2 summarizes the conditions
when SEMWs exist and their total energy flux is either
parallel (for right-handed interfaces, RHIs) or antiparallel
(for LHIs) to the phase velocity for all possible (6 types)
interfaces depicted in six panels, (a)–(f).

Anomalous Doppler shift and Cherenkov radiation.—
Here, we consider a source of radiation (that generates
SEMWs) moving with velocity v along an interface. If
the receiver is behind the source, it only measures the
energy flux emitted backwards, i.e., with �S � v< 0. For
left-handed interfaces, the wave vector q is opposite to �S,
resulting in q � v > 0. This means that the Doppler shift of
the frequency !, determined by q � v, is reversed with
respect to the corresponding Doppler shift of the SEMWs
propagating on right-handed interfaces, where q � v< 0
follows from �S � v < 0 and the fact that �S and q point in
the same direction. In other words, in a LHI, the measured
frequency increases (decreases) relative to the emitted
frequency, if the source and receiver move away from
(approach to) each other.

For the 2D case, the Cherenkov cone of radiation, pro-
duced by a charge moving with velocity v along the inter-
face, is replaced by a Cherenkov angle. In analogy to the
3D case, the Cherenkov condition !� q � v � 0 for
SEMWs defines an angle �phase between the phase velocity
vphase of the wave and the charge velocity v, cos�phase �

q � v=�qv� � !=�qv�. For left-handed media, �S and q are
antiparallel; thus, the angle �energy between the direction of
the energy flux and v [i.e., cos��energy� � �Sv=� �Sv�] is
�energy � �phase � �, i.e., the Cherenkov angle is inverted.

Negative refraction of SEMWs.—In analogy to the nega-
tive refraction of 3D waves on the boundary between RHM
and LHM, SEMWs should refract negatively on the bound-
ary between RHIs and LHIs. In order to see this, consider
two interfaces at z � 0 separated by the boundary x � 0,
Fig. 3. The energy flux of the incident SEMW, say, from the
RHI (x < 0) continues to propagate in the LHI (x > 0)
from the left to the right; i.e., the x components of the
energy fluxes of both incident and transmitted (refracted)
waves are positive. Since the wave vector q is parallel to
the energy flux in the RHI and antiparallel in the LHI, the
component qx perpendicular to the boundary x � 0 has, in
contrast, different signs for x > 0 and x < 0. This evidently
should result in negative refraction of SEMWs at the
boundary between these two interfaces.

As an example, we consider the boundary between two
interfaces, each separating two lossless opaque media (i.e.,
"��� < 0). Interface 1 separates metal-like media [occu-
pying the top-left corner, x < 0, z > 0 in Fig. 3(a) and 3(c)]
with "1� < 0 and �1� > 0 from an artificial nontranspar-
ent dielectric [situated in the bottom-left region, x < 0, z <

0 in Fig. 3(a) and 3(c)] with "1� > 0 and �1� < 0.
Interface 2, occupying the right half-space x > 0, is formed
by media where the artificial dielectric ("2� > 0;�2� < 0)
is located on top of the metal ("2� < 0; �2� > 0). These
interfaces [8] support both TM and TE surface waves in
different frequency bands.

Let us now consider a monochromatic TE-type SEMW
incident on the boundary x � 0 from the left interface as
well as outgoing reflected and refracted waves. The elec-
tromagnetic fields Ei

��x < 0�, ER
��x < 0�, and ET

��x > 0�
of these waves have the form

 E� � Ce exp	i�q � r? �!t�� exp��p�z�; (3)

with p� � p1� for x < 0, or p� � p2� for x > 0. The
amplitude coefficient C equals 1, R, or T; the unit polar-
ization vector e can be ei, eR, or eT; and the wave vector is
q, qR, or qT , for incident, reflected, and transmitted waves,
respectively. Because of the homogeneity in the y direc-
tion, the y components of the wave vectors qR and qT of the
reflected and transmitted waves coincide with that of the
incident wave, qRy � qTy � qy, while the moduli of qR and
qT are defined by the dispersion relations of the corre-
sponding interfaces. These conditions determine the x
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FIG. 3 (color online). Reflection and refraction of a SEMW at
the boundary x � 0 between a RHI at x < 0 and a LHI at x > 0.
The wave vectors and energy fluxes are schematically shown as a
side view (a), top view (b), and 3D diagram (c).
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component qTx � �	�qT�2 � �qTy �2�1=2 of the wave vector
for the transmitted SEMW propagating along interface 2.
The sign of qTx is defined by the continuity of the total
energy flux and has to be negative if the boundary x � 0
separates the RHI and LHI. Indeed, this corresponds to the
energy fluxes of both reflected and transmitted waves being
directed away from the boundary: �SRx < 0 and �STx > 0.

For arbitrary permeabilities and permittivities, besides
outgoing waves ER

� and ET
� from the boundary x � 0,

there exist additional electromagnetic fields localized in
the vicinity of x � 0. Thus, calculating the amplitudes of
the reflected R and transmitted T waves is a rather com-
plicated diffraction problem. Here we consider a particular
case where interfaces satisfy specific conditions

 �2�=�1� � �2�=�1� � "1�="2� � "1�="2�: (4)

For these conditions (4), there are no localized modes; i.e.,
the electric and magnetic fields of the propagating waves,
Eq. (3), obey the usual continuity conditions at the bound-
ary x � 0. When Eqs. (4) hold, the amplitudes of the
reflected and transmitted waves can be easily derived, R �

��1� ��2��=��1� ��2��, T � 2�2�=��1� ��2��.
The corresponding energy coefficients, � � � �SRx = �Six > 0
and � � �STx = �Six > 0, are � � ��1� ��2��

2=��1� �
�2��

2, � � 4j�2��1�j=��1� ��2��
2. Our prediction

above provides a relatively simple way to achieve 2D
perfect lensing of SEMWs. A more cumbersome structure,
without LHIs, for 2D perfect lensing of SEMWs, was
suggested in [9].

Dispersion relation and group velocity.—Consider here
an example of a recently proposed [5] and experimentally
realized (e.g., [10,11] ) artificial medium with permeability
���!� � 1� F!2=�!2 �!2

0� neighboring with a metal-
like medium with permittivity "��!� � 1�!2

p=!2. Both
"� and �� are here assumed to be frequency-independent
positive quantities. The permeability �� is negative in the
region !0 <!<!0=

�������������
1� F
p

and, thus, we obtain a LHI
for TE SEMWs. Namely, choosing, for instance, "� �
�� � 1 we obtain the effective refraction index neff �
	cq�!�=!�sgn �q � �S�, phase velocity vphase � !=q�!�,
and group velocity vgroup � d!=dq, shown in Fig. 4. The
phase velocity exceeds the vacuum light speed c in the
frequency range where �1< neff < 0. Remarkably, the
calculated group velocity (Fig. 4) is negative (positive)
for frequencies when the interface is left handed (right
handed). This common situation, not stressed in the past,
occurs now because the group velocity is directed along the
total energy flux.

In conclusion, we show that 2D interfaces separating 3D
metamaterials can exhibit properties of 2D left-handed
media for surface waves. These waves are characterized
by a total energy flux and group velocity antiparallel to the
phase velocity and, therefore, should have a negative
Doppler frequency shift, inverted Cherenkov angle, and
negative refraction index.
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FIG. 4 (color online). Frequency dependence of the refraction
index neff [dashed line in (a)], phase velocity vphase [solid line in
(a)], and group velocity vgroup [in (b)] for surface waves prop-
agating along an interface separating media with permittivities
"�, "� and permeabilities ��, ��. Also, "� and �� are shown
in the inset; and "� � �� � 1. Both TE and TM modes exist in
different frequency regions. The frequency interval where the
group velocity is negative (multiplied by five, to see this better)
corresponds to the LHI where the total energy flux is directed
opposite to the phase velocity. The parameters used are F �
0:56, and !p=!0 � 2:5 (cf. [10] ).
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