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Going beyond the entanglement of microscopic objects (such as photons, spins, and ions), here we
propose an efficient approach to produce and control the quantum entanglement of three macroscopic
coupled superconducting qubits. By conditionally rotating, one by one, selected Josephson-charge qubits,
we show that their Greenberger-Horne-Zeilinger (GHZ) entangled states can be deterministically
generated. The existence of GHZ correlations between these qubits could be experimentally demonstrated
by effective single-qubit operations followed by high-fidelity single-shot readouts. The possibility of using
the prepared GHZ correlations to test the macroscopic conflict between the noncommutativity of quantum
mechanics and the commutativity of classical physics is also discussed.
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FIG. 1 (color online). Three capacitively coupled SQUID-
based charge qubits. The quantum states of three Cooper-pair
boxes (i.e., qubits) are manipulated by controlling the applied
gate voltages Vj�j � 1; 2; 3�, and external magnetic fluxes �j

(penetrating the SQUID loops). The circuit can be generalized to
include more qubits.
Introduction.—Entanglement is one of the most essen-
tial features of quantum mechanics and has no analogue in
classical physics. Mathematically, it means that the wave
function of a system composed of many particles cannot be
separated into independent wave functions, one for each
particle. Physically, entangled particles can display re-
markable and counterintuitive quantum effects. For ex-
ample, a measurement made on one particle collapses the
total wave function and thus instantaneously determines
the states of the other particles, even if they are far apart.

The existence of entanglement has been experimentally
demonstrated [1] with, e.g., two photons separated far apart
(e.g., up to 500 m) and two closely spaced trapped ions
(e.g., separated a few micrometers apart). The obvious
violation of Bell’s inequality in these two-qubit experi-
ments statistically verifies the conflict between the locality
of classical physics and the nonlocality of quantum me-
chanics. Only recently, the experimental study of entangle-
ment has been successfully extended to a system composed
of more than two qubits. For example, three-photon
Greenberger-Horne-Zeilinger (GHZ) entangled states [2]
have been demonstrated, and then used to test the conflict
between classical local-realism and quantum nonlocality
using definite predictions [3], rather than the statistical
ones based on Bell’s inequalities. Yet, besides the problem
of detector efficiency, the expected GHZ state in optical
experiments could not be deterministically prepared [2]
because: (i) each entangled photon pair was generated in
a small subset of all pairs created in certain spontaneous
processes, and (ii) the nondeterministic detection of a
trigger photon among two pairs of entangled photons was
required.

Instead of fast-escaping photons, massive or macro-
scopic quantum systems [4] have also been extensively
studied to realize controllable multipartite quantum entan-
glement. The three-qubit entanglement of microscopic
Rydberg atoms [5] and trapped ions [6] was prepared
06=96(24)=246803(4) 24680
experimentally. Moreover, the GHZ state of massive mac-
roscopic ‘‘particles’’ has also been demonstrated in liquid
NMR [7]. However, the existence of nonlocal correlations
in these particles cannot be settled, as the correlated infor-
mation between them will be completely mangled in their
readouts of ensemble averages.

Superconducting qubits [8] provide an attractive plat-
form to control the genuine (rather than ensemble-pseudo-
pure) macroscopic quantum state. The sizes of the ‘‘par-
ticles’’ (e.g., Cooper-pairs boxes) and the distance between
them, are typically on the order of microns. If the interbit
couplings are switchable, then methods [2,5,6], working
well in photon- and trapped-ion systems, could be applied
[9] to generate and verify the GHZ entanglement between
the Josephson qubits. However, in all published (so far)
experiments the interactions between Josephson qubits [8]
are fixed (either capacitively or inductively), and thus the
usually required single-qubit gates cannot, in principle, be
strictly implemented.

For the currently existing experimental circuits with
always-on coupling, here we propose an effective approach
3-1 © 2006 The American Physical Society
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to deterministically generate three-qubit GHZ states by
conditionally rotating the selected qubits one by one. The
existence of the desirable GHZ entanglement is then reli-
ably verified by using effective single-qubit operations. The
prepared GHZ entanglement should allow to test quantum
nonlocality by definite predictions at a macroscopic level.

Preparation of GHZ states.—We consider the three-
qubit circuit sketched in Fig. 1, that is, only adding one
qubit to the experimentally existing one [10]. Three
superconducting-quantum-interference-device (SQUID)
loops with controllable Josephson energies produce three
Josephson qubits, fabricated a small distance apart [e.g., up
to a few micrometers [10], as the case of entangled trapped
ions in Ref. [6] ] and coupled via the capacitances C12 and
C23. The dynamics of the system can be effectively re-
stricted to the subspace spanned by the computational
basis, and be thus described by the following simplified
Hamiltonian

 Ĥ�
1

2

X3

j�1

�E�j�C �
�j�
z �E

�j�
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�j�
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Here, E�j�C � 2e2� ~C�1
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�2ngj � 1� �
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with ngj � CgjVj=�2e� � 0:5, is the effective charging en-
ergy of the jth qubit, whose effective Josephson energy is
E�j�J � 2"�j�J cos���j=�0� with "�j�J the Josephson energy
of the single-junction and �0 the flux quantum. The effec-
tive coupling energy between the jth qubit and the (j�
1)th one is Kj;j�1 � e2 ~C�1

j;j�1. Above, C�j
is the sum of all

capacitances connected to the jth box, and other effective
capacitances are defined by ~C�1
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C�3
�, ~C�3
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C12�, ~C23 � ~C=�C�1

C23�, ~C13 � ~C=�C12C23�,
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. The pesudospin

operators are defined as ��j�z � j0jih0jj � j1jih1jj and
��j�x � j0jih1jj � j1jih0jj. As the interbit-couplings are al-

ways on, the charge energyE�j�C of the jth qubit depends not
only on the gate voltage applied to the jth qubit, but also on
those applied to the other two Cooper-pair boxes.
Compared to the coupling Kj;j�1 between nearest-
neighboring qubits, the interaction of two non-nearest-
neighbor qubits (i.e., K13 � e2= ~C13 between the first and
the third qubits), is very weak and thus has been safely
neglected [11]. Indeed, for the typical experimental pa-
rameters: CJ � 600 aF, Cm � 30 aF, and Cg � 0:6 aF in
Ref. [10], we have K13=K12 � K13=K23 <Cm=CJ � 0:05
and K12=2"J � 1=4.

In principle, the coupled qubits cannot be individually
manipulated, as the nearest-neighbor capacitive couplings
Kj;j�1 are sufficiently strong. However, once the state of
the circuit is known, it is still possible to design certain
operations for only evolving the selected qubits and keep-
24680
ing the remaining ones unchanged. Our preparation begins
with the ground state of the circuit j �0�i � j000i, which
can be easily initialized. The expected GHZ state could be
produced by the following three-step pulse process [11]

 

j �0�i � j000i ���!Û2�t2� 1���
2
p �j000i 	 ij010i� ���!Û1�t1� 1���

2
p �j000i


 j110i� ���!Û3�t3� 1���
2
p �j000i 	 ij111i�

� j 	GHZi: (2)

The first evolution Û2�t2�, with sin�E�2�J t2=�2@�� � 	1=
���
2
p

,
is used to superpose two logic states of the second qubit.
This is achieved by simply using a pulse that switches on
the Josephson energy E�2�J and sets the charging energy
E�2�C � �2�K12 � K23�. The second [or third] evolution
Û1�t1� [or Û3�t3�] is achieved by switching on the
Josephson energy of the first [third] qubit and setting its
charging energy as E�1�C � 2K12 (or E�3�C � 2K23). The
corresponding duration is set to satisfy the conditions
sin�E�j�J tj=�2@�� � 1 and cos��jtj=@� � 1, with �j �����������������������������������������
�2Kj2�2 � �E

�j�
J =2�2

q
, with j � 1, 3, in order to condition-

ally flip the jth qubit, that is, flip it if the second qubit is in
the j1i state, and keep it unchanged if the second qubit is in
the j0i state.

The fidelity of the GHZ state prepared above can be
experimentally measured by quantum-state tomography
[6,7,12]. However, it would be desirable to confirm the
existence of a GHZ state without using tomographic mea-
surements on a sufficient number of identically prepared
copies. Optical experiments [2] have achieved this via
single-shot readout and we propose a superconducting-
qubit analog of this approach. The single-shot readout of
a Josephson-charge qubit has been experimentally demon-
strated [13] by using a single-electron transistor (SET)
[14]. Before and after the readout, the SET is physically
decoupled from the qubit. The GHZ state generated above
implies that the three SETs, if they are individually
coupled to each one of the three Cooper-pair boxes at the
same time, will simultaneously either receive charge sig-
nals or receive no signal. The former case indicates that the
circuit is in the state j111i, while the latter one corresponds
to the state j000i. However, the existence of these two
terms, j111i and j000i, in these single-shot readouts, is
just a necessary but not yet sufficient condition for dem-
onstrating the GHZ entanglement. Indeed, a statistical
mixture of those two states may also give the same mea-
surement results. In order to confirm that the state (2), e.g.,
j �GHZi, is indeed in a coherent superposition of the states
j000i and j111i, we consider the following operational
sequence
 j �GHZi !
~U2 1

2
�j000i � j101i � ij010i � ij111i� !

P̂2 1���
2
p �j0103i � j1113i� ���!

~U1� ~U3 1���
2
p �j0113i � j1103i�; (3)
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which is similar to the verification of the optical GHZ
correlations [2]. Above, P̂2 � j12ih12j is a projective mea-
surement of the second qubit. The suffixes are introduced
in the second and third steps to denote the order of the
qubits. When we finally readout the first and third qubits at
the same time, the simultaneous absence of the terms
j0103i and j1113i due to destructive interference indicates
the desired coherent superposition of the terms in the
prepared GHZ state (2). The question now is how to realize
the required single-qubit operations ~Uj � exp�i���j�x =4�,
j � 1, 2, 3, keeping the remaining qubits unchanged, in
this circuit with untunable interbit interactions (like the
currently available experimental ones).

In order to effectively implement the single-qubit ro-
tation ~U2 performed only on the second qubit, while
keeping the first and third qubits unchanged, we let the
circuit evolve under the Hamiltonian Ĥ2 � �"

�2�
J �

�2�
x �

K12�
�1�
z �

�2�
z � K23�

�2�
z �

�3�
z , by only switching on the

Josephson energy of the second qubit, e.g., E�2�J � 2"�2�J .
Since �12 � K12=�2"

�2�
J �< 1, �23 � K23=�2"

�2�
J �< 1 [e.g.,

& 1=4 for the typical experimental parameters [10] ], we
can treat the second and third terms in Ĥ2 as perturbations
of the first one there. Indeed, neglecting quantities smaller
than the second-order perturbations [15], the Hamiltonian
Ĥ2 can be effectively approximated to [16]

 Ĥ �2�eff��"
�2�
J �1�2�2

12�2�2
23�4�12�23�

�1�
z �

�3�
z ��

�2�
x : (4)

In the state (2) the logic states of the first and third qubits
are always identical. Thus, by setting the correspond-
ing duration �2 as �2 � @�=4"�2�J �1� 2�2

12 � 2�2
23 �

4�12�23�, the required single-qubit operation ~U2 �

exp��iĤ�2�eff�2=@� � exp�i���2�x =4� could be effectively
performed on the second qubit in state (2). Similarly, the
Hamiltonian Ĥ13�

P
j�1;3f�"

�j�
J �

�j�
x �Kj2�

�j�
z �

�2�
z g, in-

duced by simultaneously switching on the Josephson en-
ergies of the first and third qubits, can be effectively
approximated to

 Ĥ �13�
eff � �

X
j�1;3

"�j�J �1� 2�2
j2�

�2�
z ��

�j�
x ; (5)

by neglecting the higher-order terms of �j2 � Kj2=

�2"�j�J �< 1, with j � 1, 3. The shifts of Josephson energies
� ~E�j�J � 4"�j�J �

2
j2�

�2�
z depend on the state of the second

Cooper-pair box, which collapsed into the state j0i after
the projective measurement P̂2 � j12ih12j (because such a
measurement tunnels the existing excess Cooper pairs into
the connected SET). Thus, the effective Hamiltonian Ĥ�13�

eff

yields the evolution Û13��13� � exp��iĤ�13�
eff �13=@� �Q

j�1;3 expfi�13�"
�j�
J �1� 2�2

j2���
�j�
x =@g. Obviously, if the

duration �13 satisfies the condition �13�"
�j�
J �1� 2�2

j2��=@ �

�=4, then the required single-qubit operations ~Uj �
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exp�i���j�x =4�, j � 1; 3, could be simultaneously
implemented.

Possible application.—The prepared GHZ state, e.g.,
j �GHZi, should allow, at least in principle, to test the
macroscopic conflict between the noncommutativity of
quantum mechanics and the commutativity of classical
physics by definite predictions [3]. Using the EPR’s reality
criterion, each observable corresponds to an ‘‘element of
reality’’ (even if it is not measured). That is, the quantum
operators ��j�� , �� � x; y; z; j � 1; 2; 3� are linked to the
classical numbers m�j�� , which have the value �1 or �1.
The so-called ��j�� measurement is the projection of the
quantum state into one of the eigenstates of ��j�� . The
prepared GHZ state is the eigenstate of the three operators:
Ayxx � ��1�y �

�2�
x �

�3�
x , Axyx � ��1�x �

�2�
y �

�3�
x , and Axxy �

��1�x �
�2�
x �

�3�
y , with a common eigenvalue �1. Thus, classi-

cal reality implies that 1 � �m�1�y m
�2�
x m

�3�
x ��m

�1�
x m

�2�
y m

�3�
x ��

�m�1�x m
�2�
x m

�3�
y � � m�1�y m

�2�
y m

�3�
y . The second formula indi-

cates that, if we perform the
Q3
j�1 �

�j�
y measurement (i.e.,

yyy experiment) on the state j �GHZi, the eigenstate j ~�i
only shows in pairs. Here, j ~�i (or j ~�i) denotes the eigen-
state of the operator �y with eigenvalue �1 (or �1) and
corresponds to the classical number my � �1 (or �1).
While, for this yyy experiment quantum mechanics pre-
dicts that the state j ~�i never shows simultaneously in pairs,
because the prepared GHZ state can be rewritten as
j �GHZi � �j ~� ~� ~�i� j ~� ~� ~�i� j ~� ~� ~�i� j ~� ~� ~�i�=2.
Obviously, this contradiction comes from the fact that
the observable ��j�x anticommutes with the observable
��j�y and the operator identity ���1�y �

�2�
x �

�3�
x ���

�1�
x �

�2�
y �

�3�
x ��

���1�x �
�2�
x �

�3�
y � � ��

�1�
y �

�2�
y �

�3�
y , which is ‘‘opposite’’ to its

classical counterpart.
The protocol described above could be directly [e.g., for

the optical system [2] ] performed by reading out the
eigenstates of the operators �x and �y, respectively.
However, in the present solid-state qubit, the eigenstates
of�z are usually read out. Thus, additional operations, e.g.,
the Hadamard transformation Ŝx � ��z � �x�=

���
2
p

, and the
unitary transformation Ŝy���1� i�Î��1� i�

P
����=

�2
���
2
p
�, are required to transform the eigenstates of �x

and �y to those of �z, respectively. These additional -
single-qubit operations could be implemented by combin-
ing the rotations of the selected qubit along the x axis (by
using the effective Hamiltonian proposed above) and those
along the z axis [by effectively refocusing the fixed-
interactions [15] ].

Conclusion and discussions.—The experimental realiza-
tion of our proposal for producing and testing GHZ corre-
lations is possible, although it may also face various
technological challenges, like other theoretical designs
[17] for quantum engineering. Of course, the fabrication
of the proposed circuit is not difficult, as it only adds one
qubit to experimentally existing superconducting nano-
circuits [10]. Moreover, rapidly switching on/off the
3-3
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Josephson energy, to realize the fast quantum manipula-
tions, is experimentally possible. In fact, assuming a
SQUID loop size of 10 ��m�2, changing the flux by about
a half of a flux quantum in 10�10 s, requires sweeping the
magnetic field at a rate of about 105 T=s, almost reachable
by current techniques [18].

Also, the prepared GHZ states are the eigenstates of the
idle circuit (i.e., no operations on it) without any charge
and Josephson energies (by setting the controllable pa-
rameters as �j � �0=2 and ngj � 0:5) and thus are rela-
tively long lived, at least theoretically. Indeed, the cou-
plings V̂�

P3
j�1�

�j�
z �
P3
k�1�jkXk� between the relevant

baths and the circuit commute with the nonfluctuating
Hamiltonian of the idle circuit Ĥ0 �

P
j�1;2Kj;j�1

��j�z �
�j�1�
z . Here, �jk equals to either 1 for j � k or

~C�k
~Cjk for j � k, and Xk � �eCgk=

~C�k
�
P
!k
�g!k

ây!k �

g!k
â!k
� with â!k

, âywk being the Boson operators of the
kth bath, and g!k

the coupling strength between the oscil-
lator of frequency !k and the nondissipative system. Thus,
only pure dephasing, i.e., the zero frequency value of the
noise spectrum contributes to overall decoherence rates
[19]. However, the working frequency of the present circuit
is always nonzero. This implies that the lifetimes of the
prepared GHZ correlations are still sufficiently long, and
thus various required quantum manipulations could still be
coherently implemented.

Perhaps the biggest challenge comes from the fast
single-shot readouts [13,20] of multiqubits at the same
time. This is a common required task of almost all quantum
algorithms and important for physical realizations of quan-
tum computing. In order to avoid the cross talk between
qubits during the readouts, the readout time tm should be
‘‘much’’ shorter than the characteristic time tc � @=Kj;j�1

of communications. This requirement has been achieved
by the existing phase-qubit circuits [21]: tm � 1 ns, and
tc � 4 ns for the demonstrated coupling energy K �
80 MHz. For the existing charge-qubit circuits [10], where
the interbit coupling-energy K � 3 GHz yields tc �
100 ps, the duration of the single-shot readout pulse should
be not longer than several tens of picosecond. Thus, the
weaker interbit coupling, e.g., lowered to hundreds of KHz,
is required for the current SET technique, whose response
time is usually hundreds of nanoseconds [13,14].

In summary, based on conditionally manipulating the
selected qubits, we have shown how to engineer the macro-
scopic quantum entanglement of Josephson qubits with
fixed couplings. Our proposal allows us to deterministi-
cally prepare three-qubit GHZ entangled states and allows
a macroscopic test of the contradiction between the non-
commutativity of quantum mechanics and the commuta-
tivity of classical physics.
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